Reading view

There are new articles available, click to refresh the page.

Apple and Google are taking steps to curb the abuse of location-tracking devices — but what about others?

Apple and Google are taking steps to curb the abuse of location-tracking devices — but what about others?

Since the advent of products like the Tile and Apple AirTag, both used to keep track of easily lost items like wallets, keys and purses, bad actors and criminals have found ways to abuse them. 

These adversaries can range from criminals just looking to do something illegal for a range of reasons, but maybe just looking to steal a physical object, to just a jealous or suspicious spouse or partner who wants to keep tags on their significant other. 

Apple and other manufacturers who make these devices have since taken several steps to curb the abuse of these devices and make them more secure. Most recently, Google and Apple announced new alerts that would hit Android and iOS devices and alert users that their devices’ location is being connected to any location-tracking device.  

“With this new capability, users will now get an ‘[Item] Found Moving With You’ alert on their device if an unknown Bluetooth tracking device is seen moving with them over time, regardless of the platform the device is paired with,” Apple stated in its announcement. 

Companies Motorola, Jio and Eufy also announced that they would be adhering to these new standards and should release compliant products soon.  

Certainly, products like the AirTag and Samsung trackers that these companies have direct control over will now be more secure, and hopefully less ripe for abuse by a bad actor, but it’s far from a total solution to the problem that these types of products pose. 

As I’ve pointed out in the past with security cameras and any other range of internet-connected devices, online stores are filled with these types of products, promising to track users’ personal items with an app so they don’t lose common household items like their phones, wallets and keys.  

Amazon has countless listings under “location tag” for a range of AirTag-like products made by unknown manufacturers. Some of these products are slim enough to fit right into the credit card pocket of a wallet or purse,  and others are smaller than the average AirTag and even advertise that they can remain hidden inside a car.  

I admittedly haven’t been able to dive into these individual devices, but some of them come with their own third-party apps, which come with their own set of security caveats and completely take it out of platform developers’ hands.  

There are also other “find my device”-type services that pose additional security concerns outside of just buying a small tag. Android’s new, enhanced “Find My Device” network is a crowdsourced solution to help users potentially find their lost devices, similar to iOS’ Find My network.  

The Find My Device network works by using other Android devices to silently relay the registered device’s approximate location, even if the device being searched for is offline or turned off. In the wrong hands, there are a range of ways that can be abused on its own.  

So, rather than relying on developers and manufacturers to make these services more secure, I have a few tips for how to use AirTag-like devices safely, if you really can’t come up with a better solution for not losing your keys. 

  • Check for suspicious tracking devices. On iOS, this means opening the “Find My” app and navigating to Items > Items Detected Near You. Any unfamiliar AirTags will be listed here. On Android, you can do the same thing by going to Settings > Safety & Emergency > Unknown Tracker Alerts > Scan Now. 
  • Remove yourself from any “Sharing Groups” unless it’s a trusted contact in your phone using the Find My app on iOS. 
  • If location tracking is your primary concern (especially for parents and their children) using the Find My app on iOS and Android is generally a more secure option than trusting a third-party app downloaded from the app store or relying on a Bluetooth connection.  
  • Manage individual apps’ settings to ensure only the services that *really* need to track your device’s physical location are using it. (Ex., you probably don’t need Facebook tracking that information.) 
  • Since AirTags are connected to your Apple ID, ensure that login is secured with multi-factor authentication (MFA) or using a passkey.  

The one big thing 

Cisco recently developed and released a new feature to detect brand impersonation in emails when adversaries pretend to be a legitimate corporation. Threat actors employ a variety of techniques to embed brand logos within emails. One simple method involves inserting words associated with the brand into the HTML source of the email. New data from Talos found that popular brands like PayPal, Microsoft, NortonLifeLock and McAfee are among some of the most-impersonated brands in these types of phishing emails.  

Why do I care? 

Brand impersonation could happen on many online platforms, including social media, websites, emails and mobile applications. This type of threat exploits the familiarity and legitimacy of popular brand logos to solicit sensitive information from victims. In the context of email security, brand impersonation is commonly observed in phishing emails. Threat actors want to deceive their victims into giving up their credentials or other sensitive information by abusing the popularity of well-known brands. 

So now what? 

