❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayKitPloit - PenTest & Hacking Tools

Gftrace - A Command Line Windows API Tracing Tool For Golang Binaries


A command line Windows API tracing tool for Golang binaries.

Note: This tool is a PoC and a work-in-progress prototype so please treat it as such. Feedbacks are always welcome!


How it works?

Although Golang programs contains a lot of nuances regarding the way they are built and their behavior in runtime they still need to interact with the OS layer and that means at some point they do need to call functions from the Windows API.

The Go runtime package contains a function called asmstdcall and this function is a kind of "gateway" used to interact with the Windows API. Since it's expected this function to call the Windows API functions we can assume it needs to have access to information such as the address of the function and it's parameters, and this is where things start to get more interesting.

Asmstdcall receives a single parameter which is pointer to something similar to the following structure:

struct LIBCALL {
DWORD_PTR Addr;
DWORD Argc;
DWORD_PTR Argv;
DWORD_PTR ReturnValue;

[...]
}

Some of these fields are filled after the API function is called, like the return value, others are received by asmstdcall, like the function address, the number of arguments and the list of arguments. Regardless when those are set it's clear that the asmstdcall function manipulates a lot of interesting information regarding the execution of programs compiled in Golang.

The gftrace leverages asmstdcall and the way it works to monitor specific fields of the mentioned struct and log it to the user. The tool is capable of log the function name, it's parameters and also the return value of each Windows function called by a Golang application. All of it with no need to hook a single API function or have a signature for it.

The tool also tries to ignore all the noise from the Go runtime initialization and only log functions called after it (i.e. functions from the main package).

If you want to know more about this project and research check the blogpost.

Installation

Download the latest release.

Usage

  1. Make sure gftrace.exe, gftrace.dll and gftrace.cfg are in the same directory.
  2. Specify which API functions you want to trace in the gftrace.cfg file (the tool does not work without API filters applied).
  3. Run gftrace.exe passing the target Golang program path as a parameter.
gftrace.exe <filepath> <params>

Configuration

All you need to do is specify which functions you want to trace in the gftrace.cfg file, separating it by comma with no spaces:

CreateFileW,ReadFile,CreateProcessW

The exact Windows API functions a Golang method X of a package Y would call in a specific scenario can only be determined either by analysis of the method itself or trying to guess it. There's some interesting characteristics that can be used to determine it, for example, Golang applications seems to always prefer to call functions from the "Wide" and "Ex" set (e.g. CreateFileW, CreateProcessW, GetComputerNameExW, etc) so you can consider it during your analysis.

The default config file contains multiple functions in which I tested already (at least most part of them) and can say for sure they can be called by a Golang application at some point. I'll try to update it eventually.

Examples

Tracing CreateFileW() and ReadFile() in a simple Golang file that calls "os.ReadFile" twice:

- CreateFileW("C:\Users\user\Desktop\doc.txt", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 0x168 (360)
- ReadFile(0x168, 0xc000108000, 0x200, 0xc000075d64, 0x0) = 0x1 (1)
- CreateFileW("C:\Users\user\Desktop\doc2.txt", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 0x168 (360)
- ReadFile(0x168, 0xc000108200, 0x200, 0xc000075d64, 0x0) = 0x1 (1)

Tracing CreateProcessW() in the TunnelFish malware:

- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddress |  ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000ace98, 0xc0000acd68) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddress | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000c4ec8, 0xc0000c4d98) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddres s | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc00005eec8, 0xc00005ed98) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddress | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000bce98, 0xc0000bcd68) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\system32\cmd.exe", "cmd /c "wmic computersystem get domain"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000c4ef0, 0xc0000c4dc0) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\system32\cmd.exe", "cmd /c "wmic computersystem get domain"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000acec0, 0xc0000acd90) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\system32\cmd.exe", "cmd /c "wmic computersystem get domain"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000bcec0, 0xc0000bcd90) = 0x1 (1)

[...]

