RSS Security

❌ About FreshRSS
There are new articles available, click to refresh the page.
Before yesterdayMcAfee Blogs

Are Virtual Machines the New Gold for Cyber Criminals?

AI Cyber Security


Virtualization technology has been an IT cornerstone for organization for years now. It revolutionized the way organizations can scale up IT systems in a heartbeat, allowing then to be more agile as opposed to investing into dedicated “bare-metal” hardware. To the outside untrained eye, it might seem that there are different machines on the network, while in fact all the “separate” machines are controlled by a hypervisor server. Virtualization plays such a big role nowadays that it isn’t only used to spin up servers but also anything from virtual applications to virtual user desktops.

This is something cyber criminals have been noticing too and we have seen an increased interest in hypervisors. After all, why attack the single virtual machine when you can go after the hypervisor and control all the machines at once?

In recent months several high impact CVEs regarding virtualization software have been released which allowed for Remote Code Execution (RCE); initial access brokers are offering compromised VMware vCenter servers online, as well as ransomware groups developing specific ransomware binaries for encrypting ESXi servers.

VMware CVE-2021-21985 & CVE-2021-21986

On the 25th of May VMware disclosed a vulnerability impacting VMware vCenter servers allowing for Remote Code Execution on internet accessible vCenter servers, version 6.5,6.7 and 7.0. VMware vCenter is a management tool, used to manage virtual machines and ESXi servers.

CVE-2021-21985 is a remote code execution (RCE) vulnerability in the vSphere Client via the Virtual SAN (vSAN) Health Check plugin. This plugin is enabled by default. The combination of RCE and default enablement of the plugin resulted in this being scored as a critical flaw with a CVSSv3 score of 9.8.

An attacker needs to be able to access vCenter over TCP port 443 to exploit this vulnerability. It doesn’t matter if the vCenter is remotely exposed or when the attacker has internal access.

The same exploit vector is applicable for CVE-2021-21986, which is an authentication mechanism issue in several vCenter Server Plug-ins. It would allow an attacker to run plugin functions without authentication. This leads to the CVE being scored as a ‘moderate severity’, with a CVSSv3 score of 6.5.

While writing this blog, a Proof-of-Concept was discovered that will test if the vulnerability exists; it will not execute the remote-code. The Nmap plugin can be downloaded from this location:

Searching with the Shodan search engine, narrowing it down to the TCP 443 port, we observe that close to 82,000 internet accessible ESXi servers are exposedZooming in further on the versions that are affected by these vulnerabilities,  almost 55,000 publicly accessible ESXi servers are potentially vulnerable to CVE-2021-21985 and CVE-2021-21986, providing remote access to them and making them potential candidates for ransomware attacks, as we will read about in the next paragraphs.

Ransomware Actors Going After Virtual Environments

Ransomware groups are always trying to find ways to hit their victims where it hurts. So, it is only logical that they are adapting to attacking virtualization environments and the native Unix/Linux machines running the hypervisors. In the past, ransomware groups were quick to abuse earlier CVEs affecting VMware. But aside from the disclosed CVEs, ransomware groups have also adapted their binaries specifically to encrypt virtual machines and their management environment. Below are some of the ransomware groups we have observed.

DarkSide Ransomware

Figure 1. Screenshot from the DarkSide ransomware group, explicitly mentioning its Linux-based encryptor and support for ESXi and NAS systems

McAfee Advanced Threat Research (ATR) analyzed the DarkSide Linux binary in our recent blog and we can confirm that a specific routine aimed at virtual machines is present in it.

Figure 2. DarkSide VMware Code routine

From the configuration file of the DarkSide Linux variant, it becomes clear that this variant is solely designed to encrypt virtual machines hosted on an ESXi server. It searches for the disk-files of the VMs, the memory files of the VMs (vmem), swap, logs, etc. – all files that are needed to start a VMware virtual machine.

Demo of Darkside encrypting an ESXi server:

Babuk Ransomware

Babuk announced on an underground forum that it was developing a cross-platform binary aimed at Linux/UNIX and ESXi or VMware systems:

Figure 3. Babuk ransomware claiming to have built a Linux-based ransomware binary capable of encrypting ESXi servers

The malware is written in the open-source programming language Golang, most likely because it allows developers to have a single codebase to be compiled into all major operating systems. This means that, thanks to static linking, code written in Golang on a Linux system can run on a Windows or Mac system. That presents a large advantage to ransomware gangs looking to encrypt a whole infrastructure comprised of different systems architecture.

After being dropped on the ESXi server, the malware encrypts all the files on the system:

The malware was designed to target ESXi environments as we guessed, and it was confirmed when the Babuk team returned the decryptor named d_esxi.out. Unfortunately, the decryptor has been developed with some errors, which cause corruption in victim’s files:

Overall, the decryptor is poor as it only checks for the extension “.babyk” which will miss any files the victim has renamed to recover them. Also, the decryptor checks if the file is more than 32 bytes in length as the last 32 bytes are the key that will be calculated later with other hardcoded values to get the final key. This is bad design as those 32 bytes could be trash, instead of the key, as the customer could make things, etc. It does not operate efficiently by checking the paths that are checked in the malware, instead it analyzes everything. Another error we noticed was that the decryptor tries to remove a ransom note name that is NOT the same that the malware creates in each folder. This does not make any sense unless, perhaps, the Babuk developers/operators are delivering a decryptor that works for a different version and/or sample.

The problems with the Babuk decryptor left victims in horrible situations with permanently damaged data. The probability of getting a faulty decryptor isn’t persuading victims to pay up and this might be one of the main reasons that Babuk  announced that it will stop encrypting data and only exfiltrate and extort from now on.

Initial-Access-Brokers Offering VMware vCenter Machines

It is not only ransomware groups that show an interest in virtual systems; several initial access brokers are also trading access to compromised vCenter/ESXi servers on underground cybercriminal forums. The date and time of the specific offering below overlaps with the disclosure of CVE-2021-21985, but McAfee ATR hasn’t determined if this specific CVE was used to gain access to ESXi servers.

Figure 4. Threat Actor selling access to thousands of vCenter/ESXi servers

Figure 5. Threat actor offering compromised VMware ESXi servers

Patching and Detection Advice

VMware urges users running VMware vCenter and VMware Cloud Foundation affected by CVE-2021-21985 and CVE-2021-21986 to apply its patch immediately. According to VMware, a malicious actor with network access to port 443 may exploit this issue to execute commands with unrestricted privileges on the underlying operating system that hosts vCenter Server. The disclosed vulnerabilities have a critical CVSS base score of 9.8.

However, we do understand that VMware infrastructure is often installed on business-critical systems, so any type of patching activity usually has a high degree of impact on IT operations. Hence, the gap between vulnerability disclosure and patching is typically high. With the operating systems on VMware being a closed system they lack the ability to natively install workload protection/detection solutions. Therefore, the defenses should be based on standard cyber hygiene/risk mitigation practices and should be applied in the following order where possible.

  1. Ensure an accurate inventory of vCenter assets and their corresponding software versions.
  2. Secure the management plane of the vCenter infrastructure by applying strict network access control policies to allow access only from special management networks.
  3. Disable all internet access to vCenter/VMware Infrastructure.
  4. Apply the released VMware patches.
  5. McAfee Network Security Platform (NSP) offers signature sets for detection of CVE-2021-21985 and CVE-2021-21986.


Virtualization and its underlying technologies are key in today’s infrastructures. With the release of recently discovered vulnerabilities and an understanding of their criticality, threat actors are shifting focus. Proof can be seen in underground forums where affiliates recruit pentesters with knowledge of specific virtual technologies to develop custom ransomware that is designed to cripple these technologies. Remote Desktop access is the number one access vector in many ransomware cases, followed by edge-devices lacking the latest security updates, making them vulnerable to exploitation. With the latest VMware CVEs mentioned in this blog, we urge you to take the right steps to secure not only internet exposed systems, but also internal systems, to minimize the risk of your organization losing its precious VMs, or gold, to cyber criminals.


Special thanks to Thibault Seret, Mo Cashman, Roy Arnab and Christiaan Beek for their contributions.

The post Are Virtual Machines the New Gold for Cyber Criminals? appeared first on McAfee Blogs.

Scammers Impersonating Windows Defender to Push Malicious Windows Apps

17 May 2021 at 21:25

Summary points:

  • Scammers are increasingly using Windows Push Notifications to impersonate legitimate alerts
  • Recent campaigns pose as a Windows Defender Update
  • Victims end up allowing the installation of a malicious Windows Application that targets user and system information

Browser push notifications can highly resemble Windows system notifications.  As recently discussed, scammers are abusing push notifications to trick users into taking action.  This recent example demonstrates the social engineering tactics used to trick users into installing a fake Windows Defender update.  A toaster popup in the tray informs the user of a Windows Defender Update.

Clicking the message takes the user to a fake update website.

The site serves a signed ms-appinstaller (MSIX) package.  When downloaded and run, the user is prompted to install a supposed Defender Update from “Publisher: Microsoft”

After installation, the “Defender Update” App appears in the start menu like other Windows Apps.

The shortcut points to the installed malware: C:\Program Files\WindowsApps\245d1cf3-25fc-4ce1-9a58-7cd13f94923a_1.0.0.0_neutral__7afzw0tp1da5e\bloom\Eversible.exe, which is a data stealing trojan, targeting various applications and information:

  • System information (Process list, Drive details, Serial number, RAM, Graphics card details)
  • Application profile data (Chrome, Exodus wallet, Ethereum wallet, Opera, Telegram Desktop)
  • User data (Credit card, FileZilla)

Am I protected?

  • McAfee customers utilizing Real Protect Cloud were proactively protected from this threat due to machine learning.
  • McAfee customers utilizing web protection (including McAfee Web Advisor and McAfee Web Control) are protected from known malicious sites.
  • McAfee Global Threat Intelligence (GTI) provides protection at Very Low sensitivity

General safety tips

  • See: How to Stop the Popups
  • Scams can be quite convincing. It’s better to be quick to block something and slow to allow than the opposite.
  • When in doubt, initiate the communication yourself.
    • For Windows Updates, click the Start Menu and type “Check For Updates”, click the System Settings link.
    • Manually enter in a web address rather than clicking a link sent to you.
    • Confirm numbers and addresses before reaching out, such as phone and email.

Reference IOCs

  • MSIX installer: 02262a420bf52a0a428a26d86aca177796f18d1913b834b0cbed19367985e190
  • exe: 0dd432078b93dfcea94bec8b7e6991bcc050e6307cd1cb593583e7b5a9a0f9dc
  • Installer source site: updatedefender [dot] online


The post Scammers Impersonating Windows Defender to Push Malicious Windows Apps appeared first on McAfee Blogs.

DarkSide Ransomware Victims Sold Short

14 May 2021 at 10:32
How to check for viruses

Over the past week we have seen a considerable body of work focusing on DarkSide, the ransomware responsible for the recent gas pipeline shutdown. Many of the excellent technical write-ups will detail how it operates an affiliate model that supports others to be involved within the ransomware business model (in addition to the developers). While this may not be a new phenomenon, this model is actively deployed by many groups with great effect. Herein is the crux of the challenge: while the attention may be on DarkSide ransomware, the harsh reality is that equal concern should be placed at Ryuk, or REVIL, or Babuk, or Cuba, etc. These, and other groups and their affiliates, exploit common entry vectors and, in many cases, the tools we see being used to move within an environment are the same. While this technical paper covers DarkSide in more detail, we must stress the importance of implementing best practices in securing/monitoring your network. These additional publications can guide you in doing so:

DarkSide Ransomware:  What is it?

As mentioned earlier, DarkSide is a Ransomware-as-a-Service (RaaS) that offers high returns for penetration-testers that are willing to provide access to networks and distribute/execute the ransomware. DarkSide is an example of a RaaS whereby they actively invest in development of the code, affiliates, and new features. Alongside their threat to leak data, they have a separate option for recovery companies to negotiate, are willing to engage with the media, and are willing to carry out a Distributed Denial of Service (DDoS) attack against victims. Those victims who do pay a ransom receive an alert from DarkSide on companies that are on the stock exchange who are breached, in return for their payment. Potential legal issues abound, not to mention ethical concerns, but this information could certainly provide an advantage in short selling when the news breaks.

The group behind DarkSide are also particularly active. Using MVISION Insights we can identify the prevalence of targets. This map clearly illustrates that the most targeted geography is clearly the United States (at the time of writing). Further, the sectors primarily targeted are Legal Services, Wholesale, and Manufacturing, followed by the Oil, Gas and Chemical sectors.

Coverage and Protection Advice

McAfee’s market leading EPP solution covers DarkSide ransomware with an array of early prevention and detection techniques.

Customers using MVISION Insights will find a threat-profile on this ransomware family that is updated when new and relevant information becomes available.

Early Detection

MVISION EDR includes detections on many of the behaviors used in the attack including privilege escalation, malicious PowerShell and CobaltStrike beacons, and visibility of discovery commands, command and control, and other tactics along the attack chain. We have EDR telemetry indicating early detection before the detonation of the Ransomware payload.


ENS TP provides coverage against known indicators in the latest signature set. Updates on new indicators are pushed through GTI.

ENS ATP provides behavioral content focusing on proactively detecting the threat while also delivering known IoCs for both online and offline detections.

ENS ATP adds two (2) additional layers of protection thanks to JTI rules that provide attack surface reduction for generic ransomware behaviors and RealProtect (static and dynamic) with ML models targeting ransomware threats.

For the latest mitigation guidance, please review:

Technical Analysis

The RaaS platform offers the affiliate the option to build either a Windows or Unix version of the ransomware. Depending on what is needed, we observe that affiliates are using different techniques to circumvent detection, by masquerading the generated Windows binaries of DarkSide. Using several packers or signing the binary with a certificate are some of the techniques used to do so.

As peers in our industry have described, we also observed campaigns where the affiliates and their hacking crew used several ways to gain initial access to their victim’s network.

  1. Using valid accounts, exploit vulnerabilities on servers or RDP for initial stage
  2. Next, establish a beachhead in the victim’s network by using tools like Cobalt-Strike (beacons), RealVNC, RDP ported over TOR, Putty, AnyDesk and TeamViewer. TeamViewer is what we also see back in the config of the ransomware sample:

The configuration of the ransomware contains several options to enable or disable system processes, but also the above part where it states which processes should not be killed.

As mentioned before, a lot of the current Windows samples in the wild are the 1.8 version of DarkSide, others are the version. In a chat one of the actors revealed that a V3 version will be released soon.

On March 23rd, 2021, on XSS, one of the DarkSide spokespersons announced an update of DarkSide as a PowerShell version and a major upgrade of the Linux variant:

In the current samples we observe, we do see the PowerShell component that is used to delete the Volume Shadow copies, for example.

  1. Once a strong foothold has been established, several tools are used by the actors to gain more privileges.

Tools observed:

  • Mimikatz
  • Dumping LSASS
  • IE/FireFox password dumper
  • Powertool64
  • Empire
  • Bypassing UAC
  1. Once enough privileges are gained, it is time to map out the network and identify the most critical systems like servers, storage, and other critical assets. A selection of the below tools was observed to have been used in several cases:
  • BloodHound
  • ADFind
  • ADRecon
  • IP scan tools
  • Several Windows native tools
  • PowerShell scripts

Before distributing the ransomware around the network using tools like PsExec and PowerShell, data was exfiltrated to Cloud Services that would later be used on the DarkSide Leak page for extortion purposes. Zipping the data, using Rclone or WinSCP are some of the examples observed.

While a lot of good and in-depth analyses are written by our peers, one thing worth noting is that when running DarkSide, the encryption process is fast. It is one of the areas the actors brag about on the same forum and do a comparison to convince affiliates to join their program:

DarkSide, like Babuk ransomware, has a Linux version. Both target *nix systems but in particular VMWare ESXi servers and storage/NAS. Storage/NAS is critical for many companies, but how many of you are running a virtual desktop, hosted on a ESXi server?

Darkside wrote a Linux variant that supports the encryption of ESXI server versions 5.0 – 7.1 as well as NAS technology from Synology. They state that other NAS/backup technologies will be supported soon.

In the code we clearly observe this support:

Also, the configuration of the Linux version shows it is clearly looking for Virtual Disk/memory kind of files:

Although the adversary recently claimed to vote for targets, the attacks are ongoing with packed and signed samples observed as recently as today (May 12, 2021):


Recently the Ransomware Task Force, a partnership McAfee is proud to be a part of, released a detailed paper on how ransomware attacks are occurring and how countermeasures should be taken. As many of us have published, presented on, and released research upon, it is time to act. Please follow the links included within this blog to apply the broader advice about applying available protection and detection in your environment against such attacks.