Well-known brands can protect themselves from this type of threat through asset protection as well. Domain names can be registered with various extensions to thwart threat actors attempting to use similar domains for malicious purposes. The other crucial step brands can take is to conceal their information from WHOIS records via privacy protection. And users who want to learn more about Cisco Secure Email Threat Defense's new brand impersonation detection tools can visit this site

Top security headlines of the week 

Adversaries have been quietly exploiting the backbone of cellular communications to track Americans’ location for years, according to a U.S. Cybersecurity and Infrastructure Security Agency (CISA). The official broke ranks with their agency and reportedly shared this information with the Federal Communications Commission (FCC). The official said that attackers have used vulnerabilities in the SS7 protocol to steal location data, monitor voice and text messages, and deliver spyware. Other targets have received text messages containing fake news or disinformation. SS7 is the protocol used across the globe that routes text messages and calls to different devices but has often been a target for attackers. In the past, other vulnerabilities in SS7 have been used to gain access to telecommunications providers’ networks. In their written comments to the FCC, the official said that these vulnerabilities are the “tip of the proverbial iceberg” of SS7-related exploits used against U.S. citizens. (404 Media, The Economist

The FBI once again seized the main site belonging to BreachForums, a popular platform for buying and selling stolen personal information. Last year, international law enforcement agencies took down a previous version of the cybercrime site and arrested its administrator, but the new pages quickly emerged, using three different domains since the last disruption. American law enforcement agencies also took control of the forum’s official Telegram account, and a channel belonging to the newest BreachForums administrator, “Baphomet.” However, the FBI has yet to publicly state anything about the takedown or any potential arrests. BreachForums isn’t expected to be gone for long, as another admin named “ShinyHunters” claims the site will be back with a new Onion domain soon. ShinyHunters claims they’ve retried access to the seized clearnet domain for BreachForums, though they did not provide specific methods. BreachForums is infamous for being a site where attackers can buy and sell stolen data, offer their hacking services or share recent TTPs. (TechCruch, HackRead) 

The U.S. Department of Justice charged three North Koreans with crimes related to impersonating others to obtain remote employment in the U.S., which in turn generated funding for North Korea’s military. The three men, and another U.S. citizen, were charged with what the DOJ called “staggering fraud” in which they secured illicit work with several U.S. companies and government agencies using fraudulent identities from 60 real Americans. The U.S. citizen was allegedly placed laptops belonging to U.S. companies at various residences so the North Koreans could hide their true location. North Korean state-sponsored actors have used these types of tactics for years, often relying on social media networks like LinkedIn to fake their personal information and obtain jobs or steal sensitive information from companies. More than 300 companies may have been affected, with the perpetrators earning more than $6.8 million, most of which was used to “raise revenue for the North Korean government and its illicit nuclear program,” according to the DOJ. (ABC News, Bloomberg

Can’t get enough Talos? 

Upcoming events where you can find Talos 

ISC2 SECURE Europe (May 29) 

Amsterdam, Netherlands 

Gergana Karadzhova-Dangela from Cisco Talos Incident Response will participate in a panel on “Using ECSF to Reduce the Cybersecurity Workforce and Skills Gap in the EU.” Karadzhova-Dangela participated in the creation of the EU cybersecurity framework, and will discuss how Cisco has used it for several of its internal initiatives as a way to recruit and hire new talent.  

Cisco Live (June 2 - 6) 

Las Vegas, Nevada 

Bill Largent from Talos' Strategic Communications team will be giving our annual "State of Cybersecurity" talk at Cisco Live on Tuesday, June 4 at 11 a.m. Pacific time. Jaeson Schultz from Talos Outreach will have a talk of his own on Thursday, June 6 at 8:30 a.m. Pacific, and there will be several Talos IR-specific lightning talks at the Cisco Secure booth throughout the conference.

AREA41 (June 6 – 7) 

Zurich, Switzerland 

Gergana Karadzhova-Dangela from Cisco Talos Incident Response will highlight the primordial importance of actionable incident response documentation for the overall response readiness of an organization. During this talk, she will share commonly observed mistakes when writing IR documentation and ways to avoid them. She will draw on her experiences as a responder who works with customers during proactive activities and actual cybersecurity breaches. 

Most prevalent malware files from Talos telemetry over the past week 

SHA 256: 9be2103d3418d266de57143c2164b31c27dfa73c22e42137f3fe63a21f793202 
MD5: e4acf0e303e9f1371f029e013f902262 
Typical Filename: FileZilla_3.67.0_win64_sponsored2-setup.exe 
Claimed Product: FileZilla 
Detection Name: W32.Application.27hg.1201 

SHA 256: a024a18e27707738adcd7b5a740c5a93534b4b8c9d3b947f6d85740af19d17d0 
MD5: b4440eea7367c3fb04a89225df4022a6 
Typical Filename: Pdfixers.exe 
Claimed Product: Pdfixers 
Detection Name: W32.Superfluss:PUPgenPUP.27gq.1201 

SHA 256: 1fa0222e5ae2b891fa9c2dad1f63a9b26901d825dc6d6b9dcc6258a985f4f9ab 
MD5: 4c648967aeac81b18b53a3cb357120f4 
Typical Filename: yypnexwqivdpvdeakbmmd.exe 
Claimed Product: N/A  
Detection Name: Win.Dropper.Scar::1201 