Tracing multiple functions in the Sunshuttle malware:

- CreateFileW("config.dat.tmp", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 0xffffffffffffffff (-1)
- CreateFileW("config.dat.tmp", 0xc0000000, 0x3, 0x0, 0x2, 0x80, 0x0) = 0x198 (408)
- CreateFileW("config.dat.tmp", 0xc0000000, 0x3, 0x0, 0x3, 0x80, 0x0) = 0x1a4 (420)
- WriteFile(0x1a4, 0xc000112780, 0xeb, 0xc0000c79d4, 0x0) = 0x1 (1)
- GetAddrInfoW("reyweb.com", 0x0, 0xc000031f18, 0xc000031e88) = 0x0 (0)
- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x1f0 (496)
- WSASend(0x1f0, 0xc00004f038, 0x1, 0xc00004f020, 0x0, 0xc00004eff0, 0x0) = 0x0 (0)
- WSARecv(0x1f0, 0xc00004ef60, 0x1, 0xc00004ef48, 0xc00004efd0, 0xc00004ef18, 0x0) = 0xffffffff (-1)
- GetAddrInfoW("reyweb.com", 0x0, 0xc000031f18, 0xc000031e88) = 0x0 (0)
- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x200 (512)
- WSASend(0x200, 0xc00004f2b8, 0x1, 0xc00004f2a0, 0x0, 0xc00004f270, 0x0) = 0x0 (0)
- WSARecv(0x200, 0xc00004f1e0, 0x1, 0xc00004f1c8, 0xc00004f250, 0xc00004f198, 0x0) = 0xffffffff (-1)

[...]

Tracing multiple functions in the DeimosC2 framework agent:

- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x130 (304)
- setsockopt(0x130, 0xffff, 0x20, 0xc0000b7838, 0x4) = 0xffffffff (-1)
- socket(0x2, 0x1, 0x6) = 0x138 (312)
- WSAIoctl(0x138, 0xc8000006, 0xaf0870, 0x10, 0xb38730, 0x8, 0xc0000b746c, 0x0, 0x0) = 0x0 (0)
- GetModuleFileNameW(0x0, "C:\Users\user\Desktop\samples\deimos.exe", 0x400) = 0x2f (47)
- GetUserProfileDirectoryW(0x140, "C:\Users\user", 0xc0000b7a08) = 0x1 (1)
- LookupAccountSidw(0x0, 0xc00000e250, "user", 0xc0000b796c, "DESKTOP-TEST", 0xc0000b7970, 0xc0000b79f0) = 0x1 (1)
- NetUserGetInfo("DESKTOP-TEST", "user", 0xa, 0xc0000b7930) = 0x0 (0)
- GetComputerNameExW(0x5, "DESKTOP-TEST", 0xc0000b7b78) = 0x1 (1)
- GetAdaptersAddresses(0x0, 0x10, 0x0, 0xc000120000, 0xc0000b79d0) = 0x0 (0)
- CreateToolhelp32Snapshot(0x2, 0x0) = 0x1b8 (440)
- GetCurrentProcessId() = 0x2584 (9604)
- GetCurrentDirectoryW(0x12c, "C:\Users\user\AppData\Local\Programs\retoolkit\bin") = 0x39 (57 )

[...]

Future features:

  • [x] Support inspection of 32 bits files.
  • [x] Add support to files calling functions via the "IAT jmp table" instead of the API call directly in asmstdcall.
  • [x] Add support to cmdline parameters for the target process
  • [ ] Send the tracing log output to a file by default to make it better to filter. Currently there's no separation between the target file and gftrace output. An alternative is redirect gftrace output to a file using the command line.

:warning: Warning

  • The tool inspects the target binary dynamically and it means the file being traced is executed. If you're inspecting a malware or an unknown software please make sure you do it in a controlled environment.
  • Golang programs can be very noisy depending the file and/or function being traced (e.g. VirtualAlloc is always called multiple times by the runtime package, CreateFileW is called multiple times before a call to CreateProcessW, etc). The tool ignores the Golang runtime initialization noise but after that it's up to the user to decide what functions are better to filter in each scenario.

License

The gftrace is published under the GPL v3 License. Please refer to the file named LICENSE for more information.



CrimsonEDR - Simulate The Behavior Of AV/EDR For Malware Development Training

By: Zion3R
28 April 2024 at 12:30


CrimsonEDR is an open-source project engineered to identify specific malware patterns, offering a tool for honing skills in circumventing Endpoint Detection and Response (EDR). By leveraging diverse detection methods, it empowers users to deepen their understanding of security evasion tactics.


Features

Detection Description
Direct Syscall Detects the usage of direct system calls, often employed by malware to bypass traditional API hooks.
NTDLL Unhooking Identifies attempts to unhook functions within the NTDLL library, a common evasion technique.
AMSI Patch Detects modifications to the Anti-Malware Scan Interface (AMSI) through byte-level analysis.
ETW Patch Detects byte-level alterations to Event Tracing for Windows (ETW), commonly manipulated by malware to evade detection.
PE Stomping Identifies instances of PE (Portable Executable) stomping.
Reflective PE Loading Detects the reflective loading of PE files, a technique employed by malware to avoid static analysis.
Unbacked Thread Origin Identifies threads originating from unbacked memory regions, often indicative of malicious activity.
Unbacked Thread Start Address Detects threads with start addresses pointing to unbacked memory, a potential sign of code injection.
API hooking Places a hook on the NtWriteVirtualMemory function to monitor memory modifications.
Custom Pattern Search Allows users to search for specific patterns provided in a JSON file, facilitating the identification of known malware signatures.