MITRE ATT&CK Techniques Leveraged by DarkSide:

Data Encrypted for Impact – T1486

Inhibit System Recovery – T1490

Valid Accounts – T1078

PowerShell – T1059.001

Service Execution – T1569.002

Account Manipulation – T1098

Dynamic-link Library Injection – T1055.001

Account Discovery – T1087

Bypass User Access Control – T1548.002

File Permissions Modification – T1222

System Information Discovery – T1082

Process Discovery – T1057

Screen Capture – T1113

Compile After Delivery – T1027.004

Credentials in Registry – T1552.002

Obfuscated Files or Information – T1027

Shared Modules – T1129

Windows Management Instrumentation – T1047

Exploit Public-Facing Application – T1190

Phishing – T1566

External Remote Services – T1133

Multi-hop Proxy – T1090.003

Exploitation for Privilege Escalation – T1068

Application Layer Protocol – T1071

Bypass User Account Control – T1548.002

Commonly Used Port – T1043

Compile After Delivery – T1500

Credentials from Password Stores – T1555

Credentials from Web Browsers – T1555.003

Credentials in Registry – T1214

Deobfuscate/Decode Files or Information – T1140

Disable or Modify Tools – T1562.001

Domain Account – T1087.002

Domain Groups – T1069.002

Domain Trust Discovery – T1482

Exfiltration Over Alternative Protocol – T1048

Exfiltration to Cloud Storage – T1567.002

File and Directory Discovery – T1083

Gather Victim Network Information – T1590

Ingress Tool Transfer – T1105

Linux and Mac File and Directory Permissions Modification – T1222.002

Masquerading – T1036

Process Injection – T1055

Remote System Discovery – T1018

Scheduled Task/Job – T1053

Service Stop – T1489

System Network Configuration Discovery – T1016

System Services – T1569

Taint Shared Content – T1080

Unix Shell – T1059.004

The post DarkSide Ransomware Victims Sold Short appeared first on McAfee Blogs.

Major HTTP Vulnerability in Windows Could Lead to Wormable Exploit

12 May 2021 at 15:48
AI Cyber Security

Today, Microsoft released a highly critical vulnerability (CVE-2021-31166) in its web server http.sys. This product is a Windows-only HTTP server which can be run standalone or in conjunction with IIS (Internet Information Services) and is used to broker internet traffic via HTTP network requests. The vulnerability is very similar to CVE-2015-1635, another Microsoft vulnerability in the HTTP network stack reported in 2015.

With a CVSS score of 9.8, the vulnerability announced has the potential to be both directly impactful and is also exceptionally simple to exploit, leading to a remote and unauthenticated denial-of-service (Blue Screen of Death) for affected products.

The issue is due to Windows improperly tracking pointers while processing objects in network packets containing HTTP requests. As HTTP.SYS is implemented as a kernel driver, exploitation of this bug will result in at least a Blue Screen of Death (BSoD), and in the worst-case scenario, remote code execution, which could be wormable. While this vulnerability is exceptional in terms of potential impact and ease of exploitation, it remains to be seen whether effective code execution will be achieved. Furthermore, this vulnerability only affects the latest versions of Windows 10 and Windows Server (2004 and 20H2), meaning that the exposure for internet-facing enterprise servers is fairly limited, as many of these systems run Long Term Servicing Channel (LTSC) versions, such as Windows Server 2016 and 2019, which are not susceptible to this flaw.

At the time of this writing, we are unaware of any “in-the-wild” exploitation for CVE-2021-31166 but will continue to monitor the threat landscape and provide relevant updates. We urge Windows users to apply the patch immediately wherever possible, giving special attention to externally facing devices that could be compromised from the internet. For those who are unable to apply Microsoft’s update, we are providing a “virtual patch” in the form of a network IPS signature that can be used to detect and prevent exploitation attempts for this vulnerability.

McAfee Network Security Platform (NSP) Protection
Sigset Version:
Attack ID: 0x4528f000
Attack Name: HTTP: Microsoft HTTP Protocol Stack Remote Code Execution Vulnerability (CVE-2021-31166)

McAfee Knowledge Base Article KB94510:



The post Major HTTP Vulnerability in Windows Could Lead to Wormable Exploit appeared first on McAfee Blogs.

“Fool’s Gold”: Questionable Vaccines, Bogus Results, and Forged Cards

11 May 2021 at 04:01
By: Anne An


Countries all over the world are racing to achieve so-called herd immunity against COVID-19 by vaccinating their populations. From the initial lockdown to the cancellation of events and the prohibition of business travel, to the reopening of restaurants, and relaxation of COVID restrictions on outdoor gatherings, the vaccine rollout has played a critical role in staving off another wave of infections and restoring some degree of normalcy. However, a new and troubling phenomenon is that consumers are buying COVID-19 vaccines on the black market due to the increased demand around the world. As a result, illegal COVID-19 vaccines and vaccination records are in high demand on darknet marketplaces.

The impact on society is that the proliferation of fraudulent test results and counterfeit COVID-19 vaccine records pose a serious threat to public health and spur the underground economyIndividuals undoubtedly long to return to their pre-pandemic routines and the freedom of travel and behavior denied them over the last year. However, the purchase of false COVID-19 test certifications or vaccination cards to board aircraft, attend an event or enter a country endangers themselves, even if they are asymptomatic. It also threatens the lives of other people in their own communities and around the world. Aside from the collective damage to global health, darknet marketplace transactions encourage the supply of illicit goods and services. The underground economy cycle continues as demand creates inventory, which in turn creates supply. In addition to selling COVID-19 vaccines, vaccination cards, and fake test results, cybercriminals can also benefit by reselling the names, dates of birth, home addresses, contact details, and other personally indefinable information of their customers. 

Racing Toward a Fully Vaccinated Society Along with a Growing Underground Vaccine Market

As we commemorate the one-year anniversary of the COVID-19 pandemic, at least 184 countries and territories worldwide have started their vaccination rollouts.[1] The United States is vaccinating Americans at an unprecedented rate. As of May 2021, more than 105 million Americans had been fully vaccinated. The growing demand has made COVID-19 vaccines the new “liquid gold” in the pandemic era.

However, following vaccination success, COVID-19 related cybercrime has increased. COVID-19 vaccines are currently available on at least a dozen darknet marketplaces. Pfizer-BioNTech COVID-19 vaccines (and we can only speculate as to whether they are genuine or a form of liquid “fool’s gold”) can be purchased for as little as $500 per dose from top-selling vendors. These sellers use various channels, such as Wickr, Telegram, WhatsApp and Gmail, for advertising and communications. Darknet listings associated with alleged Pfizer-BioNTech COVID-19 vaccines are selling for $600 to $2,500. Prospective buyers can receive the product within 2 to 10 days. Some of these supposed COVID-19 vaccines are imported from the United States, while others are packed in the United Kingdom and shipped to every country in the world, according to the underground advertisement.

Figure 1: Dark web marketplace offering COVID-19 vaccines

Figure 2: Dark web marketplace offering COVID-19 vaccines

A vendor sells 10 doses of what they claim to be Moderna COVID-29 vaccines for $2,000. According to the advertisement, the product is available to ship to the United Kingdom and worldwide.

Figure 3: Dark web marketplace offering COVID-19 vaccines

Besides what are claimed to be COVID-19 vaccines, cybercriminals offer antibody home test kits for $152 (again, we do not know whether they are genuine or not). According to the advertisement, there are various shipping options available. It costs $41 for ‘stealth’ shipping to the United States, $10.38 to ship to the United Kingdom, and $20 to mail the vaccines internationally.

Figure 4: Dark web marketplace offering COVID-19 test kits

Proof of Vaccination in the Underground Market

On the darknet marketplaces, the sales of counterfeit COVID-19 test results and vaccination certificates began to outnumber the COVID vaccine offerings in mid-April. This shift is most likely because COVID-19 vaccines are now readily available for those who want them. People can buy and show these certificates without being vaccinated. A growing number of colleges will require students to have received a COVID-19 vaccine before returning to in-person classes by this fall.[2] Soon, COVID-19 vaccination proof is likely to become a requirement of some type of “passport” to board a plane or enter major events and venues.

The growing demand for proof of vaccination is driving an illicit economy for fake vaccination and test certificates. Opportunistic cybercriminals capitalize on public interest in obtaining a COVID-19 immunity passport, particularly for those who oppose COVID-19 vaccines or test positive for COVID-19 but want to return to school or work, resume travel or attend a public event. Counterfeit negative COVID-19 test results and COVID-19 vaccination cards are available for sale at various darknet marketplaces. Fake CDC-issued vaccination cards are available for $50. One vendor offers counterfeit German COVID-19 certificates for $23.35. Vaccination cards with customized information, such as “verified” batch or lot numbers for particular dates and “valid” medical and hospital information, are also available for purchase.

One darknet marketplace vendor offers to sell a digital copy of the COVID-19 vaccination card with detailed printing instructions for $50.

Figure 5: Dark web marketplace offering COVID-19 vaccination cards

One vendor sells CDC vaccination cards for $1,200 and $1,500, as seen in the following screenshot. These cards, according to the advertisement, can be personalized with details such as the prospective buyer’s name and medical information.

Figure 6: Dark web marketplace offering COVID-19 vaccination cards

Other darknet marketplace vendors offer fake CDC-issued COVID-19 vaccination card packages for $1,200 to $2,500. The package contains a PDF file that buyers can type and print, as well as personalized vaccination cards with “real” lot numbers, according to the advertisement. Prospective buyers can pay $1,200 for blank cards or $1,500 for custom-made cards with valid batch numbers, medical and hospital details.

Figure 7: Dark web marketplace offering COVID-19 vaccination cards

One vendor offers counterfeit negative COVID-19 test results and vaccine passports to potential buyers.

Figure 8: Dark web marketplace offering negative COVID-19 test results and vaccination cards

A seller on another dark web market sells five counterfeit German COVID-19 certificates for $23.35. According to the advertisement below, the product is available for shipping to Germany and the rest of the world.

Figure 9: Dark web marketplace offering German COVID-19 vaccination certificates


The proliferation of fraudulent test results and counterfeit COVID-19 vaccine records on darknet marketplaces poses a significant threat to global health while fueling the underground economyWhile an increasing number of countries begin to roll out COVID-19 vaccines and proof of vaccination, questionable COVID vaccines and fake proofs are emerging on the underground market. With the EU and other jurisdictions opening their borders to those who have received vaccinations, individuals will be tempted to obtain false vaccination documents in their drive to a return to pre-pandemic normalcy that includes summer travel and precious time with missed loved ones. Those who buy questionable COVID-19 vaccines or forged vaccination certificaterisk their own lives and the lives of others. Apart from the harm to global health, making payments to darknet marketplaces promotes the growth of illegal products and services. The cycle of the underground economy continues as demand generates inventory, which generates supply. These are the unintended consequences of an effective global COVID vaccine rollout. 

[1] https[:]//

[2] https[:]//

The post “Fool’s Gold”: Questionable Vaccines, Bogus Results, and Forged Cards appeared first on McAfee Blogs.

Roaming Mantis Amplifies Smishing Campaign with OS-Specific Android Malware

5 May 2021 at 18:17
Quel antivirus choisir ?

The Roaming Mantis smishing campaign has been impersonating a logistics company to steal SMS messages and contact lists from Asian Android users since 2018. In the second half of 2020, the campaign improved its effectiveness by adopting dynamic DNS services and spreading messages with phishing URLs that infected victims with the fake Chrome application MoqHao.

Since January 2021, however, the McAfee Mobile Research team has established that Roaming Mantis has been targeting Japanese users with a new malware called SmsSpy. The malicious code infects Android users using one of two variants depending on the version of OS used by the targeted devices. This ability to download malicious payloads based on OS versions enables the attackers to successfully infect a much broader potential landscape of Android devices.

Smishing Technique

The phishing SMS message used is similar to that of recent campaigns, yet the phishing URL contains the term “post” in its composition.

Japanese message: I brought back your luggage because you were absent. please confirm. hxxps://post[.]cioaq[.]com


Fig: Smishing message impersonating a notification from a logistics company. (Source: Twitter)

Another smishing message pretends to be a Bitcoin operator and then directs the victim to a phishing site where the user is asked to verify an unauthorized login.

Japanese message: There is a possibility of abnormal login to your [bitFlyer] account. Please verify at the following URL: hxxps://bitfiye[.]com


Fig: Smishing message impersonating a notification from a bitcoin operator. (Source: Twitter)

During our investigation, we observed the phishing website hxxps://bitfiye[.]com redirect to hxxps://post.hygvv[.]com. The redirected URL contains the word “post” as well and follows the same format as the first screenshot. In this way, the actors behind the attack attempt to expand the variation of the SMS phishing campaign by redirecting from a domain that resembles a target company and service.

Malware Download

Characteristic of the malware distribution platform, different malware is distributed depending on the Android OS version that accessed the phishing page. On Android OS 10 or later, the fake Google Play app will be downloaded. On Android 9 or earlier devices, the fake Chrome app will be downloaded.

Japanese message in the dialog: “Please update to the latest version of Chrome for better security.”

Fig: Fake Chrome application for download (Android OS 9 or less)


Japanese message in the dialog: “[Important] Please update to the latest version of Google Play for better security!”


Fig: Fake Google Play app for download (Android OS 10 or above)

Because the malicious program code needs to be changed with each major Android OS upgrade, the malware author appears to cover more devices by distributing malware that detects the OS, rather than attempting to cover a smaller set with just one type of malware

Technical Behaviors

The main purpose of this malware is to steal phone numbers and SMS messages from infected devices. After it runs, the malware pretends to be a Chrome or Google Play app that then requests the default messaging application to read the victim’s contacts and SMS messages. It pretends to be a security service by Google Play on the latest Android device. Additionally, it can also masquerade as a security service on the latest Android devices. Examples of both are seen below.

Japanese message: “At first startup, a dialog requesting permissions is displayed. If you do not accept it, the app may not be able to start, or its functions may be restricted.”


Fig: Default messaging app request by fake Chrome app


Japanese message: “Secure Internet Security. Your device is protected. Virus and Spyware protection, Anti-phishing protection and Spam mail protection are all checked.”

Fig: Default messaging app request by fake Google Play app

After hiding its icon, the malware establishes a WebSocket connection for communication with the attacker’s command and control (C2) server in the background. The default destination address is embedded in the malware code. It further has link information to update the C2 server location in the event it is needed. Thus, if no default server is detected, or if no response is received from the default server, the C2 server location will be obtained from the update link.

The MoqHao family hides C2 server locations in the user profile page of a blog service, yet some samples of this new family use a Chinese online document service to hide C2 locations. Below is an example of new C2 server locations from an online document:

Fig: C2 server location described in online document

As part of the handshake process, the malware sends the Android OS version, phone number, device model, internet connection type (4G/Wi-Fi), and unique device ID on the infected device to the C2 server.

Then it listens for commands from the C2 server. The sample we analyzed supported the commands below with the intention of stealing phone numbers in Contacts and SMS messages.

Command String Description
通讯录 Send whole contact book to server
收件箱 Send all SMS messages to server
拦截短信&open Start <Delete SMS message>
拦截短信&close Stop <Delete SMS message>
发短信& Command data contains SMS message and destination number, send them via infected device

Table: Remote commands via WebSocket


We believe that the ongoing smishing campaign targeting Asian countries is using different mobile malware such as MoqHao, SpyAgent, and FakeSpy. Based on our research, the new type of malware discovered this time uses a modified infrastructure and payloads. We believe that there could be several groups in the cyber criminals and each group is developing their attack infrastructures and malware separately. Or it could be the work of another group who took advantage of previously successful cyber-attacks.