SHA 256: d529b406724e4db3defbaf15fcd216e66b9c999831e0b1f0c82899f7f8ef6ee1 
MD5: fb9e0617489f517dc47452e204572b4e 
Typical Filename: KMSAuto++.exe 
Claimed Product: KMSAuto++ 
Detection Name: W32.File.MalParent 

SHA 256: abaa1b89dca9655410f61d64de25990972db95d28738fc93bb7a8a69b347a6a6 
MD5: 22ae85259273bc4ea419584293eda886 
Typical Filename: KMSAuto++ x64.exe 
Claimed Product: KMSAuto++ 
Detection Name: W32.File.MalParent 

From trust to trickery: Brand impersonation over the email attack vector

  • Cisco recently developed and released a new feature to detect brand impersonation in emails when adversaries pretend to be a legitimate corporation.
  • Talos has discovered a wide range of techniques threat actors use to embed and deliver brand logos via emails to their victims.
  • Talos is providing new statistics and insights into detected brand impersonation cases over one month (March - April 2024).
  • In addition to deploying Cisco Secure Email, user education is key to detecting this type of threat.
From trust to trickery: Brand impersonation over the email attack vector

Brand impersonation could happen on many online platforms, including social media, websites, emails and mobile applications. This type of threat exploits the familiarity and legitimacy of popular brand logos to solicit sensitive information from victims. In the context of email security, brand impersonation is commonly observed in phishing emails. Threat actors want to deceive their victims into giving up their credentials or other sensitive information by abusing the popularity of well-known brands.

Brand logo embedding and delivery techniques

Threat actors employ a variety of techniques to embed brand logos within emails. One simple method involves inserting words associated with the brand into the HTML source of the email. In the example below, the PayPal logo can be found in plaintext in the HTML source of this email.

From trust to trickery: Brand impersonation over the email attack vector
An example email impersonating the PayPal brand.
From trust to trickery: Brand impersonation over the email attack vector
Creating the PayPal logo via HTML.

Sometimes, the email body is base64-encoded to make their detection harder. The base64-encoded snippet of an email body is shown below.

From trust to trickery: Brand impersonation over the email attack vector
An example email impersonating the Microsoft brand.
From trust to trickery: Brand impersonation over the email attack vector
A snippet of the base64-encoded body of the above email.

The decoded HTML code is shown in the figure below. In this case, the Microsoft logo has been built via an HTML 2x2 table with four cells and various background colors.

From trust to trickery: Brand impersonation over the email attack vector
Creating the Microsoft logo via HTML.

A more advanced technique is to fetch the brand logo from remote servers at delivery time. In this technique, the URI of the resource is embedded in the HTML source of the email, either in plain text or Base64-encoded. The logo in the example below is fetched from the below address:
hxxps://image[.]member.americanexpress[.]com/.../AMXIMG_250x250_amex_logo.jpg

From trust to trickery: Brand impersonation over the email attack vector
An example email impersonating the American Express brand.
From trust to trickery: Brand impersonation over the email attack vector
The URI from which the American Express brand is being loaded.

Another technique threat actors use is to deliver the brand logo via attachments. One of the most common techniques is to only include the brand logo as an image attachment. In this case, the logo is normally base64-encoded to evade detection. Email clients automatically fetch and render these logos if they’re referenced from the HTML source of the email. In this example, the Microsoft logo is attached to this email as a PNG file and referenced in an <img> HTML tag.

From trust to trickery: Brand impersonation over the email attack vector
An example email impersonating the Microsoft brand (the logo is attached to the email and is rendered and shown to the victim at delivery time via <img> HTML tag).
From trust to trickery: Brand impersonation over the email attack vector
The Content-ID (CID) reference of the attached Microsoft brand logo is included inline in the HTML source of the above email.

In other cases, the whole email body, including the brand logo, is attached as an image to the email and is shown to the victim by the email client. The example below is a brand impersonation case where the whole body is included in the PNG attachment, named “shark.png”. Also, an “inline” keyword can be seen in the HTML source of this email. When Content-Disposition is set to "inline," it indicates that the attached content should be displayed within the body of the email itself, rather than being treated as a downloadable attachment.

From trust to trickery: Brand impersonation over the email attack vector
An example email impersonating the Microsoft Office 365 brand (the whole email body, including the brand logo, is attached to the email as a PNG file).
From trust to trickery: Brand impersonation over the email attack vector
The whole email body is in the attachment and is included in the above message.

A brand logo may also be embedded within a PDF attachment. In the example shown below, the whole email body is included in a PDF attachment. This email is a QR code phishing email that is also impersonating the Bluebeam brand.

From trust to trickery: Brand impersonation over the email attack vector
An example email impersonating the Bluebeam brand (the whole email body, including the brand logo, is attached to the email as a PDF file).
From trust to trickery: Brand impersonation over the email attack vector
The whole email body is included in a PDF attachment.