Installation

To get started with CrimsonEDR, follow these steps:

  1. Install dependancy: bash sudo apt-get install gcc-mingw-w64-x86-64
  2. Clone the repository: bash git clone https://github.com/Helixo32/CrimsonEDR
  3. Compile the project: bash cd CrimsonEDR; chmod +x compile.sh; ./compile.sh

⚠️ Warning

Windows Defender and other antivirus programs may flag the DLL as malicious due to its content containing bytes used to verify if the AMSI has been patched. Please ensure to whitelist the DLL or disable your antivirus temporarily when using CrimsonEDR to avoid any interruptions.

Usage

To use CrimsonEDR, follow these steps:

  1. Make sure the ioc.json file is placed in the current directory from which the executable being monitored is launched. For example, if you launch your executable to monitor from C:\Users\admin\, the DLL will look for ioc.json in C:\Users\admin\ioc.json. Currently, ioc.json contains patterns related to msfvenom. You can easily add your own in the following format:
{
"IOC": [
["0x03", "0x4c", "0x24", "0x08", "0x45", "0x39", "0xd1", "0x75"],
["0xf1", "0x4c", "0x03", "0x4c", "0x24", "0x08", "0x45", "0x39"],
["0x58", "0x44", "0x8b", "0x40", "0x24", "0x49", "0x01", "0xd0"],
["0x66", "0x41", "0x8b", "0x0c", "0x48", "0x44", "0x8b", "0x40"],
["0x8b", "0x0c", "0x48", "0x44", "0x8b", "0x40", "0x1c", "0x49"],
["0x01", "0xc1", "0x38", "0xe0", "0x75", "0xf1", "0x4c", "0x03"],
["0x24", "0x49", "0x01", "0xd0", "0x66", "0x41", "0x8b", "0x0c"],
["0xe8", "0xcc", "0x00", "0x00", "0x00", "0x41", "0x51", "0x41"]
]
}
  1. Execute CrimsonEDRPanel.exe with the following arguments:

    • -d <path_to_dll>: Specifies the path to the CrimsonEDR.dll file.

    • -p <process_id>: Specifies the Process ID (PID) of the target process where you want to inject the DLL.

For example:

.\CrimsonEDRPanel.exe -d C:\Temp\CrimsonEDR.dll -p 1234

Useful Links

Here are some useful resources that helped in the development of this project:

Contact

For questions, feedback, or support, please reach out to me via:



Drozer - The Leading Security Assessment Framework For Android

By: Zion3R
1 April 2024 at 11:30


drozer (formerly Mercury) is the leading security testing framework for Android.

drozer allows you to search for security vulnerabilities in apps and devices by assuming the role of an app and interacting with the Dalvik VM, other apps' IPC endpoints and the underlying OS.

drozer provides tools to help you use, share and understand public Android exploits. It helps you to deploy a drozer Agent to a device through exploitation or social engineering. Using weasel (WithSecure's advanced exploitation payload) drozer is able to maximise the permissions available to it by installing a full agent, injecting a limited agent into a running process, or connecting a reverse shell to act as a Remote Access Tool (RAT).

drozer is a good tool for simulating a rogue application. A penetration tester does not have to develop an app with custom code to interface with a specific content provider. Instead, drozer can be used with little to no programming experience required to show the impact of letting certain components be exported on a device.

drozer is open source software, maintained by WithSecure, and can be downloaded from: https://labs.withsecure.com/tools/drozer/


Docker Container

To help with making sure drozer can be run on modern systems, a Docker container was created that has a working build of Drozer. This is currently the recommended method of using Drozer on modern systems.

  • The Docker container and basic setup instructions can be found here.
  • Instructions on building your own Docker container can be found here.

Manual Building and Installation

Prerequisites

  1. Python2.7

Note: On Windows please ensure that the path to the Python installation and the Scripts folder under the Python installation are added to the PATH environment variable.

  1. Protobuf 2.6 or greater

  2. Pyopenssl 16.2 or greater

  3. Twisted 10.2 or greater

  4. Java Development Kit 1.7

Note: On Windows please ensure that the path to javac.exe is added to the PATH environment variable.