McAfee Mobile Security detects this threat as Android/SmsSpy and alerts mobile users if it is present and further protects them from any data loss. For more information about McAfee Mobile Security, visit

Appendix – IoC

C2 Servers:

  • 168[.]126[.]149[.]28:7777
  • 165[.]3[.]93[.]6:7777
  • 103[.]85[.]25[.]165:7777

Update Links:

  • r10zhzzfvj[.]
  • 0204[.]info
  • 0130one[.]info
  • 210302[.]top
  • 210302bei[.]top

Phishing Domains:

Domain Registration Date 2021-03-15 2021-03-11 2021-03-08 2021-03-04 2021-03-04 2021-02-08 2021-02-06 2021-02-05 2021-02-04 2021-02-03 2021-02-01 2021-02-01 2021-01-31 2021-01-30 2021-01-30 2021-01-30 2021-01-29 2021-01-29 2021-01-28 2021-01-27 2021-01-25 2021-01-24 2021-01-23 2021-01-22 2021-01-21 2021-01-19 2021-01-16 2021-01-15 2021-01-12 2021-01-2


Sample Hash information:

Hash Package name Fake Application
EA30098FF2DD1D097093CE705D1E4324C8DF385E7B227C1A771882CABEE18362 com.gmr.keep Chrome
29FCD54D592A67621C558A115705AD81DAFBD7B022631F25C3BAAE954DB4464B com.gmr.keep Google Play
9BEAD1455BFA9AC0E2F9ECD7EDEBFDC82A4004FCED0D338E38F094C3CE39BCBA Google Play
D33AB5EC095ED76EE984D065977893FDBCC12E9D9262FA0E5BC868BAD73ED060 com.mrc.keep Chrome
8F8C29CC4AED04CA6AB21C3C44CCA190A6023CE3273EDB566E915FE703F9E18E com.hhz.keeping Chrome
21B958E800DB511D2A0997C4C94E6F0113FC4A8C383C73617ABCF1F76B81E2FD com.hhz.keeping Google Play
7728EF0D45A337427578AAB4C205386CE8EE5A604141669652169BA2FBA23B30 com.hz.keep3 Chrome
056A2341C0051ACBF4315EC5A6EEDD1E4EAB90039A6C336CC7E8646C9873B91A com.hz.keep3 Google Play
054FA5F5AD43B6D6966CDBF4F2547EDC364DDD3D062CD029242554240A139FDB com.hz.keep2 Google Play
DD40BC920484A9AD1EEBE52FB7CD09148AA6C1E7DBC3EB55F278763BAF308B5C com.hz.keep2 Chrome
FC0AAE153726B7E0A401BD07C91B949E8480BAA0E0CD607439ED01ABA1F4EC1A com.hz.keep1 Google Play
711D7FA96DFFBAEECEF12E75CE671C86103B536004997572ECC71C1AEB73DEF6 com.hz.keep1 Chrome
FE916D1B94F89EC308A2D58B50C304F7E242D3A3BCD2D7CCC704F300F218295F com.hz.keep1 Google Play
3AA764651236DFBBADB28516E1DCB5011B1D51992CB248A9BF9487B72B920D4C com.hz.keep1 Chrome
F1456B50A236E8E42CA99A41C1C87C8ED4CC27EB79374FF530BAE91565970995 com.hz.keep Google Play
77390D07D16E6C9D179C806C83D2C196A992A9A619A773C4D49E1F1557824E00 com.hz.keep Chrome
49634208F5FB8BCFC541DA923EBC73D7670C74C525A93B147E28D535F4A07BF8 com.hz.keep Chrome
B5C45054109152F9FE76BEE6CBBF4D8931AE79079E7246AA2141F37A6A81CBA3 com.hz.keep Google Play
85E5DBEA695A28C3BA99DA628116157D53564EF9CE14F57477B5E3095EED5726 com.hz.keep Chrome
53A5DD64A639BF42E174E348FEA4517282C384DD6F840EE7DC8F655B4601D245 com.hz.keep Google Play
80B44D23B70BA3D0333E904B7DDDF7E19007EFEB98E3B158BBC33CDA6E55B7CB com.hz.keep Chrome
797CEDF6E0C5BC1C02B4F03E109449B320830F5ECE0AA6D194AD69E0FE6F3E96 com.hz.keep Chrome
691687CB16A64760227DCF6AECFE0477D5D983B638AFF2718F7E3A927EE2A82C com.hz.keep Google Play
C88C3682337F7380F59DBEE5A0ED3FA7D5779DFEA04903AAB835C959DA3DCD47 com.hz.keep Google Play


The post Roaming Mantis Amplifies Smishing Campaign with OS-Specific Android Malware appeared first on McAfee Blogs.

Steps to Discover Hidden Threat from Phishing Email

5 May 2021 at 18:04
coin miners


Email is one of the primary ways of communication in the modern world. We use email to receive notifications about our online shopping, financial transaction, credit card e-statements, one-time passwords to authenticate registration processes, application for jobs, auditions, school admissions and many other purposes. Since many people around the globe depend on electronic mail to communicate, phishing emails are an attack method favored by cyber criminals.

In this type of attack, cyber criminals design emails to look convincing and send them to targeted people. The sender pretends to be someone the potential victim knows, someone who can be trusted, like a friend, or close contact, or the very bank where they save their income, or even the social media platform where they might have an account. As soon as they click on any malicious files or links embedded within these emails, they may land in a compromised situation.

Detailed Analysis

In this write up, I will focus on things to look at while hunting threats in phishing emails.

Header analysis:

An email is divided into three parts: header, body, and attachment. The header part keeps the routing information of the email. It may contain other information like content type, from, to, delivery date, sender origin, mail server, and the actual email address used to send/receive the email.

Important headers

Return- Path:

The Return-path email address receives the delivery status information. To get undelivered emails, or any other bounced back messages, our emails’ server uses Return-Path. The recipient server uses this field to identify spoof emails. In this process, the recipient server retrieves all the permitted IPs related to the sender domain and matches with the sender IP. If it fails to provide any match, we can consider the email to be spam.


This field shows information related to all hops, through which the email was transferred. The last entry shows the initial address of the email sender.


This field’s email address is used to receive the reply message. It can differ from the address in spoof emails.


SPF (Sender Policy Framework) helps to verify that messages appearing from a particular domain were sent from servers under control of the actual owner. If the value is Pass, then the email source is valid.


Domain Keys Identified Mail (DKIM) signs the outgoing email with an encrypted signature inside the headers and the recipient email server decrypts it, using a shared public key to check whether the message was changed in transit.


These headers are known as experimental or extension headers. They are usually added by the recipient mailbox providers. Fields like X-FOSE-Spam and X-Spam-Score are used to identify spam emails.

Consider the following email message:


Figure1: Raw email header information

  1. In the above example we notice the return path does not match with the from address, meaning any undelivered email will return to the return path email address.
  2. In the Received field, the domain name from where this email is sent is (the email spoofing site) and not This is clearly not legitimate. Even the IP ( does not correspond to, as per the Whois lookup.
  3. The from email address is different from the Reply-To email address. This clearly implies that the actual reply will go to not to
  4. The Received-SPF value is neutral; the domain neither permits nor denies the IP ( On further confirmation with Whois lookup, we see that this domain does not belong to the IP (
  5. DKIM is none. This means the email is unsigned.

Based on the above information the email is suspected to be spoofed. We should put the extracted email IDs in the block list.

Email Body Analysis:

The email bodies of phishing emails we usually receive mostly target our trust, by having something faithful and reliable in their content. It is so personalized and seemingly genuine, that victim’s often take the bait. Let us see the example below and understand what actions should be taken in such a scenario.

Figure2: Phishing email related to COVID-19

In the above email, the spammer pretends to be a medical insurance service provider and this mail is regarding a health-plan payment invoice for COVID-19 insurance the victim has supposedly purchased recently.

Figure2: Phishing email related to COVID-19 (continued)


Moreover, if we look closely at the bottom of the email, we can see the message, ‘This email has been scanned by McAfee’. This makes the email appear believable, as well as trustworthy.

Now, if we hover the mouse pointer over the |SEE DETAILS| button, one OneDrive link will pop up. Rather than clicking on the link, we must copy it for execution separately.

Figure3: Downloaded html file after clicking on the OneDrive link.

To execute the above OneDrive link separately (hxxps://1drv[.]ms/u/s!Ajmzc7fpBw5lrzwfPwIkoZRelG4D), it would be preferable to load it inside an isolated environment. If you do not have such an environment available yourself, you can use an online browser service like Browserling.

After loading the link in the browser, you will notice that it downloads an html attachment. Clicking on the html file takes us to another webpage (hxxps://selimyildiz[.]


Figure4: Fake Office 365 login page

The content of the site is a lookalike of an online Microsoft Excel document where it is asking for Office 365 login details to download it. Before doing anything here we need to check a few more things.

Figure5: WordPress admin panel of selimyildiz[.]

To further validate whether the webpage is genuine or not, I have shortened the URL to its domain level to load it. The domain leads to a WordPress login page which does not belong to Microsoft, further arousing suspicion.

Figure 6: whois information of selimyildiz[.]

As per the whois information This domain has not been registered by Microsoft and it resolves to the public IP which is also not owned by Microsoft. The information clearly indicates that it is not a genuine website.

Figure7: Attempting to login with random credentials to validate the authentication

Now to check the behavior, I came back to the login page, enter some random credentials, and try to download the invoice. As expected, I was faced with a login failed error. Here on we can assume there might be two probable reasons for the login failure. Firstly, to make the victim believe that it is a genuine login page or, secondly, to confirm whether the typed password is correct, as the victim may have made a typing error.

Figure8: Fake invoice to lure the victim

Now that we know this is fake, what is next? To validate the authentication check I entered random credentials again and bingo! This time it redirects to a pdf invoice, which looks genuine by showing it belongs to some medical company. However, the sad part is if the victim falls under this trap then, by the time they realize that this is a fake invoice, their login credentials will be phished.

Email Attachment Analysis:

In email, users commonly share two types of documents as an attachment, Microsoft office documents or PDF files. These are often used in document-based malware campaigns. To exploit the targeted systems, attackers usually infect these documents using VBA or JavaScript and distribute them via (phishing) emails.

In the first section of this part, we will analyze a malicious Word document. This type of document contains malicious Visual Basic Application (VBA) code, known as macros. Sometimes, a macro triggers the moment a document is opened, but from Microsoft Office 2007 onwards, a macro cannot execute itself until and unless the user enables the macro content. To deal with such showstoppers, attackers utilize various social engineering methods, where the primary goal is to build trust with the victim so that they click on the ‘Enable Editing’ button without any second thought.

Word Document Analysis:

File Name: PR_Report.bin

Hash: e992ffe746b40d97baf56098e2110ff3978f8229ca333e87e24d1539cea7415c


  • Oletools
  • Yara
  • Didier Stevens Suite
  • Process Monitor
  • Windows Network Monitor (Packet capture tool)

Step 1: Getting started with File properties

It is always good practice to get familiar with the properties before starting any file analysis. We can get the details using the ‘file’ command in Linux.

  • We have found the file is a “Microsoft Office Word file”
  • Create Time/Date: Thu Jun 28 16:48:00 2018
  • Last Saved Time: Thu Jun 28 16:54:00 2018

Step 2: Apply Yara rules

Yara is a tool to identify and classify malware. This tool is used to conduct signature-based detection against any file. Let us check a couple of premade Yara rules from Didier Stevens Suites.

  • The above Yara rule (maldoc.yara) matches the OLE file magic number (D0 CF 11 E0) which is nothing but the HEX identifier (magic bytes) for Microsoft Office documents.
  • It also detects a couple of suspicious imports inside the file like GetProcAddr and LoadLibrary.

  • This Yara rule (contains_pe_file.yara) checks if a file has any PE file embedded. Based on that it matches the above strings from the file. MZ is a signature of a PE file.

Step 3: Dump the document contents using


As we know, an OLE file contains streams of data. will help us to analyze those streams further to extract macros or objects out of it.

You may notice in the above figure that we can see two letters ‘M‘ and ‘O’ in stream 8, 9 and 15, respectively. Here ‘M’ indicates the stream might contain macro code and ‘O’ indicates an object.

Step 4: Extract the VB script in macros



  • In stream 8, the code contains a method named as ‘killo’. This function saves the document with the same file name.
  • In stream 9, the code provides lot of interesting information.
    • In Document_Open() function we can find the file names like 5C.pif, 6C.pif where 5C.pif  is copying into ‘6C.pif’ using FileCopy function.
  • In the later part, the function is calling ‘killo’ method from the other module (Stream 8).
  • In the end Document_Close() function executes a obfuscated command using shell. After de-obfuscation we see it executes 6C.pif in background (using vbHide method) and pings localhost all together.

Shell cmd.exe /c  ping localhost -n 100 && start Environ(“Temp”) & “\6C.pif”, vbHide

Step 5: Extract file from the ole object.

It is clear that the document has an embedded file which can be extracted using the oleobj tool.

  • As shown above, oleobj extracts the embedded file from the object and saves it inside the current working directory.
  • The above highlighted part also provides details about the source path and temporary path where the file is going to save itself inside the victim’s system after execution of the document.

Step 6: Getting the static information from the extracted file.

  • The above information shows us this is a PE32 executable for MS Windows.
  • For confirmation, we can also run tool and find the PE headers inside the file.

Step 7: Behavior analysis

Setup a Windows 7 32-bit VM, change the file extension to ‘.exe’ and simply run Apate DNS and Windows Network Monitoring tool before execution.

Figure9: Command and Control domain’s DNS queries captured in Apate DNS

Figure10: Captured network traffic of 5C.exe while trying to communicate with the C2

  • The results in Apate DNS and Microsoft Network Monitoring tool show the file has created a process name 5C.exe and repeatedly tried connecting to multiple C2 servers.

Figure11:  Registry changes captured in Process Monitor


  • Process Monitor tells us some modifications took place in the Registry keys of Internet Settings by 5C.exe. It disabled the IE browser proxy by setting the value of ProxyEnable to 0 and SavedLegacySettings sets the 9th byte value to “09”. It means the browser disabled the proxy and automatically detect the internet settings.

We can summarize it as the Word document first ran a VBA macro, dropped and ran an embedded executable, created a new process, communicated with the C2 servers and made unauthorized Registry changes. This is enough information to consider the document as malicious. From this point, if we want, we can do more detailed analysis like debugging the executable or analyzing the process dump to learn more about the file behavior.

PDF Document Analysis:

A PDF document can be defined as a collection of objects that describes how the pages should be displayed inside the file.

Usually, an attack vector uses email or other social engineering skills to lure the user to click or open the pdf document. The moment a user opens the pdf file it typically executes JavaScript in the background that may exploit the existing vulnerability that persist with the Adobe pdf reader or drop an executable as a payload that might perform the rest of the objectives.

A pdf file has four components. They are header, body, reference, and trailer.

  1. Header is the topmost part of the document. It shows information related to the version of the document.
  2. Body might contain various objects (Objects are made of streams. These streams are used to store the data).
  3. The cross-reference table points to each object.
  4. Trailer points to the cross-reference table.

File name: Report.pdf

Sha256: a7b423202d5879d1f9e47ae85ce255e3758c5c1e5b19fcd56691dab288a47b4c

Tools –

Step 1: Scan the pdf document with PDFiD

PDFiD is a part of the Didier Stevens Suite. It scans the pdf document with a list of strings, which helps you to identify the information like JavaScript, Embedded files, actions while opening the documents and the count of the occurrences of some specific strings inside the pdf file.

  • According to the result shown above, PDFiD has identified the number of objects, streams, /JS, /JavaScript, OpenAction present inside the Report.pdf file. Here is some information about them.
    • /JS, /Javascript or /RichMedia means Pdf document contains JavaScript or Flash media.
    • /Embedded file indicates the presence of other file formats inside the pdf file.
    • /OpenAction, AA, /Acroform tells us an automatic action should be executed when the pdf document is opened/viewed.
    • Streams contain data inside an object.

Step 2: Looking inside the Objects

We have now discovered that there is JavaScript present inside the pdf file so let us start from there. We will run to search the JavaScript indirect object.

  • The above result shows the JavaScript will launch the file ‘virus’ whenever the pdf is opened so, in the next step, we will extract the mentioned file from the pdf.

Step 3: Extract the embedded file using peepdf.

Peepdf is a tool built in Python, which provides all the necessary components in one place that are required during PDF analysis.

Syntax: peepdf –i file_name.pdf

The syntax (-i) means enabling interaction mode.

To learn more, just type help with the topic and explore the options it displays.

  • The above result from peepdf indicates the embedded file is available in object number 14. Going inside object 14, we find it is pointed to object 15; similarly, object 15 is further pointed to object 16. Finally, we get a clue about the existence of the file ‘virus’ inside object 17. Usually, to avoid detection, attackers design documents like this. Now, if we look inside PDF version 1, there is only one stream available that is also pointed to 17. Seeing this, we come to know that object 17 is a stream and the file is available inside.

  • Now inside stream 17, we get the file signature starting with MZ and hex value starting with 4d 5a, which indicates this is a PE executable file.

  • Now save the stream as virus.exe and run file command for confirmation.


Step 4: Behavior analysis

Now set up a windows 7 32-bit virtual machine and execute the file.

Figure12: Process Explorer displays processes created by virus.exe

  • As shown in Process Explorer, virus.exe created a couple of suspicious processes (zedeogm.exe, cmd.exe) and they were terminated after execution.

Figure13: Process Monitor captured the system changes made by virus.exe

The results in Process Monitor show the file was dropped as zedeogm.exe. Later it modified the Windows firewall rule. Then it executed WinMail.exe, following which it started cmd.exe to execute ‘tmpd849fc4d.bat’ and exited the process.

At this point, we have collected enough evidence to treat the pdf file as malicious. We can also perform additional precautionary steps like binary debugging and memory forensics on the extracted IOCs to hunt for further threats


In this write-up, we have understood the purpose of email threat hunting, how it will help to take preventive actions against un-known threats. We have discovered the areas we should investigate for hunting threats. We learned how a malicious URL can be hidden inside an email body and its analysis to further see if it is malicious or not.