The scope of brand impersonation

An efficient brand impersonation detection engine plays a key role in an email security product. The extracted information from correctly convicted emails is valuable for threat researchers and customers. Using Cisco Secure Email Threat Defense’s brand impersonation detection engine, we uncovered the true scope of how widespread these attacks are. All data reflects the period between March 22 and April 22, 2024.

Threat researchers can use this information to block future attacks, potentially based on the sender’s email address and domain, the originating IP addresses of brand impersonation attacks, their attachments, the URLs found from such emails, and even phone numbers.

The chart below demonstrates the top sender domains of emails curated by attackers to convince the victims to call a number (i.e., as in Telephone-Oriented Attack Delivery) by impersonating the Best Buy Geek Squad, Norton and PayPal brands. Free email services are widely used by adversaries to send such emails. However, other domains can also be found that are less popular.

From trust to trickery: Brand impersonation over the email attack vector
Top sender domains of emails impersonating Best Buy Geek Squad, Norton and PayPal brands.

Sometimes, similar brand impersonation emails are sent from a wide range of domains. For example, as shown in the below heatmap, emails impersonating the DocuSign brand were sent from two different domains to our customers on March 28. In other cases, emails are sent from a single domain (e.g., emails impersonating Geek Squad and McAfee brands).

From trust to trickery: Brand impersonation over the email attack vector
Count of convictions by the impersonated brand and sender domain on March 28.(Note: This is only a subset of convictions we had on this date.)

Brand impersonation emails may target specific industry verticals, or they might be sent indiscriminately. As shown in the chart below, four brand impersonation emails from hotmail.com and softbased.top domains were sent to our customers that would be categorized as either educational or insurance companies. On the other hand, emails from biglobe.ne.jp targeted a wider range of industry verticals.

From trust to trickery: Brand impersonation over the email attack vector
Count of convictions by industry verticals from different sender domains on April 2nd (note: this is only a subset of convictions we had in this date).

Cisco customers can also benefit from information provided by the brand impersonation detection engine. By sharing the list of the most frequently impersonated brands with them regularly, they can train their employees to stay vigilant when they observe specific brands in emails.

From trust to trickery: Brand impersonation over the email attack vector
Top 30 impersonated brands over one month.

Microsoft was the most frequently impersonated brand over the month we observed, followed by DocuSign. Most emails that contained these brands were fake SharePoint and DocuSign phishing messages. Two examples are provided below.

From trust to trickery: Brand impersonation over the email attack vector

Other top frequently impersonated brands such as NortonLifeLock, PayPal, Chase, Geek Squad and Walmart were mostly seen in callback phishing messages. In this technique, the attackers include a phone number in the email and try to persuade recipients to call that number, thereby changing the communication channel away from email. From there, they may send another link to their victims to deliver different types of malware. The attackers normally do so by impersonating well-known and familiar brands. Two examples of such emails are provided below.

From trust to trickery: Brand impersonation over the email attack vector

Protect against brand impersonation

Strengthening the weakest link

Humans are still the weakest link in cybersecurity. Therefore, educating users is of paramount importance to reduce the amount and effects of security breaches. Educating people does not only concern employees within a specific organization but in this case, it also involves their customers.

Employees should know an organization’s trusted partners and the way that their organization communicates with them. This way, when an anomaly occurs in that form of communication, they will be able to identify any issues faster. Customers need different communication methods that your organization would use to contact them. Also, they need to be provided with the type of information you will be asking for. When they know these two vital details, they will be less likely to share their sensitive information over abnormal communication platforms (e.g., through emails or text messages).

Brand impersonation techniques are evolving in terms of sophistication, and differentiating fake emails from legitimate ones by a human or even a security researcher demands more time and effort. Therefore, more advanced techniques are required to detect these types of threats.

Asset protection

Well-known brands can protect themselves from this type of threat through asset protection as well. Domain names can be registered with various extensions to thwart threat actors attempting to use similar domains for malicious purposes. The other crucial step brands can take is to conceal their information from WHOIS records via privacy protection. Last, but not least, domain names need to be updated regularly since expired domains can be easily abused by threat actors for illicit activities that can harm your business reputation. Brand names should be registered properly so that your organization can take legal action when a brand impersonation occurs.

Advanced detection methods

Detection methods can be improved to delay the exposure of users to the received emails. Machine learning has improved significantly over the past few years due to advancements in computing resources, the availability of data, and the introduction of new machine learning architectures. Machine learning-based security solutions can be leveraged to improve detection efficacy.

Cisco Talos relies on a wide range of systems to detect this type of threat and protect our customers, from rule-based engines to advanced ML-based systems. Learn more about Cisco Secure Email Threat Defense's new brand impersonation detection tools here.

❌