  1. Android Debug Bridge

Building Python wheel

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
python setup.py bdist_wheel

Installing Python wheel

sudo pip install dist/drozer-2.x.x-py2-none-any.whl

Building for Debian/Ubuntu/Mint

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
make deb

Installing .deb (Debian/Ubuntu/Mint)

sudo dpkg -i drozer-2.x.x.deb

Building for Redhat/Fedora/CentOS

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
make rpm

Installing .rpm (Redhat/Fedora/CentOS)

sudo rpm -I drozer-2.x.x-1.noarch.rpm

Building for Windows

NOTE: Windows Defender and other Antivirus software will flag drozer as malware (an exploitation tool without exploit code wouldn't be much fun!). In order to run drozer you would have to add an exception to Windows Defender and any antivirus software. Alternatively, we recommend running drozer in a Windows/Linux VM.

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
python.exe setup.py bdist_msi

Installing .msi (Windows)

Run dist/drozer-2.x.x.win-x.msi 

Usage

Installing the Agent

Drozer can be installed using Android Debug Bridge (adb).

Download the latest Drozer Agent here.

$ adb install drozer-agent-2.x.x.apk

Starting a Session

You should now have the drozer Console installed on your PC, and the Agent running on your test device. Now, you need to connect the two and you're ready to start exploring.

We will use the server embedded in the drozer Agent to do this.

If using the Android emulator, you need to set up a suitable port forward so that your PC can connect to a TCP socket opened by the Agent inside the emulator, or on the device. By default, drozer uses port 31415:

$ adb forward tcp:31415 tcp:31415

Now, launch the Agent, select the "Embedded Server" option and tap "Enable" to start the server. You should see a notification that the server has started.

Then, on your PC, connect using the drozer Console:

On Linux:

$ drozer console connect

On Windows:

> drozer.bat console connect

If using a real device, the IP address of the device on the network must be specified:

On Linux:

$ drozer console connect --server 192.168.0.10

On Windows:

> drozer.bat console connect --server 192.168.0.10

You should be presented with a drozer command prompt:

selecting f75640f67144d9a3 (unknown sdk 4.1.1)  
dz>

The prompt confirms the Android ID of the device you have connected to, along with the manufacturer, model and Android software version.

You are now ready to start exploring the device.

Command Reference

Command Description
run Executes a drozer module
list Show a list of all drozer modules that can be executed in the current session. This hides modules that you do not have suitable permissions to run.
shell Start an interactive Linux shell on the device, in the context of the Agent process.
cd Mounts a particular namespace as the root of session, to avoid having to repeatedly type the full name of a module.
clean Remove temporary files stored by drozer on the Android device.
contributors Displays a list of people who have contributed to the drozer framework and modules in use on your system.
echo Print text to the console.
exit Terminate the drozer session.
help Display help about a particular command or module.
load Load a file containing drozer commands, and execute them in sequence.
module Find and install additional drozer modules from the Internet.
permissions Display a list of the permissions granted to the drozer Agent.
set Store a value in a variable that will be passed as an environment variable to any Linux shells spawned by drozer.
unset Remove a named variable that drozer passes to any Linux shells that it spawns.

License

drozer is released under a 3-clause BSD License. See LICENSE for full details.

Contacting the Project

drozer is Open Source software, made great by contributions from the community.

Bug reports, feature requests, comments and questions can be submitted here.



Retoolkit - Reverse Engineer's Toolkit

By: Zion3R
26 March 2021 at 11:30


This is a collection of tools you may like if you are interested on reverse engineering and/or malware analysis on x86 and x64 Windows systems. After installing this toolkit you'll have a folder in your desktop with shortcuts to RE tools like these:


Why do I need it?

You don't. Obviously, you can download such tools from their own website and install them by yourself in a new VM. But if you download retoolkit, it can probably save you some time. Additionally, the tools come pre-configured so you'll find things like x64dbg with a few plugins, command-line tools working from any directory, etc. You may like it if you're setting up a new analysis VM.


Download

The *.iss files you see here are the source code for our setup program built with Inno Setup. To download the real thing, you have to go to the Releases section and download the setup program.


Included tools

Check the wiki.



Is it safe to install it in my environment?

I don't know. Some included tools are not open source and come from shady places. You should use it exclusively in virtual machines and under your own responsibility.


Can you add tool X?

It depends. The idea is to keep it simple. We won't add a tool just because it's not here yet. But if you think there's a good reason to do so, and the license allows us to redistribuite the software, please file a request here.



❌
❌