To stay protected:

  • Never trust the email sender. Always check the basic identity verification before responding to any email.
  • Never click on any links or open any attachment if the email sender is not genuine.
  • Attackers often use arbitrary domain names. So read the site address carefully to avoid the typo-squatting trap.
  • Cross-check the website background before providing any personal information like name, address, login details, financial information etc.
  • If you realize that you have already entered your credentials to any unauthorized sources please change your password immediately.
  • Use McAfee Web Gateway or McAfee WebAdvisor to get maximum security against malicious URLs and IPs.
  • For protection from drive-by downloads and real-time threats associated with email attachments, enabling McAfee Endpoint Security’s Suspicious Attachment detection is highly recommended.
  • MVISION Unified Cloud Edge protects against Tactics Technique and Procedure (TTP) used by Advanced Persistent Threats.
  • Suspicious links can be submitted to to check the status and to submit for review.
  • Suspicious files can be submitted to McAfee Labs

The post Steps to Discover Hidden Threat from Phishing Email appeared first on McAfee Blogs.

How to Stop the Popups

5 May 2021 at 18:06

McAfee is tracking an increase in the use of deceptive popups that mislead some users into taking action, while annoying many others.  A significant portion is attributed to browser-based push notifications, and while there are a couple of simple steps users can take to prevent and remediate the situation, there is also some confusion about how these should be handled.

How does this happen?

In many cases scammers use deception to trick users into Allowing push notifications to be delivered to their system.

In other cases, there is no deception involved.  Users willingly opt-in uncoerced.

What happens next?

After Allowing notifications, messages quickly start being received.  Some sites send notifications as often as every minute.

Many messages are deceptive in nature.  Consider this fake alert example.  Clicking the message leads to an imposter Windows Defender alert website, complete with MP3 audio and a phone number to call.

In several other examples, social engineering is crafted around the McAfee name and logo.  Clicking on the messages lead to various websites informing the user their subscription has expired, that McAfee has detected threats on their system, or providing direct links to purchase a McAfee subscription.  Note that “Remove Ads” and similar notification buttons typically lead to the publishers chosen destination rather than anything that would help the user in disabling the popups.  Also note that many of the destination sites themselves prompt the user to Allow more notifications.  This can have a cascading effect where the user is soon flooded with many messages on a regular basis.


How can this be remediated?

First, it’s important to understand that the representative images provided here are not indications of a virus infection.  It is not necessary to update or purchase software to resolve the matter.  There is a simple fix:

1. Note the name of the site sending the notification in the popup itself. It’s located next to the browser name, for example:

Example popup with a link to a Popup remover

2. Go to your browser settings’ notification section

3. Search for the site name and click the 3 dotes next to the entry.

Chrome’s notification settings

4. Select Block

Great, but how can this be prevented in the future?

The simplest way is to carefully read such authorization prompts and only click Allow on sites that you trust.  Alternatively, you can disable notification prompts altogether.

As the saying goes, an ounce of prevention is worth a pound of cure.

What other messages should I be on the lookout for?

While there are thousands of various messages and sites sending them, and messages evolve over time, these are the most common seen in April 2021:

  • Activate Protection Now?|Update Available: Antivirus
  • Activate your free security today – Download now|Turn On Windows Protection ✅
  • Activate your McAfee, now! ✅|Click here to review your PC protection
  • Activate your Mcafee, now! ✅|Reminder From McAfee
  • Activate your Norton, now! ✅|Click here to review your PC protection
  • Activate Your PC Security ✅|Download your free Windows protection now.
  • Antivirus Gratis Installieren✅|Bestes Antivirus–Kostenlos herunterladen
  • Antivirus Protection|Download Now To Protect Your Computer From Viruses &amp; Malware Attacks
  • Best Antivirus 2020 – Download Free Now|Install Your Free Antivirus ✅
  • Check here with a Free Virus Scan|Is Windows slow due to virus?
  • Click here to activate McAfee protection|McAfee Safety Alert
  • Click here to activate McAfee protection|Turn on your antivirus
  • Click Here To Activate McAfee Protection|Upgrade Your Antivirus
  • Click here to activate Norton protection|Turn on your antivirus ✅
  • Click here to clean.|System is infected!
  • Click here to fix the error|Protect your PC now !
  • Click here to fix the error|System alert!
  • Click here to protect your data.|Remove useless files advised
  • Click Here To Renew Subscription|Viruses Found (3)
  • Click here to review your PC protection|⚠ Your Mcafee has Expired
  • Click here to Scan and Remove Virus|Potential Virus?
  • Click To Renew Your Subscription|Viruses Found (3)
  • Click to turn on your Norton protection|New (1) Security Notification
  • Critical Virus Alert|Turn on virus protection
  • Free Antivirus Update is|available.Download and protect system?
  • Install Antivirus Now!|Norton – Protect Your PC!
  • Install FREE Antivirus now|Is the system under threat?
  • Install free antivirus|Protect your Windows PC!
  • Jetzt KOSTENLOSES Antivirus installieren|Wird das System bedroht?
  • McAfee Safety Alert|Turn on your antivirus now [Activate]
  • McAfee Total Protection|Trusted Antivirus and Privacy Protection
  • Norton Antivirus|Stay Protected. Activate Now!
  • Norton Expired 3 Days Ago!⚠ |Renew now to stay protected for your PC!
  • PC is under virus threat! |Renew Norton now to say protected ⚠
  • Protect Your Computer From Viruses|⚠ Activate McAfee Antivirus
  • Renew McAfee License Now!|Stay Protected. Renew Now!
  • Renew McAfee License Now!|Your McAfee Has Expired Today
  • Renew Norton License Now!|Your Norton Has Expired Today
  • Renew Now For 2021|Your Norton has Expired Today?
  • Renew now to stay protected!|⚠ Your Mcafee has Expired
  • Scan Report Ready|Tap to reveal
  • Turn on virus protection|Viruses found (3)
  • Your Computer Might be At Risk ☠ |❌ Renew Norton Antivirus!

General safety tips

  • Scams can be quite convincing. It’s better to be quick to block something and slow to allow than the opposite.
  • When in doubt, initiate the communication yourself.
    • Manually enter in a web address rather than clicking a link sent to you.
    • Confirm numbers and addresses before reaching out, such as phone and email.
  • McAfee customers utilizing web protection (including McAfee Web Advisor and McAfee Web Control) are protected from known malicious sites.

The post How to Stop the Popups appeared first on McAfee Blogs.

Access Token Theft and Manipulation Attacks – A Door to Local Privilege Escalation

20 April 2021 at 15:27
how to run a virus scan

Executive Summary

Many malware attacks designed to inflict damage on a network are armed with lateral movement capabilities. Post initial infection, such malware would usually need to perform a higher privileged task or execute a privileged command on the compromised system to be able to further enumerate the infection targets and compromise more systems on the network. Consequently, at some point during its lateral movement activities, it would need to escalate its privileges using one or the other privilege escalation techniques. Once malware or an attacker successfully escalates its privileges on the compromised system, it will acquire the ability to perform stealthier lateral movement, usually executing its tasks under the context of a privileged user, as well as bypassing mitigations like User Account Control.

Process access token manipulation is one such privilege escalation technique which is widely adopted by malware authors. These set of techniques include process access token theft and impersonation, which eventually allows malware to advance its lateral movement activities across the network in the context of another logged in user or higher privileged user.

When a user authenticates to Windows via console (interactive logon), a logon session is created, and an access token is granted to the user. Windows manages the identity, security, or access rights of the user on the system with this access token, essentially determining what system resources they can access and what tasks can be performed. An access token for a user is primarily a kernel object and an identification of that user in the system, which also contains many other details like groups, access rights, integrity level of the process, privileges, etc. Fundamentally, a user’s logon session has an access token which also references their credentials to be used for Windows single sign on (SSO) authentication to access the local or remote network resources.

Once the attacker gains an initial foothold on the target by compromising the initial system, they would want to move around the network laterally to access more resource or critical assets. One of the ways for an attacker to achieve this is to use the identity or credentials of already logged-on users on the compromised machine to pivot to other systems or escalate their privileges and perform the lateral movement in the context of another logged on higher privileged user. Process access token manipulation helps the attackers to precisely accomplish this goal.

For our YARA rule, MITRE ATT&CK techniques and to learn more about the technical details of token manipulation attacks and how malware executes these attacks successfully at the code level, read our complete technical analysis here.


McAfee On-Access-Scan has a generic detection for this nature of malware  as shown in the below screenshot:

Additionally, the YARA rule mentioned at the end of the technical analysis document can also be used to detect the token manipulation attacks by importing the rule in the Threat detection solutions like McAfee Advance Threat Defence, this behaviour can be detected.

Summary of the Threat

Several types of malware and advanced persistent threats abuse process tokens to gain elevated privileges on the system. Malware can take multiple routes to achieve this goal. However, in all these routes, it would abuse the Windows APIs to execute the token stealing or token impersonation to gain elevated privileges and advance its lateral movement activities.

  • If the current logged on user on the compromised or infected machine is a part of the administrator group of users OR running a process with higher privileges (e.g., by using “runas” command), malware can abuse the privileges of the process’s access token to elevate its privileges on the system, thereby enabling itself to perform privileged tasks.
  • Malware can use multiple Windows APIs to enumerate the Windows processes running with higher privileges (usually SYSTEM level privileges), acquire the access tokens of those processes and start new processes with the acquired token. This results in the new process being started in the context of the user represented by the token, which is SYSTEM.
  • Malware can also execute a token impersonation attack where it can duplicate the access tokens of the higher privileged SYSTEM level process, convert it into the impersonation token by using appropriate Windows functionality and then impersonate the SYSTEM user on the infected machine, thereby elevating its privileges.
  • These token manipulation attacks will allow malware to use the credentials of the current logged on user or the credentials of another privileged user to authenticate to the remote network resource, leading to advancement of its lateral movement activities.
  • These attack techniques allows malware to bypass multiple mitigations like UAC, access control lists, heuristics detection techniques and allowing malware to remain stealthier while moving laterally inside the network.


Access Token Theft and Manipulation Attacks – Technical Analysis

Access Token Theft and Manipulation Attacks – A Door to Local Privilege Escalation.

Read Now


The post Access Token Theft and Manipulation Attacks – A Door to Local Privilege Escalation appeared first on McAfee Blogs.

Clever Billing Fraud Applications on Google Play: Etinu

19 April 2021 at 21:42

A new wave of fraudulent apps has made its way to the Google Play store, targeting Android users in Southwest Asia and the Arabian Peninsula as well—to the tune of more than 700,000 downloads before detection by McAfee Mobile Research and co-operation with Google to remove the apps.

Figure 1. Infected Apps on Google Play

Posing as photo editors, wallpapers, puzzles, keyboard skins, and other camera-related apps, the malware embedded in these fraudulent apps hijack SMS message notifications and then make unauthorized purchases. While apps go through a review process to ensure that they are legitimate, these fraudulent apps made their way into the store by submitting a clean version of the app for review and then introducing the malicious code via updates to the app later.

Figure 2. Negative reviews on Google Play

McAfee Mobile Security detects this threat as Android/Etinu and alerts mobile users if they are present. The McAfee Mobile Research team continues to monitor this threat and is likewise continuing its co-operation with Google to remove these and other malicious applications on Google Play.

Technical analysis

In terms of details, the malware embedded in these apps takes advantage of dynamic code loading. Encrypted payloads of malware appear in the assets folder associated with the app, using names such as “cache.bin,” “settings.bin,” “data.droid,” or seemingly innocuous “.png” files, as illustrated below.

Figure 3. Encrypted resource sneaked into the assets folder

Figure 4. Decryption flow

The figure above shows the decryption flow. Firstly, the hidden malicious code in the main .apk opens “1.png” file in the assets folder, decrypts it to “loader.dex,” and then loads the dropped .dex. The “1.png” is encrypted using RC4 with the package name as the key. The first payload creates HTTP POST request to the C2 server.

Interestingly, this malware uses key management servers. It requests keys from the servers for the AES encrypted second payload, “2.png”. And the server returns the key as the “s” value of JSON. Also, this malware has self-update function. When the server responds “URL” value, the content in the URL is used instead of “2.png”. However, servers do not always respond to the request or return the secret key.

Figure 5. Updated payload response

As always, the most malicious functions reveal themselves in the final stage. The malware hijacks the Notification Listener to steal incoming SMS messages like Android Joker malware does, without the SMS read permission. Like a chain system, the malware then passes the notification object to the final stage. When the notification has arisen from the default SMS package, the message is finally sent out using WebView JavaScript Interface.

Figure 6. Notification delivery flow

As a result of our additional investigation on C2 servers, following information was found, including carrier, phone number, SMS message, IP address, country, network status, and so forth—along with auto-renewing subscriptions:

Figure 7. Leaked data

Further threats like these to come?

We expect that threats which take advantage of Notification Listener will continue to flourish. The McAfee Mobile Research team continues to monitor these threats and protect customers by analyzing potential malware and working with app stores to remove it. Further, using McAfee Mobile Security can detect such threats and protect you from them via its regular updates. However, it’s important to pay attention to apps that request SMS-related permissions and Notification Listener permissions. Simply put, legitimate photo and wallpaper apps simply won’t ask for those because they’re not necessary for such apps to run. If a request seems suspicious, don’t allow it.

Technical Data and IOCs



08FA33BC138FE4835C15E45D1C1D5A81094E156EEF28D02EA8910D5F8E44D4B8 com.super.color.hairdryer
0E2ACCFA47B782B062CC324704C1F999796F5045D9753423CF7238FE4CABBFA8 com.daynight.keyboard.wallpaper


The post Clever Billing Fraud Applications on Google Play: Etinu appeared first on McAfee Blogs.

McAfee Labs Report Reveals Latest COVID-19 Threats and Malware Surges

13 April 2021 at 04:01

The McAfee Advanced Threat Research team today published the McAfee Labs Threats Report: April 2021.

In this edition, we present new findings in our traditional threat statistical categories – as well as our usual malware, sectors, and vectors – imparted in a new, enhanced digital presentation that’s more easily consumed and interpreted.

Historically, our reports detailed the volume of key threats, such as “what is in the malware zoo.” The introduction of MVISION Insights in 2020 has since made it possible to track the prevalence of campaigns, as well as, their associated IoCs, and determine the in-field detections. This latest report incorporates not only the malware zoo but new analysis for what is being detected in the wild.

The Q3 and Q4 2020 findings include:

  • COVID-19-themed cyber-attack detections increased 114%
  • New malware samples averaging 648 new threats per minute
  • 1 million external attacks observed against MVISION Cloud user accounts
  • Powershell threats spiked 208%
  • Mobile malware surged 118%

Additional Q3 and Q4 2020 content includes:

  • Leading MITRE ATT&CK techniques
  • Prominent exploit vulnerabilities
  • McAfee research of the prolific SUNBURST/SolarWinds campaign

These new, insightful additions really make for a bumper report! We hope you find this new McAfee Labs threat report presentation and data valuable.

Don’t forget keep track of the latest campaigns and continuing threat coverage by visiting our McAfee COVID-19 Threats Dashboard and the MVISION Insights preview dashboard.

The post McAfee Labs Report Reveals Latest COVID-19 Threats and Malware Surges appeared first on McAfee Blogs.

BRATA Keeps Sneaking into Google Play, Now Targeting USA and Spain

12 April 2021 at 16:13
How to check for viruses

Recently, the McAfee Mobile Research Team uncovered several new variants of the Android malware family BRATA being distributed in Google Play, ironically posing as app security scanners.

These malicious apps urge users to update Chrome, WhatsApp, or a PDF reader, yet instead of updating the app in question, they take full control of the device by abusing accessibility services. Recent versions of BRATA were also seen serving phishing webpages targeting users of financial entities, not only in Brazil but also in Spain and the USA.

In this blog post we will provide an overview of this threat, how does this malware operates and its main upgrades compared with earlier versions. If you want to learn more about the technical details of this threat and the differences between all variants you can check the BRATA whitepaper here.

The origins of BRATA

First seen in the wild at the end of 2018 and named “Brazilian Remote Access Tool Android ” (BRATA) by Kaspersky, this “RAT” initially targeted users in Brazil and then rapidly evolved into a banking trojan. It combines full device control capabilities with the ability to display phishing webpages that steal banking credentials in addition to abilities that allow it capture screen lock credentials (PIN, Password or Pattern), capture keystrokes (keylogger functionality), and record the screen of the infected device to monitor a user’s actions without their consent.

Because BRATA is distributed mainly on Google Play, it allows bad actors to lure victims into installing these malicious apps pretending that there is a security issue on the victim’s device and asking to install a malicious app to fix the problem. Given this common ruse, it is recommended to avoid clicking on links from untrusted sources that pretend to be a security software which scans and updates your system—e even if that link leads to an app in Google Play. McAfee offers protection against this threat via McAfee Mobile Security, which detects this malware as Android/Brata.

How BRATA Android malware has evolved and targets new victims

The main upgrades and changes that we have identified in the latest versions of BRATA recently found in Google Play include:

  • Geographical expansion: Initially targeting Brazil, we found that recent variants started to also target users in Spain and the USA.
  • Banking trojan functionality: In addition to being able to have full control of the infected device by abusing accessibility services, BRATA is now serving phishing URLs based on the presence of certain financial and banking apps defined by the remote command and control server.
  • Self-defense techniques: New BRATA variants added new protection layers like string obfuscation, encryption of configuration files, use of commercial packers, and the move of its core functionality to a remote server so it can be easily updated without changing the main application. Some BRATA variants also check first if the device is worth being attacked before downloading and executing their main payload, making it more evasive to automated analysis systems.

BRATA in Google Play

During 2020, the threat actors behind BRATA have managed to publish several apps in Google Play, most of them reaching between one thousand to five thousand installs. However, also a few variants have reached 10,000 installs including the latest one, DefenseScreen, reported to Google by McAfee in October and later removed from Google Play.

Figure 1. DefenseScreen app in Google Play.

From all BRATA apps that were in Google Play in 2020, five of them caught our attention as they have notable improvements compared with previous ones. We refer to them by the name of the developer accounts:

Figure 2. Timeline of identified apps in Google Play from May to October 2020

Social engineering tricks

BRATA poses as a security app scanner that pretends to scan all the installed apps, while in the background it checks if any of the target apps provided by a remote server are installed in the user’s device. If that is the case, it will urge the user to install a fake update of a specific app selected depending on the device language. In the case of English-language apps, BRATA suggests the update of Chrome while also constantly showing a notification at the top of the screen asking the user to activate accessibility services:

Figure 3. Fake app scanning functionality

Once the user clicks on “UPDATE NOW!”, BRATA proceeds to open the main Accessibility tab in Android settings and asks the user to manually find the malicious service and grant permissions to use accessibility services. When the user attempts to do this dangerous action, Android warns of the potential risks of granting access to accessibility services to a specific app, including that the app can observe your actions, retrieve content from Windows, and perform gestures like tap, swipe, and pinch.

As soon as the user clicks on OK the persistent notification goes away, the main icon of the app is hidden and a full black screen with the word “Updating” appears, which could be used to hide automated actions that now can be performed with the abuse of accessibility services:

Figure 4. BRATA asking access to accessibility services and showing a black screen to potentially hide automated actions

At this point, the app is completely hidden from the user, running in the background in constant communication with a command and control server run by the threat actors. The only user interface that we saw when we analyzed BRATA after the access to accessibility services was granted was the following screen, created by the malware to steal the device PIN and use it to unlock it when the phone is unattended. The screen asks the user to confirm the PIN, validating it with the real one because when an incorrect PIN is entered, an error message is shown and the screen will not disappear until the correct PIN is entered:

Figure 5. BRATA attempting to steal device PIN and confirming if the correct one is provided

BRATA capabilities

Once the malicious app is executed and accessibility permissions have been granted, BRATA can perform almost any action in the compromised device. Here’s the list of commands that we found in all the payloads that we have analyzed so far:

  • Steal lock screen (PIN/Password/Pattern)
  • Screen Capture: Records the device’s screen and sends screenshots to the remote server
  • Execute Action: Interact with user’s interface by abusing accessibility services
  • Unlock Device: Use stolen PIN/Password/Pattern to unlock the device
  • Start/Schedule activity lunch: Opens a specific activity provided by the remote server
  • Start/Stop Keylogger: Captures user’s input on editable fields and leaks that to a remote server
  • UI text injection: Injects a string provided by the remote server in an editable field
  • Hide/Unhide Incoming Calls: Sets the ring volume to 0 and creates a full black screen to hide an incoming call
  • Clipboard manipulation: Injects a string provided by the remote server in the clipboard

In addition to the commands above, BRATA also performs automated actions by abusing accessibility services to hide itself from the user or automatically grant privileges to itself:

  • Hides the media projection warning message that explicitly warns the user that the app will start capturing everything displayed on the screen.
  • Grants itself any permissions by clicking on the “Allow” button when the permission dialog appears in the screen.
  • Disables Google Play Store and therefore Google Play Protect.
  • Uninstalls itself in case that the Settings interface of itself with the buttons “Uninstall” and “Force Stop” appears in the screen.

Geographical expansion and Banking Trojan Functionality

Earlier BRATA versions like OutProtect and PrivacyTitan were designed to target Brazilian users only by limiting its execution to devices set to the Portuguese language in Brazil. However, in June we noticed that threat actors behind BRATA started to add support to other languages like Spanish and English. Depending on the language configured in the device, the malware suggested that one of the following three apps needed an urgent update: WhatsApp (Spanish), a non-existent PDF Reader (Portuguese) and Chrome (English):

Figure 6. Apps falsely asked to be updated depending on the device language

In addition to the localization of the user-interface strings, we also noticed that threat actors have updated the list of targeted financial apps to add some from Spain and USA. In September, the target list had around 52 apps but only 32 had phishing URLs. Also, from the 20 US banking apps present in the last target list only 5 had phishing URLs. Here’s an example of phishing websites that will be displayed to the user if specific US banking apps are present in the compromised device:

Figure 7. Examples of phishing websites pretending to be from US banks

Multiple Obfuscation Layers and Stages

Throughout 2020, BRATA constantly evolved, adding different obfuscation layers to impede its analysis and detection. One of the first major changes was moving its core functionality to a remote server so it can be easily updated without changing the original malicious application. The same server is used as a first point of contact to register the infected device, provide an updated list of targeted financial apps, and then deliver the IP address and port of the server that will be used by the attackers to execute commands remotely on the compromised device:


Figure 8. BRATA high level network communication

Additional protection layers include string obfuscation, country and language check, encryption of certain key strings in assets folder, and, in latest variants, the use of a commercial packer that further prevents the static and dynamic analysis of the malicious apps. The illustration below provides a summary of the different protection layers and execution stages present in the latest BRATA variants:

Figure 9. BRATA protection layers and execution stages

Prevention and defense

In order get infected with BRATA ,users must install the malicious application from Google Play so below are some recommendations to avoid being tricked by this or any other Android threats that use social engineering to convince users to install malware that looks legitimate:

  • Don’t trust an Android application just because it’s available in the official store. In this case, victims are mainly lured to install an app that promises a more secure device by offering a fake update. Keep in mind that in Android updates are installed automatically via Google Play so users shouldn’t require the installation of a third-party app to have the device up to date.
  • McAfee Mobile Security will alert users if they are attempting to install or execute a malware even if it’s downloaded from Google Play. We recommend users to have a reliable and updated antivirus installed on their mobile devices to detect this and other malicious applications.
  • Do not click on suspicious links received from text messages or social media, particularly from unknown sources. Always double check by other means if a contact that sends a link without context was really sent by that person, because it could lead to the download of a malicious application.
  • Before installing an app, check the developer information, requested permissions, the number of installations, and the content of the reviews. Sometimes applications could have very good rating but most of the reviews could be fake, such as we uncovered in Android/LeifAccess. Be aware that ranking manipulation happens and that reviews are not always trustworthy.

The activation of accessibility services is very sensitive in Android and key to the successful execution of this banking trojan because, once the access to those services is granted, BRATA can perform all the malicious activities and take control of the device. For this reason, Android users must be very careful when granting this access to any app.

Accessibility services are so powerful that in hands of a malicious app they could be used to fully compromise your device data, your online banking and finances, and your digital life overall.

BRATA Android malware continues to evolve—another good reason for protecting mobile devices

When BRATA was initially discovered in 2019 and named “Brazilian Android RAT” by Kaspersky, it was said that, theoretically, the malware can be used to target other users if the cybercriminals behind this threat wanted to do it. Based on the newest variants found in 2020, the theory has become reality, showing that this threat is currently very active, constantly adding new targets, new languages and new protection layers to make its detection and analysis more difficult.

In terms of functionality, BRATA is just another example of how powerful the (ab)use of accessibility services is and how, with just a little bit of social engineering and persistence, cybercriminals can trick users into granting this access to a malicious app and basically getting total control of the infected device. By stealing the PIN, Password or Pattern, combined with the ability to record the screen, click on any button and intercept anything that is entered in an editable field, malware authors can virtually get any data they want, including banking credentials via phishing web pages or even directly from the apps themselves, while also hiding all these actions from the user.

Judging by our findings, the number of apps found in Google Play in 2020 and the increasing number of targeted financial apps, it looks like BRATA will continue to evolve, adding new functionality, new targets, and new obfuscation techniques to target as many users as possible, while also attempting to reduce the risk of being detected and removed from the Play store.

McAfee Mobile Security detects this threat as Android/Brata. To protect yourselves from this and similar threats, employ security software on your mobile devices and think twice before granting access to accessibility services to suspicious apps, even if they are downloaded from trusted sources like Google Play.


Techniques, Tactics and Procedures (TTPS)

Figure 10. MITRE ATT&CK Mobile for BRATA

<h3>Indicators of compromise


SHA256 Package Name Installs
4cdbd105ab8117620731630f8f89eb2e6110dbf6341df43712a0ec9837c5a9be 1,000+
d9bc87ab45b0c786aa09f964a8101f6df7ea76895e2e8438c13935a356d9116b 1,000+
f9dc40a7dd2a875344721834e7d80bf7dbfa1bf08f29b7209deb0decad77e992 10,000+
e00240f62ec68488ef9dfde705258b025c613a41760138b5d9bdb2fb59db4d5e 5,000+
2846c9dda06a052049d89b1586cff21f44d1d28f153a2ff4726051ac27ca3ba7 com.defensescreen.application 10,000+



  • bialub[.]com
  • brorne[.]com
  • jachof[.]com


Technical Analysis of BRATA Apps

This paper will analyze five different “Brazilian Remote Access Tool Android” (BRATA) apps found in Google Play during 2020.

View Now

The post BRATA Keeps Sneaking into Google Play, Now Targeting USA and Spain appeared first on McAfee Blogs.

McAfee Defender’s Blog: Cuba Ransomware Campaign

6 April 2021 at 17:00

Cuba Ransomware Overview

Over the past year, we have seen ransomware attackers change the way they have responded to organizations that have either chosen to not pay the ransom or have recovered their data via some other means. At the end of the day, fighting ransomware has resulted in the bad actors’ loss of revenue. Being the creative bunch they are, they have resorted to data dissemination if the ransom is not paid. This means that significant exposure could still exist for your organization, even if you were able to recover from the attack.

Cuba ransomware, no newcomer to the game, has recently introduced this behavior.

This blog is focused on how to build an adaptable security architecture to increase your resilience against these types of attacks and specifically, how McAfee’s portfolio delivers the capability to prevent, detect and respond against the tactics and techniques used in the Cuba Ransomware Campaign.

Gathering Intelligence on Cuba Ransomware

As always, building adaptable defensive architecture starts with intelligence. In most organizations, the Security Operations team is responsible for threat intelligence analysis, as well as threat and incident response. McAfee Insights ( is a great tool for the threat intel analyst and threat responder. The Insights Dashboard identifies prevalence and severity of emerging threats across the globe which enables the Security Operations Center (SOC) to prioritize threat response actions and gather relevant cyber threat intelligence (CTI) associated with the threat, in this case the Cuba ransomware campaign. The CTI is provided in the form of technical indicators of compromise (IOCs) as well as MITRE ATT&CK framework tactics and techniques. As a threat intel analyst or responder you can drill down to gather more specific information on Cuba ransomware, such as prevalence and links to other sources of information. You can further drill down to gather more specific actionable intelligence such as indicators of compromise and tactics/techniques aligned to the MITRE ATT&CK framework.

From the McAfee Advanced Threat Research (ATR) blog, you can see that Cuba ransomware leverages tactics and techniques common to other APT campaigns. Currently, the Initial Access vector is not known. It could very well be spear phishing, exploited system tools and signed binaries, or a multitude of other popular methods.

Defensive Architecture Overview

Today’s digital enterprise is a hybrid environment of on-premise systems and cloud services with multiple entry points for attacks like Cuba ransomware. The work from home operating model forced by COVID-19 has only expanded the attack surface and increased risk for successful spear phishing attacks if organizations did not adapt their security posture and increase training for remote workers. Mitigating the risk of attacks like Cuba ransomware requires a security architecture with the right controls at the device, on the network and in security operations (SecOps). The Center for Internet Security (CIS) Top 20 Cyber Security Controls provides a good guide to build that architecture. As indicated earlier, the exact entry vector used by Cuba ransomware is currently unknown, so what follows, here, are more generalized recommendations for protecting your enterprise.

Initial Access Stage Defensive Overview

According to Threat Intelligence and Research, the initial access for Cuba ransomware is not currently known. As attackers can leverage many popular techniques for initial access, it is best to validate efficacy on all layers of defenses. This includes user awareness training and response procedures, intelligence and behavior-based malware defenses on email systems, web proxy and endpoint systems, and finally SecOps playbooks for early detection and response against suspicious email attachments or other phishing techniques. The following chart summarizes the controls expected to have the most effect against initial stage techniques and the McAfee solutions to implement those controls where applicable.

MITRE Tactic MITRE Techniques CSC Controls McAfee Capability
Initial Access Spear Phishing Attachments (T1566.001) CSC 7 – Email and Web Browser Protection

CSC 8 – Malware Defenses

CSC 17 – User Awareness

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection,

Web Gateway (MWG), Advanced Threat Defense, Web Gateway Cloud Service (WGCS)

Initial Access Spear Phishing Link (T1566.002) CSC 7 – Email and Web Browser Protection

CSC 8 – Malware Defenses

CSC 17 – User Awareness

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection,

Web Gateway (MWG), Advanced Threat Defense, Web Gateway Cloud Service (WGCS)

Initial Access Spear Phishing (T1566.003) Service CSC 7 – Email and Web Browser Protection

CSC 8 – Malware Defenses

CSC 17 – User Awareness

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection,

Web Gateway (MWG), Advanced Threat Defense, Web Gateway Cloud Service (WGCS)

For additional information on how McAfee can protect against suspicious email attachments, review this additional blog post:

Exploitation Stage Defensive Overview

The exploitation stage is where the attacker gains access to the target system. Protection against Cuba ransomware at this stage is heavily dependent on adaptable anti-malware on both end user devices and servers, restriction of application execution, and security operations tools like endpoint detection and response sensors.

McAfee Endpoint Security 10.7 provides a defense in depth capability, including signatures and threat intelligence, to cover known bad indicators or programs, as well as machine-learning and behavior-based protection to reduce the attack surface against Cuba ransomware and detect new exploitation attack techniques. If the initial entry vector is a weaponized Word document with links to external template files on a remote server, for example, McAfee Threat Prevention and Adaptive Threat Protection modules protect against these techniques.

The following chart summarizes the critical security controls expected to have the most effect against exploitation stage techniques and the McAfee solutions to implement those controls where applicable.

MITRE Tactic MITRE Techniques CSC Controls McAfee Portfolio Mitigation
Execution User Execution (T1204) CSC 5 Secure Configuration

CSC 8 Malware Defenses

CSC 17 Security Awareness

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection, Application Control (MAC), Web Gateway and Network Security Platform
Execution Command and Scripting Interpreter (T1059)


CSC 5 Secure Configuration

CSC 8 Malware Defenses

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection, Application Control (MAC), MVISION EDR
Execution Shared Modules (T1129) CSC 5 Secure Configuration

CSC 8 Malware Defenses

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection, Application Control (MAC)
Persistence Boot or Autologon Execution (T1547) CSC 5 Secure Configuration

CSC 8 Malware Defenses

Endpoint Security Platform 10.7 Threat Prevention, MVISION EDR
Defensive Evasion Template Injection (T1221) CSC 5 Secure Configuration

CSC 8 Malware Defenses

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection, MVISION EDR
Defensive Evasion Signed Binary Proxy Execution (T1218) CSC 4 Control Admin Privileges

CSC 5 Secure Configuration

CSC 8 Malware Defenses

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection, Application Control, MVISION EDR
Defensive Evasion Deobfuscate/Decode Files or Information (T1027)


CSC 5 Secure Configuration

CSC 8 Malware Defenses

Endpoint Security Platform 10.7, Threat Prevention, Adaptive Threat Protection, MVISION EDR

For more information on how McAfee Endpoint Security 10.7 can prevent some of the techniques used in the Cuba ransomware exploit stage, review this additional blog post:

Impact Stage Defensive Overview

The impact stage is where the attacker encrypts the target system, data and perhaps moves laterally to other systems on the network. Protection at this stage is heavily dependent on adaptable anti-malware on both end user devices and servers, network controls and security operation’s capability to monitor logs for anomalies in privileged access or network traffic. The following chart summarizes the controls expected to have the most effect against impact stage techniques and the McAfee solutions to implement those controls where applicable:

The public leak site of Cuba ransomware can be found via TOR: http://cuba4mp6ximo2zlo[.]onion/

MITRE Tactic MITRE Techniques CSC Controls McAfee Portfolio Mitigation
Discovery Account Discovery (T1087) CSC 4 Control Use of Admin Privileges

CSC 5 Secure Configuration

CSC 6 Log Analysis

MVISION EDR, MVISION Cloud, Cloud Workload Protection
Discovery System Information Discovery (T1082) CSC 4 Control Use of Admin Privileges

CSC 5 Secure Configuration

CSC 6 Log Analysis

MVISION EDR, MVISION Cloud, Cloud Workload Protection
Discovery System Owner/User Discovery (T1033) CSC 4 Control Use of Admin Privileges

CSC 5 Secure Configuration

CSC 6 Log Analysis

MVISION EDR, MVISION Cloud, Cloud Workload Protection
Command and Control Encrypted Channel (T1573) CSC 8 Malware Defenses

CSC 12 Boundary Defenses

Web Gateway, Network Security Platform


Hunting for Cuba Ransomware Indicators

As a threat intel analyst or hunter, you might want to quickly scan your systems for any indicators you received on Cuba ransomware. Of course, you can do that manually by downloading a list of indicators and searching with available tools. However, if you have MVISION EDR and Insights, you can do that right from the console, saving precious time. Hunting the attacker can be a game of inches so every second counts. Of course, if you found infected systems or systems with indicators, you can take action to contain and start an investigation for incident response immediately from the MVISION EDR console.

In addition to these IOCs, YARA rules are available in our technical analysis of Cuba ransomware.







Email addresses:

[email protected][.]ch

[email protected][.]li

[email protected][.]com

[email protected][.]ch

[email protected]

[email protected]

[email protected]





Script for lateral movement and deployment:





Cuba Ransomware:













MITRE ATT&CK Techniques:

Tactic Technique Observable IOCs
Execution Command and Scripting Interpreter: PowerShell (T1059.001) Cuba team is using PowerShell payload to drop Cuba ransomware f739977004981fbe4a54bc68be18ea79




Execution System Services: Service Execution (T1569.002)  


Execution Shared Modules (T1129) Cuba ransomware links function at runtime Functions:




Execution Command and Scripting Interpreter (T1059) Cuba ransomware accepts command line arguments Functions:


Persistence Create or Modify System Process: Windows Service (T1543.003) Cuba ransomware can modify services Functions:



Privilege Escalation Access Token Manipulation (T1134) Cuba ransomware can adjust access privileges Functions:




Defense Evasion File and Directory Permissions Modification (T1222) Cuba ransomware will set file attributes Functions:


Defense Evasion Obfuscated files or Information (T1027) Cuba ransomware is using xor algorithm to encode data
Defense Evasion Virtualization/Sandbox Evasion: System Checks Cuba ransomware executes anti-vm instructions
Discovery File and Directory Discovery (T1083) Cuba ransomware enumerates files Functions:







Discovery Process Discovery (T1057) Cuba ransomware enumerates process modules Functions:


Discovery System Information Discovery (T1082) Cuba ransomware can get keyboard layout, enumerates disks, etc Functions:








Discovery System Service Discovery (T1007) Cuba ransomware can query service status Functions:


Collection Input Capture: Keylogging (T1056.001) Cuba ransomware logs keystrokes via polling Functions:



Impact Service Stop (T1489) Cuba ransomware can stop services
Impact Data encrypted for Impact (T1486) Cuba ransomware encrypts data


Proactively Detecting Cuba Ransomware Techniques

Many of the exploit stage techniques in this attack could use legitimate Windows processes and applications to either exploit or avoid detection. We discussed, above, how the Endpoint Protection Platform can disrupt weaponized documents but, by using MVISION EDR, you can get more visibility. As security analysts, we want to focus on suspicious techniques used by Initial Access, as this attack’s Initial Access is unknown.

Monitoring or Reporting on Cuba Ransomware Events

Events from McAfee Endpoint Protection and McAfee MVISION EDR play a key role in Cuba ransomware incident and threat response. McAfee ePO centralizes event collection from all managed endpoint systems. As a threat responder, you may want to create a dashboard for Cuba ransomware-related threat events to understand your current exposure.


To defeat targeted threat campaigns, defenders must collaborate internally and externally to build an adaptive security architecture which will make it harder for threat actors to succeed and build resilience in the business. This blog highlights how to use McAfee’s security solutions to prevent, detect and respond to Cuba ransomware and attackers using similar techniques.

McAfee ATR is actively monitoring this campaign and will continue to update McAfee Insights and its social networking channels with new and current information. Want to stay ahead of the adversaries? Check out McAfee Insights for more information.

The post McAfee Defender’s Blog: Cuba Ransomware Campaign appeared first on McAfee Blogs.

McAfee ATR Threat Report: A Quick Primer on Cuba Ransomware

6 April 2021 at 17:00

Executive Summary 

Cuba ransomware is an older ransomware, that has recently undergone some development. The actors have incorporated the leaking of victim data to increase its impact and revenue, much like we have seen recently with other major ransomware campaigns. 

In our analysis, we observed that the attackers had access to the network before the infection and were able to collect specific information in order to orchestrate the attack and have the greatest impact. The attackers operate using a set of PowerShell scripts that enables them to move laterally. The ransom note mentions that the data was exfiltrated before it was encrypted. In similar attacks we have observed the use of Cobalt Strike payload, although we have not found clear evidence of a relationship with Cuba ransomware. 

We observed Cuba ransomware targeting financial institutions, industry, technology and logistics organizations.  

The following picture shows an overview of the countries that have been impacted according to our telemetry.  

Coverage and Protection Advice 

Defenders should be on the lookout for traces and behaviours that correlate to open source pen test tools such as winPEASLazagne, Bloodhound and Sharp Hound, or hacking frameworks like Cobalt Strike, Metasploit, Empire or Covenant, as well as abnormal behavior of non-malicious tools that have a dual use. These seemingly legitimate tools (e.g., ADfindPSExec, PowerShell, etc.) can be used for things like enumeration and execution. Subsequently, be on the lookout for abnormal usage of Windows Management Instrumentation WMIC (T1047). We advise everyone to check out the following blogs on evidence indicators for a targeted ransomware attack (Part1Part2).  

Looking at other similar Ransomware-as-a-Service families we have seen that certain entry vectors are quite common among ransomware criminals: 

  • E-mail Spear phishing (T1566.001) often used to directly engage and/or gain an initial foothold. The initial phishing email can also be linked to a different malware strain, which acts as a loader and entry point for the attackers to continue completely compromising a victim’s network. We have observed this in the past with the likes of Trickbot & Ryuk or Qakbot & Prolock, etc.  
  • Exploit Public-Facing Application (T1190) is another common entry vector, given cyber criminals are often avid consumers of security news and are always on the lookout for a good exploit. We therefore encourage organizations to be fast and diligent when it comes to applying patches. There are numerous examples in the past where vulnerabilities concerning remote access software, webservers, network edge equipment and firewalls have been used as an entry point.  
  • Using valid accounts (T1078) is and has been a proven method for cybercriminals to gain a foothold. After all, why break the door down if you already have the keys? Weakly protected RDP access is a prime example of this entry method. For the best tips on RDP security, please see our blog explaining RDP security. 
  • Valid accounts can also be obtained via commodity malware such as infostealers that are designed to steal credentials from a victim’s computer. Infostealer logs containing thousands of credentials can be purchased by ransomware criminals to search for VPN and corporate logins. For organizations, having a robust credential management and MFA on user accounts is an absolute must have.  

When it comes to the actual ransomware binary, we strongly advise updating and upgrading endpoint protection, as well as enabling options like tamper protection and Rollback. Please read our blog on how to best configure ENS 10.7 to protect against ransomware for more details. 

For active protection, more details can be found on our website – – and in our detailed Defender blog. 

Summary of the Threat 

  • Cuba ransomware is currently hitting several companies in north and south America, as well as in Europe.  
  • The attackers use a set of obfuscated PowerShell scripts to move laterally and deploy their attack.  
  • The website to leak the stolen data has been put online recently.  
  • The malware is obfuscated and comes with several evasion techniques.  
  • The actors have sold some of the stolen data 
  • The ransomware uses multiple argument options and has the possibility to discover shared resources using the NetShareEnum API. 

Learn more about Cuba ransomware, Yara Rules, Indicators of Compromise & Mitre ATT&CK techniques used by reading our detailed technical analysis.

The post McAfee ATR Threat Report: A Quick Primer on Cuba Ransomware appeared first on McAfee Blogs.

McAfee Defenders Blog: Reality Check for your Defenses

31 March 2021 at 16:22
How to check for viruses

Welcome to reality

Ever since I started working in IT Security more than 10 years ago, I wondered, what helps defend against malware the best?

This simple question does not stand on its own, as there are several follow-up questions to that:

  1. How is malware defined? Are we focusing solely on Viruses and Trojans, or do we also include Adware and others?
  2. What malware types are currently spread across the globe? What died of old age and what is brand new?
  3. How does malware operate? Is file-less malware a short-lived trend or is it here to stay?
  4. What needs to be done to adequately defend against malware? What capabilities are needed?
  5. What defenses are already in place? Are they configured correctly?

This blog will guide you through my research and thought process around these questions and how you can enable yourself to answer these for your own organization!

A quick glance into the past

As mentioned above, the central question “what helps best?” has followed me throughout the years, but my methods to be able to answer this question have evolved. The first interaction I had with IT Security was more than 10 years ago, where I had to manually deploy new Anti-Virus software from a USB-key to around 100 devices. The settings were configured by a colleague in our IT-Team, and my job was to help remove infections when they came up, usually by going through the various folders or registry keys and cleaning up the remains. The most common malware was Adware, and the good-ol obnoxious hotbars which were added to the browser. I remember one colleague calling into IT saying “my internet has become so small, I can barely even read 5 lines of text” which we later translated into “I had 6 hotbars installed on my Internet Explorer so there was nearly no space left for the content to be displayed”.

Exemplary picture of the “internet” getting smaller.

Jump ahead a couple of years, I started working with McAfee ePolicy Orchestrator to manage and deploy Anti-Malware from a central place automatically, and not just for our own IT, but I was was allowed to implement McAfee ePO into our customers’ environments. This greatly expanded my view into what happens in the world of malware and I started using the central reporting tool to figure out where all these threats were coming from:


Also, I was able to understand how the different McAfee tools helped me in detecting and blocking these threats:

But this only showed the viewpoint of one customer and I had to manually overlay them to figure out what defense mechanism worked best. Additionally, I couldn’t see what was missed by the defense mechanisms, either due to configuration, missing signatures, or disabled modules. So, these reports gave me a good viewpoint into the customers I managed, but not the complete picture. I needed a different perspective, perhaps from other customers, other tools, or even other geo-locations.

Let us jump further ahead in my personal IT security timeline to about June 2020:

How a new McAfee solution changed my perception, all while becoming a constant pun

As you could see above, I spent quite a lot of time optimizing setups and configurations to assist customers in increasing their endpoint security. As time progressed, it became clear that solely using Endpoint Protection, especially only based on signatures, was not state of the art. Protection needs to be a combination of security controls rather than the obnoxious silver bullet that is well overplayed in cybersecurity. And still, the best product or solution set doesn’t help if you don’t know what you are looking for (Question 1&2), how to prepare (Question 4) or if you misconfigured the product including all subfolders of “C:\” as an exclusion for On-Access-Scanning (Question 5).

Then McAfee released MVISION Insights this summer and it clicked in my head:

  1. I can never use the word “insights” anymore as everyone would think I use it as a pun
  2. MVISION Insights presented me with verified data of current campaigns running around in the wild
  3. MVISION Insights also aligns the description of threats to the MITRE ATT&CK® Framework, making them comparable
  4. From the ATT&CK™ Framework I could also link from the threat to defensive capabilities

With this data available it was possible to create a heatmap not just by geo-location or a very high number of new threats every day, hour or even minute, but on how specific types of campaigns are operating out in the wild. To start assessing the data, I took 60 ransomware campaigns dating between January and June 2020 and pulled out all the MITRE ATT&CK© techniques that have been used and displayed them on a heatmap:

Amber/Orange: Being used the most, green: only used in 1 or 2 campaigns

Reality Check 1: Does this mapping look accurate?

For me it does, and here is why:

  1. Initial Access comes from either having already access to a system or by sending out spear phishing attachments
  2. Execution uses various techniques from CLI, to PowerShell and WMI
  3. Files and network shares are being discovered so the ransomware knows what to encrypt
  4. Command and control techniques need to be in place to communicate with the ransomware service provider
  5. Files are encrypted on impact, which is kind of a no-brainer, but on the other hand very sound-proof on what we feel what ransomware is doing, and it is underlined by the work of the threat researchers and the resulting data

Next, we need to understand what can be done to detect and ideally block ransomware in its tracks. For this I summarized key malware defense capabilities and mapped them to the tactics being used most:

MITRE Tactic Security Capability Example McAfee solution features
Execution Attack surface reduction ENS Access Protection and Exploit Prevention, MVISION Insights recommendations
Multi-layered detection ENS Exploit Prevention, MVISION Insights telemetry, MVISION EDR Tracing, ATD file analysis
Multi-layered protection ENS On-Access-Scanning using Signatures, GTI, Machine-Learning and more
Rule & Risk-based analytics MVISION EDR tracing
Containment ENS Dynamic Application Containment
Persistence Attack surface reduction ENS Access Protection or Exploit Prevention, MVISION Insights recommendations
Multi-layered detection ENS Exploit Prevention, MVISION Insights telemetry, MVISION EDR Tracing, ATD file analysis
Sandboxing and threat analysis ATD file analysis
Rule & Risk-based analytics MVISION EDR tracing
Containment ENS Dynamic Application Containment
Defense Evasion Attack surface reduction ENS Access Protection and Exploit Prevention, MVISION Insights recommendations
Multi-layered detection ENS Exploit Prevention, MVISION Insights telemetry, MVISION EDR Tracing, ATD file analysis
Sandboxing and threat analysis ATD file analysis
Rule & Risk-based analytics MVISION EDR tracing
Containment ENS Dynamic Application Containment
Discovery Attack surface reduction ENS Access Protection and Exploit Prevention
Multi-layered detection ENS Exploit Prevention, MVISION EDR Tracing, ATD file analysis
Sandboxing and threat analysis ATD file analysis
Rule & Risk-based analytics MVISION EDR tracing
Command & Control Attack surface reduction MVISION Insights recommendations
Multi-layered detection ENS Firewall IP Reputation, MVISION Insights telemetry, MVISION EDR Tracing, ATD file analysis
Multi-layered protection ENS Firewall
Rule & Risk-based analytics MVISION EDR tracing
Containment ENS Firewall and Dynamic Application Containment
Impact Multi-layered detection MVISION EDR tracing, ATD file analysis
Rule & Risk-based analytics MVISION EDR tracing
Containment ENS Dynamic Application Containment
Advanced remediation ENS Advanced Rollback

A description of the McAfee Solutions is provided below. 

Now this allowed me to map the solutions from the McAfee portfolio to each capability, and with that indirectly to the MITRE tactics. But I did not want to end here, as different tools might take a different role in the defensive architecture. For example, MVISION Insights can give you details around your current configuration and automatically overlays it with the current threat campaigns in the wild, giving you the ability to proactively prepare and harden your systems. Another example would be using McAfee Endpoint Security (ENS) to block all unsigned PowerShell scripts, effectively reducing the risk of being hit by a file-less malware based on this technology to nearly 0%. On the other end of the scale, solutions like MVISION EDR will give you great visibility of actions that have occurred, but this happens after the fact, so there is a high chance that you will have some cleaning up to do. This brings me to the topic of “improving protection before moving into detection” but this is for another blog post.

Coming back to the mapping shown above, let us quickly do…

Reality Check 2: Does this mapping feel accurate too?

For me it does, and here is why:

  1. Execution, persistence, and defense evasion are tactics where a lot of capabilities are present, because we have a lot of mature security controls to control what is being executed, in what context and especially defense evasion techniques are good to detect and protect against.
  2. Discovery has no real protection capability mapped to it, as tools might give you indicators that something suspicious is happening but blocking every potential file discovery activity will have a very huge operational impact. However, you can use sandboxing or other techniques to assess what the ransomware is doing and use the result from this analysis to stop ongoing malicious processes.
  3. Impact has a similar story, as you cannot block any process that encrypts a file, as there are many legitimate reasons to do so and hundreds of ways to accomplish this task. But again, you can monitor these actions well and with the right technology in place, even roll back the damage that has been done.

Now with all this data at hand we can come to the final step and bring it all together in one simple graph.

One graph to bind them…

Before we jump into our conclusion, here is a quick summary of the actions I have taken:

  1. Gather data from 60 ransomware campaigns
  2. Pull out the MITRE ATT&CK techniques being used
  3. Map the necessary security capabilities to these techniques
  4. Bucketize the capabilities depending on where they are in the threat defense lifecycle
  5. Map McAfee solutions to the capabilities and applying a weight to the score
  6. Calculate the score for each solution
  7. Create graph for the ransomware detection & protection score for our most common endpoint bundles and design the best fitting security architecture

So, without further ado and with a short drumroll I want to present to you the McAfee security architecture that best defends against current malware campaigns:

For reference, here is a quick breakdown of the components that make up the architecture above:

MVISION ePO is the SaaS-based version of our famous security management solution, which makes it possible to manage a heterogenous set of systems, policies, and events from a central place. Even though I have mentioned the SaaS-based version here, the same is true for our ePO on-premises software as well.

MVISION Insights is a key data source that helps organizations understand what campaigns and threats are trending. This is based on research from our Advanced Threat Research (ATR) team who use our telemetry data inside our Global Threat Intelligence (GTI) big-data platform to enhance the details that are provided.

MVISION Endpoint Detect & Response (EDR) is present in multiple boxes here, as it is a sensor on one side, which sits on the endpoint and collects data, and it is also a cloud service which receives, stores and analyses the data.

EPP is our Endpoint Protection Platform, which contains multiple items working in conjunction. First there is McAfee Endpoint Security (ENS) that is sitting on the device itself and has multiple detection and protection capabilities. For me, the McAfee Threat Intelligence Exchange (TIE) server is always a critical piece to McAfee’s Endpoint Protection Platform and has evolved from a standalone feature to an integrated building block inside ePO and is therefore not shown in the graphic above.

McAfee Advanced Threat Defense (ATD) extends the capabilities of both EPP and EDR, as it can run suspicious files in a separated environment and shares the information gathered with the other components of the McAfee architecture and even 3rd-party tools. It also goes the other way around as ATD allows other security controls to forward files for analysis in our sandbox, but this might be a topic for another blog post.

All the items listed above can be acquired by licensing our MVISION Premium suite in combination with McAfee ATD.

Based on the components and the mapping to the capabilities, I was also able to create a graph based on our most common device security bundles and their respective malware defense score:

In the graph above you can see four of our most sold bundles, ranging from the basic MVISION Standard, up to MVISION Premium in combination with McAfee Advanced Threat Defense (ATD). The line shows the ransomware detection & protection score, steadily rising as you go from left to right. Interestingly, the cost per point, i.e. how much dollar you need to spend to get one point, is much lower when buying the largest option in comparison to the smaller ones. As the absolute cost varies on too many variables, I have omitted an example here. Contact your local sales representative to gather an estimated calculation for your environment.

So, have I come to this conclusion by accident? Let us find out in the last installment of the reality check:

Reality Check 3:  Is this security architecture well suited for today’s threats?

For me it does, and here is why:

  1. It all starts with the technology on the endpoint. A good Endpoint Protection Platform can not only prevent attacks and harden the system, but it can also protect against threats when they are written on a disk or are executed, and then start malicious activities. But what is commonly overlooked: A good endpoint solution can also bring in a lot of visibility, making it the foundation of every good incident response practice.
  2. ATD plays a huge role in the overall architecture as you can see from the increase in points between MVISION Premium and MVISION Premium + ATD in the graph above. It allows the endpoint to have another opinion, which is not limited in time and resources to come to a conclusion, and it has no scan exceptions applied when checking a file. As this is integrated into the protection, it helps block threats before spreading and it certainly provides tremendous details around the malware that was discovered.
  3. MVISION Insights also plays a huge role in both preventative actions, so that you can harden your machines before you are hit, but also in detecting things that might have slipped through the cracks or where new indicators have emerged only after a certain time period.
  4. MVISION EDR has less impact on the scoring, as it is a pure detection technology. However, it also has a similar advantage as our McAfee ATD, as the client only forwards the data, and the heavy lifting is done somewhere else. It also goes back around, as EDR can pull in data from other tools shown above, like ENS, TIE or ATD just to name a few.
  5. MVISION ePO must be present in any McAfee architecture, as it is the heart and soul for every operational task. From managing policies, rollouts, client-tasks, reporting and much more, it plays a critical role and has for more than two decades now.

And the answer is not 42

While writing up my thoughts into the blog post, I was reminded of the “Hitchhikers Guide to the Galaxy”, as my journey in cybersecurity started out with the search for the answer to everything. But over the years it evolved into the multiple questions I prompted at the start of the article:

  1. How is malware defined? Are we focusing solely on Viruses and Trojans, or do we also include Adware and others?
  2. What malware types are currently spread across the globe? What died of old age and what is brand new?
  3. How does malware operate? Is file-less malware a short-lived trend or is it here to stay?
  4. What needs to be done to adequately defend against malware? What capabilities are needed?
  5. What defenses are already in place? Are they configured correctly?

And certainly, the answers to these questions are a moving target. Not only do the tools and techniques by the adversaries evolve, so do all the capabilities on the defensive side.

I welcome you to take the information provided by my research and apply it to your own security architecture:

  • Do you have the right capabilities to protect against the techniques used by current ransomware campaigns?
  • Is detection already a key part of your environment and how does it help to improve your protection?
  • Have you recently tested your defenses against a common threat campaign?
  • Are you sharing detections within your architecture from one security tool to the other?
  • What score would your environment reach?

Thank you for reading this blog post and following my train of thought. I would love to hear back from you, on how you assess yourself, what could be the next focus area for my research or if you want to apply the scoring mechanism on your environment! So please find me on LinkedIn or Twitter, write me a short message or just say “Hi!”.

I also must send out a big “THANK YOU!” to all my colleagues at McAfee helping out during my research: Mo Cashman, Christian Heinrichs, John Fokker, Arnab Roy, James Halls and all the others!


The post McAfee Defenders Blog: Reality Check for your Defenses appeared first on McAfee Blogs.

Netop Vision Pro – Distance Learning Software is 20/20 in Hindsight

22 March 2021 at 04:01

The McAfee Labs Advanced Threat Research team is committed to uncovering security issues in both software and hardware to help developers provide safer products for businesses and consumers. We recently investigated software installed on computers used in K-12 school districts. The focus of this blog is on Netop Vision Pro produced by Netop. Our research into this software led to the discovery of four previously unreported critical issues, identified by CVE-2021-27192, CVE-2021-27193, CVE-2021-27194 and CVE-2021-27195. These findings allow for elevation of privileges and ultimately remote code execution, which could be used by a malicious attacker, within the same network, to gain full control over students’ computers. We reported this research to Netop on December 11, 2020 and we were thrilled that Netop was able to deliver an updated version in February of 2021, effectively patching many of the critical vulnerabilities.

Netop Vision Pro is a student monitoring system for teachers to facilitate student learning while using school computers. Netop Vision Pro allows teachers to perform tasks remotely on the students’ computers, such as locking their computers, blocking web access, remotely controlling their desktops, running applications, and sharing documents. Netop Vision Pro is mainly used to manage a classroom or a computer lab in a K-12 environment and is not primarily targeted for eLearning or personal devices. In other words, the Netop Vision Pro Software should never be accessible from the internet in the standard configuration. However, as a result of these abnormal times, computers are being loaned to students to continue distance learning, resulting in schooling software being connected to a wide array of networks increasing the attack surface.

Initial Recon

Netop provides all software as a free trial on its website, which makes it easy for anyone to download and analyze it. Within a few minutes of downloading the software, we were able to have it configured and running without any complications.

We began by setting up the Netop software in a normal configuration and environment. We placed four virtual machines on a local network; three were set up as students and one was set up as a teacher. The three student machines were configured with non-administrator accounts in our attempt to emulate a normal installation. The teacher first creates a “classroom” which then can choose which student PCs should connect. The teacher has full control and gets to choose which “classroom” the student connects to without the student’s input. Once a classroom has been setup, the teacher can start a class which kicks off the session by pinging each student to connect to the classroom. The students have no input if they want to connect or not as it is enforced by the teacher. Once the students have connected to the classroom the teacher can perform a handful of actions to the entire class or individual students.

During this setup we also took note of the permission levels of each component. The student installation needs to be tamperproof and persistent to prevent students from disabling the service. This is achieved by installing the Netop agent as a system service that is automatically started at boot. The teacher install executes as a normal user and does not start at boot. This difference in execution context and start up behavior led us to target the student installs, as an attacker would have a higher chance of gaining elevated system permissions if it was compromised. Additionally, the ratio of students to teachers in a normal school environment would ensure any vulnerabilities found on the student machines would be wider spread.

With the initial install complete, we took a network capture on the local network and took note of the traffic between the teacher and student. An overview of the first few network packets can been seen in Figure 1 below and how the teacher, student transaction begins.

Figure 1: Captured network traffic between teacher and student

Our first observation, now classified as CVE-2021-27194, was that all network traffic was unencrypted with no option to turn encryption on during configuration. We noticed that even information normally considered sensitive, such as Windows credentials (Figure 2) and screenshots (Figure 4), were all sent in plaintext. Windows credentials were observed on the network when a teacher would issue a “Log on” command to the student. This could be used by the teacher or admin to install software or simply help a student log in.

Figure 2: Windows credentials passed in plaintext

Additionally, we observed interesting default behavior where a student connecting to a classroom immediately began to send screen captures to the classroom’s teacher. This allows the teacher to monitor all the students in real time, as shown in Figure 3.

Figure 3: Teacher viewing all student machines via screenshots

Since there is no encryption, these images were sent in the clear. Anyone on the local network could eavesdrop on these images and view the contents of the students’ screens remotely. A new screenshot was sent every few seconds, providing the teacher and any eavesdroppers a near-real time stream of each student’s computer. To capture and view these images, all we had to do was set our network card to promiscuous mode ( and use a tool like Driftnet ( These two steps allowed us to capture the images passed over the network and view every student screen while they were connected to a classroom. The image in Figure 4 is showing a screenshot captured from Driftnet. This led us to file our first vulnerability disclosed as CVE-2021-27194, referencing “CWE-319: Cleartext Transmission of Sensitive Information” for this finding. As pointed out earlier, the teacher and the student clients will communicate directly over the local network. The only way an eavesdropper could access the unencrypted data would be by sniffing the traffic on the same local network as the students.

Figure 4: Image of student’s desktop captured from Driftnet over the network

Fuzzing the Broadcast Messages

With the goal of remote code execution on the students’ computers, we began to dissect the first network packet, which the teacher sends to the students, telling them to connect to the classroom. This was a UDP message sent from the teacher to all the students and can be seen in Figure 5.

Figure 5: Wireshark capture of teacher’s UDP message

The purpose of this packet is to let the student client software know where to find the teacher computer on the network. Because this UDP message is sent to all students in a broadcast style and requires no handshake or setup like TCP, this was a good place to start poking at.

We created a custom Scapy layer ( (Figure 6) from the UDP message seen in Figure 5 to begin dissecting each field and crafting our own packets. After a few days of fuzzing with UDP packets, we were able to identify two things. First, we observed a lack of length checks on strings and second, random values sent by the fuzzer were being written directly to the Windows registry. The effect of these tests can easily be seen in Figure 7.

Figure 6: UDP broadcast message from teacher

Even with these malformed entries in the registry (Figure 7) we never observed the application crashing or responding unexpectedly. This means that even though the application wasn’t handling our mutated packet properly, we never overwrote anything of importance or crossed a string buffer boundary.

Figure 7: Un-sanitized characters being written to the Registry

To go further we needed to send the next few packets that we observed from our network capture (Figure 8). After the first UDP message, all subsequent packets were TCP. The TCP messages would negotiate a connection between the student and the teacher and would keep the socket open for the duration of the classroom connection. This TCP negotiation exchange was a transfer of 11 packets, which we will call the handshake.

Figure 8: Wireshark capture of a teacher starting class

Reversing the Network Protocol

To respond appropriately to the TCP connection request, we needed to emulate how a valid teacher would respond to the handshake; otherwise, the student would drop the connection. We began reverse engineering the TCP network traffic and attempted to emulate actual “teacher” traffic. After capturing a handful of packets, the payloads started to conform to roughly the same format. Each started with the size of the packet and the string “T125”. There were three packets in the handshake that contained fields that were changing between each classroom connection. In total, four changing fields were identified.

The first field was the session_id, which we identified in IDA and is shown in the UDP packet from Figure 6. From our fuzzing exercise with the UDP packet, we learned if the same session_id was reused multiple times, the student would still respond normally, even though the actual network traffic we captured would often have a unique session_id.

This left us three remaining dynamic fields which we identified as a teacher token, student token, and a unique unknown DWORD (8 bytes). We identified two of these fields by setting up multiple classrooms with different teacher and student computers and monitoring these values. The teacher token was static and unique to each teacher. We discovered the same was true with the student token. This left us with the unique DWORD field that was dynamic in each handshake. This last field at first seemed random but was always in the same relative range. We labeled this as “Token3” for much of our research, as seen in Figure 9 below.

Figure 9: Python script output identifying “Token3”

Eventually, while using WinDbg to perform dynamic analysis, the value of Token3 started to look familiar. We noticed it matched the range of memory being allocated for the heap. This can be seen in Figure 10.

Figure 10: WinDbg address space analysis from a student PC

By combining our previous understanding of the UDP broadcast traffic with our ability to respond appropriately to the TCP packets with dynamic fields, we were able to successfully emulate a teacher’s workstation. We demonstrated this by modifying our Python script with this new information and sending a request to connect with the student. When a student connects to a teacher it displays a message indicating a successful connection has been made. Below are two images showing a teacher connecting (Figure 11) and our Python script connecting (Figure 12). Purely for demonstration purposes, we have named our attack machine “hacker”, and our classroom “hacker-room.”

Figure 11: Emulation of a teacher successful

Figure 12: Emulated teacher connection from Python script

To understand the process of reverse engineering the network traffic in more detail, McAfee researchers Douglas McKee and Ismael Valenzuela have released an in-depth talk on how to hack proprietary protocols like the one used by Netop. Their webinar goes into far more detail than this blog and can be viewed here.

Replaying a Command Action

Since we have successfully emulated a teacher’s connection using Python, for clarity we will refer to ourselves as the attacker and a legitimate connection made through Netop as the teacher.

Next, we began to look at some of the actions that teachers can perform and how we could take advantage of them. One of the actions that a teacher can perform is starting applications on the remote students’ PCs. In the teacher suite, the teacher is prompted with the familiar Windows Run prompt, and any applications or commands set to run are executed on the student machines (Figure 13).

Figure 13: The teacher “Run Application” prompt

Looking at the network traffic (shown in Figure 14), we were hoping to find a field in the packet that could allow us to deviate from what was possible using the teacher client. As we mentioned earlier, everything is in plaintext, making it quite easy to identify which packets were being sent to execute applications on the remote systems by searching within Wireshark.

Figure 14: Run “calc” packet

Before we started to modify the packet that runs applications on the student machines, we first wanted to see if we could replay this traffic successfully. As you can see in the video below, our Python script was able to run PowerShell followed by Windows Calculator on each of the student endpoints. This is showcasing that even valid teacher actions can still be useful to attackers.

The ability for an attacker to emulate a teacher and execute arbitrary commands on the students’ machines brings us to our second CVE. CVE-2021-27195 was filed for “CWE-863: Incorrect Authorization” since we were able to replay modified local network traffic.

When the teacher sends a command to the student, the client would drop privileges to that of the logged-in student and not keep the original System privileges. This meant that if an attacker wanted unrestricted access to the remote system, they could not simply replay normal traffic, but instead would have to modify each field in the traffic and observe the results.

In an attempt to find a way around the privilege reduction during command execution, we continued fuzzing all fields located within the “run command” packet. This proved unsuccessful as we were unable to find a packet structure that would prevent the command from lowering privileges. This required a deeper dive into the code in handling the remote command execution processed on the student endpoint. By tracing the execution path within IDA, we discovered there was in fact a path that allows remote commands to execute without dropping privileges, but it required a special case, as shown in Figure 15.

Figure 15: IDA graph view showing alternate paths of code execution

Figure 16: Zoomed in image of the ShellExecute code path

The code path that bypasses the privilege reduction and goes directly to “ShellExecute” was checking a variable that had its value set during startup. We were not able to find any other code paths that updated this value after the software started. Our theory is this value may be used during installation or uninstallation, but we were not able to legitimately force execution to the “ShellExecute” path.

This code path to “ShellExecute” made us wonder if there were other similar branches like this that could be reached. We began searching the disassembled code in IDA for calls not wrapped with code resulting in lower privileges. We found four cases where the privileges were not reduced, however none of them were accessible over the network. Regardless, they still could potentially be useful, so we investigated each. The first one was used when opening Internet Explorer (IE) with a prefilled URL. This turned out to be related to the support system. Examining the user interface on the student machine, we discovered a “Technical Support” button which was found in the Netop “about” menu.

When the user clicks on the support button, it opens IE directly into a support web form. The issue, however, is privileges are never dropped, resulting in the IE process being run as System because the Netop student client is also run as System. This can be seen in Figure 11. We filed this issue as our third CVE, CVE-2021-27192 referencing “CWE-269: Incorrect Privilege Assignment”.

Figure 17: Internet Explorer running as System

There are a handful of well-documented ways to get a local elevation of privilege (LPE) using only the mouse when the user has access to an application running with higher privileges. We used an old technique which uses the “Save as” button to navigate to the folder where cmd.exe is located and execute it. The resulting CMD process inherits the System privileges of the parent process, giving the user a System-level shell.

While this LPE was exciting, we still wanted to find something with a remote attack vector and utilize our Python script to emulate teacher traffic. We decided to take a deeper dive into the network traffic to see what we could find. Simulating an attacker, we successfully emulated the following:

  • Remote CMD execution
  • Screen blank the student
  • Restart Netop
  • Shutdown the computer
  • Block web access to individual websites
  • Unlock the Netop properties (on student computer)

During the emulation of all the above actions we performed some rudimentary fuzzing on various fields of each and discovered six crashes which caused the Netop student install to crash and restart. We were able to find two execution violations, two read violations, one write exception, and one kernel exception. After investigation, we determined these crashes were not easily exploitable and therefore a lower priority for deeper investigation. Regardless, we reported them to Netop along with all other findings.

Exploring Plugins

Netop Vision Pro comes with a handful of plugins installed by default, which are used to separate different functionality from the main Netop executable. For example, to enable the ability for the teacher and student to instant message (IM) each other, the MChat.exe plugin is used. With a similar paradigm to the main executable, the students should not be able to stop these plugins, so they too run as System, making them worth exploring.

Mimicking our previous approach, we started to look for “ShellExecute” calls within the plugins and eventually discovered three more privilege escalations, each of which were conducted in a comparable way using only the mouse and bypassing restrictive file filters within the “Save as” windows. The MChat.exe, SSView.exe (Screen Shot Viewer), and the About page’s “System Information” windows all had a similar “Save as” button, each resulting in simple LPEs with no code or exploit required. We added each of these plugins under the affected versions field on our third CVE, CVE-2021-27192, mentioned above.

We were still searching for a method to achieve remote code execution and none of the “ShellExecute” calls used for the LPEs were accessible over the network. We started to narrow down the plugins that pass user supplied data over the network. This directed our attention back to the MChat plugin. As part of our initial recon for research projects, we reviewed change logs looking for any relevant security changes. During this review we noted an interesting log pertaining to the MChat client as seen in Figure 13.


Figure 18: Change log from

The Chat function runs as System, like all the plugins, and can send text or files to the remote student computer. An attacker can always use this functionality to their advantage by either overwriting existing files or enticing a victim to click on a dropped executable. Investigating how the chat function works and specifically how files are sent, we discovered that the files are pushed to the student computers without any user interaction from the student. Any files pushed by a teacher are stored in a “work directory”, which the student can open from the IM window. Prior to the latest release it would have been opened as System; this was fixed as referenced in Figure 18. Delving deeper into the functionality of the chat application, we found that the teacher also has the ability to read files in the student’s “work directory” and delete files within it. Due to our findings demonstrated with CVE-2021-27195, we can leverage our emulation code as an attacker to write, read, and delete files within this “work directory” from a remote attack vector on the same local network. This ability to read and write files accounted for the last CVE that we filed, CVE-2021-27193 referencing “CWE-276: Incorrect Default Permissions,” with the overall highest CVSS score of 9.5.

In order to determine if the MChat plugin would potentially give us System-level access, we needed to investigate if the plugin’s file operations were restricted to the student’s permissions or if the plugin inherited the System privileges from the running context. Examining the disassembled code of the MChat plugin, as displayed in Figure 14, we learned that all file actions on the student computer are executed with System privileges. Only after the file operation finishes will the permissions be set to allow access for everyone, essentially the effect of using the Linux “chmod 777” command, to make the files universally read/writable.

Figure 19: IDA screenshot of MChat file operations changing access to everyone

To validate this, we created several test files using an admin account and restricted the permissions to disallow the student from modifying or reading the test files. We proceeded to load the teacher suite, and through an MChat session confirmed we were able to read, write, and delete these files. This was an exciting discovery; however, if the attacker is limited to the predetermined “work directory” they would be limited in the effect they could have on the remote target. To investigate if we could change the “work directory” we began digging around in the teacher suite. Hidden in a few layers of menus (Figure 20) we found that a teacher can indeed set the remote student’s “work directory” and update this remotely. Knowing we can easily emulate any teacher’s command means that we could modify the “work directory” anywhere on the student system. Based on this, an attacker leveraging this flaw could have System access to modify any file on the remote PC.

Figure 20: Changing the remote student path from a teacher’s client

Reversing MChat Network Traffic

Now that we knew that the teacher could overwrite any file on the system, including system executables, we wanted to automate this attack and add it to our Python script. By automating this we want to showcase how attackers can use issues like this to create tools and scripts that have real world impacts. For a chat session to begin, we had to initiate the 11-packet handshake we previously discussed. Once the student connected to our attack machine, we needed to send a request to start a chat session with the target student. This request would make the student respond using TCP, yet this time, on a separate port, initiating an MChat seven-packet handshake. This required us to reverse engineer this new handshake format in a similar approach as described earlier. Unlike the first handshake, the MChat handshake had a single unique identifier for each session, and after testing, it was determined that the ID could be hardcoded with a static value without any negative effects.

Finally, we wanted to overwrite a file that we could ensure would be executed with System privileges. With the successful MChat handshake complete we needed to send a packet that would change the “work directory” to that of our choosing. Figure 21 shows the packet as a Scapy layer used to change the work directory on the student’s PC. The Netop plugin directory was a perfect target directory to change to since anything executed from this directory would be executed as System.

Figure 21: Change working directory on the student PC

The last step in gaining System-level execution was to overwrite and execute one of the plugins with a “malicious” binary. Through testing we discovered that if the file already exists in the same directory, the chat application is smart enough to not overwrite it, but instead adds a number to the filename. This is not what we wanted since the original plugin would get executed instead of our “malicious” one. This meant that we had to also reverse engineer a packet containing commands that are used to delete files. The Scapy layer used to delete a file and save a new one is shown in Figure 22.

Figure 22: Python Scapy layers to “delete” (MChatPktDeleteFile)  and “write” (MChatPkt6) files

With these Scapy layers we were able to replace the target plugin with a binary of our choosing, keeping the same name as the original plugin. We chose the “SSView.exe” plugin, which is a plugin used to show screenshots on the student’s computer. To help visualize this entire process please reference Figure 23.

Figure 23: An attack flow using the MChat plugin to overwrite an executable

Now that the SSView.exe plugin has been overwritten, triggering this plugin will execute our attacker-supplied code. This execution will inherit the Netop System privileges, and all can be conducted from an unauthenticated remote attack vector.


It is not hard to imagine a scenario where a culmination of these issues can lead to several negative outcomes. The largest impact being remote code execution of arbitrary code with System privileges from any device on the local network. This scenario has the potential to be wormable, meaning that the arbitrary binary that we run could be designed to seek out other devices and further the spread. In addition, if the “Open Enrollment” option for a classroom is configured, the Netop Vision Pro student client broadcasts its presence on the network every few seconds. This can be used to an attacker’s advantage to determine the IP addresses of all the students connected on the local network. As seen in Figure 24, our Python script sniffed for student broadcast messages for 5 seconds and found all three student computers on the same network. Because these broadcast messages are sent out to the entire local network, this could very well scale to an entire school system.

Figure 24: Finding all students on the local network.

With a list of computers running the student software, an attacker can then issue commands to each one individually to run arbitrary code with System privileges. In the context of hybrid and e-learning it is important to remember that this software on the student’s computer doesn’t get turned off. Because it is always running, even when not in use, this software assumes every network the device connects to could have a teacher on it and begins broadcasting its presence. An attacker doesn’t have to compromise the school network; all they need is to find any network where this software is accessible, such as a library, coffee shop, or home network. It doesn’t matter where one of these student’s PCs gets compromised as a well-designed malware could lay dormant and scan each network the infected PC connects to, until it finds other vulnerable instances of Netop Vision Pro to further propagate the infection.

Once these machines have been compromised the remote attacker has full control of the system since they inherit the System privileges. Nothing at this point could stop an attacker running as System from accessing any files, terminating any process, or reaping havoc on the compromised machine. To elaborate on the effects of these issues we can propose a few scenarios. An attacker could use the discoverability of these machines to deploy ransomware to all the school computers on the network, bringing the school or entire school district to a standstill. A stealthier attacker could silently install keylogging software and monitor screenshots of the students which could lead to social media or financial accounts being compromised. Lastly, an attacker could monitor webcams of the students, bridging the gap from compromised software to the physical realm. As a proof of concept, the video below will show how an attacker can put CVE-2021-27195 and CVE-2021-27193 together to find, exploit, and monitor the webcams of each computer running Netop Vision Pro.

Secure adaptation of software is much easier to achieve when security is baked in from the beginning, rather than an afterthought. It is easy to recognize when software is built for “safe” environments. While Netop Vision Pro was never intended to be internet-facing or be brought off a managed school network, it is still important to implement basic security features like encryption. While designing software one should not assume what will be commonplace in the future. For instance, when this software was originally developed the concept of remote learning or hybrid learning was a far-out idea but now seems like it will be a norm. When security decisions are integrated from inception, software can adapt to new environments while keeping users better protected from future threats.

Disclosure and Recommended Mitigations

We disclosed all these findings to Netop on December 11, 2020 and heard back from them shortly after. Our disclosure included recommendations for implementing encryption of all network traffic, adding authentication, and verification of teachers to students, and more precise packet parsing filters. In Netop Vision Pro 9.7.2, released in late February, Netop has fixed the local privilege escalations, encrypted formerly plaintext Windows credentials, and mitigated the arbitrary read/writes on the remote filesystem within the MChat client. The local privilege escalations were fixed by running all plugins as the student and no longer as System. This way, the “Save as” buttons are limited to the student’s account. The Windows credentials are now encrypted using RC4 before being sent over the network, preventing eavesdroppers from gathering account credentials. Lastly, since all the plugins are running as the student, the MChat client can no longer delete and replace system executables which successfully mitigates the attack shown in the impact section. The network traffic is still unencrypted, including the screenshots of the student computers but Netop has assured us it is working on implementing encryption on all network traffic for a future update. We’d like to recognize Netop’s outstanding response and rapid development and release of a more secure software version and encourage industry vendors to take note of this as a standard for responding to responsible disclosures from industry researchers.

The post Netop Vision Pro – Distance Learning Software is 20/20 in Hindsight appeared first on McAfee Blogs.

Operation Diànxùn: Cyberespionage Campaign Targeting Telecommunication Companies

16 March 2021 at 13:00
how to run a virus scan

In this report the McAfee Advanced Threat Research (ATR) Strategic Intelligence team details an espionage campaign, targeting telecommunication companies, dubbed Operation Diànxùn.

In this attack, we discovered malware using similar tactics, techniques and procedures (TTPs) to those observed in earlier campaigns publicly attributed to the threat actors RedDelta and Mustang Panda. While the initial vector for the infection is not entirely clear, we believe with a medium level of confidence that victims were lured to a domain under control of the threat actor, from which they were infected with malware which the threat actor leveraged to perform additional discovery and data collection. We believe with a medium level of confidence that the attackers used a phishing website masquerading as the Huawei company career page to target people working in the telecommunications industry.

We discovered malware that masqueraded as Flash applications, often connecting to the domain “hxxp://” that was under control of the threat actor. The malicious domain was crafted to look like the legitimate career site for Huawei, which has the domain: hxxp:// In December, we also observed a new domain name used in this campaign: hxxp://

Moreover, the sample masquerading as the Flash application used the malicious domain name “” which was made to look like the official web page for China to download the Flash application, One of the main differences from past attacks is the lack of use of the PlugX backdoor. However, we did identify the use of a Cobalt Strike backdoor.


By using McAfee’s telemetry, possible targets based in Southeast Asia, Europe, and the US were discovered in the telecommunication sector. We also identified a strong interest in GermanVietnamese and India telecommunication companies. Combined with the use of the fake Huawei site, we believe with a high level of confidence that this campaign was targeting the telecommunication sector. We believe with a moderate level of confidence that the motivation behind this specific campaign has to do with the ban of Chinese technology in the global 5G roll-out.


Activity linked to the Chinese group RedDelta, by peers in our industry, has been spotted in the wild since early May 2020. Previous attacks have been described targeting the Vatican and religious organizations.

In September 2020, the group continued its activity using decoy documents related to Catholicism, Tibet-Ladakh relations and the United Nations General Assembly Security Council, as well as other network intrusion activities targeting the Myanmar government and two Hong Kong universities. These attacks mainly used the PlugX backdoor using DLL side loading with legitimate software, such as Word or Acrobat, to compromise targets.

While external reports have given a new name to the group which attacked the religious institutions, we believe with a moderate level of confidence, based on the similarity of TTPs, that both attacks can be attributed to one known threat actor: Mustang Panda.

Coverage and Protection

We believe the best way to protect yourself from this type of attack is to adopt a multi-layer approach including MVISION Insights, McAfee Web Gateway, MVISION UCE and MVISION EDR.

MVISION Insights can play a key role in risk mitigation by proactively collecting intelligence on the threat and your exposure.

McAfee Web Gateway and MVISION UCE provide multi-layer web vector protection with URL Reputation check, SSL decryption, and malware emulation capabilities for analyzing dangerous active Web content such as Flash and DotNet. MVISION UCE also includes the capabilities of Remote Browser Isolation, the only solution that can provide 100% protection during web browsing.

McAfee Endpoint Security running on the target endpoint protects against Operation Dianxun with an array of prevention and detection techniques. ENS Threat Prevention and ATP provides both signature and behavioral analysis capability which proactively detects the threat. ENS also leverages Global Threat Intelligence which is updated with known IoCs. For DAT based detections, the family will be reported as Trojan-Cobalt, Trojan-FSYW, Trojan-FSYX, Trojan-FSZC and CobaltStr-FDWE.

As the last phase of the attack involves creating a backdoor for remote control of the victim via a Command and Control Server and Cobalt Strike Beacon, the blocking features that can be activated on a Next Generation Intrusion Prevention System solution such as McAfee NSP are important, NSP includes a Callback Detection engine and is able to detect and block anomalies in communication signals with C2 Servers.

MVISION EDR can proactively identify persistence and defense evasion techniques. You can also use MVISION EDR to search the indicators of compromise in Real-Time or Historically (up to 90 days) across enterprise systems.

Learn more about Operation Diànxùn, including Yara & Mitre ATT&CK techniques, by reading our technical analysis and Defender blog. 

Summary of the Threat

We assess with a high level of confidence that:

  • Recent attacks using TTPs similar to those of the Chinese groups RedDelta and Mustang Panda have been discovered.
  • Multiple overlaps including tooling, network and operating methods suggest strong similarities between Chinese groups RedDelta and Mustang Panda.
  • The targets are mainly telecommunication companies based in Southeast Asia, Europe, and the US. We also identified a strong interest in German and Vietnamese telecommunication companies.

We assess with a moderate level of confidence that:

  • We believe that this espionage campaign is aimed at stealing sensitive or secret information in relation to 5G technology.

PLEASE NOTE:  We have no evidence that the technology company Huawei was knowingly involved in this Campaign.

McAfee Advanced Threat Research (ATR) is actively monitoring this threat and will update as its visibility into the threat increases.

The post Operation Diànxùn: Cyberespionage Campaign Targeting Telecommunication Companies appeared first on McAfee Blogs.

McAfee Defender’s Blog: Operation Dianxun

16 March 2021 at 13:00

Operation Dianxun Overview

In a recent report the McAfee Advanced Threat Research (ATR) Strategic Intelligence team disclosed an espionage campaign, targeting telecommunication companies, named Operation Diànxùn.

The tactics, techniques and procedures (TTPs) used in the attack are like those observed in earlier campaigns publicly attributed to the threat actors RedDelta and Mustang Panda. Most probably this threat is targeting people working in the telecommunications industry and has been used for espionage purposes to access sensitive data and to spy on companies related to 5G technology.

While the initial vector for the infection is not entirely clear, the McAfee ATR team believes with a medium level of confidence that victims were lured to a domain under control of the threat actor, from which they were infected with malware which the threat actor leveraged to perform additional discovery and data collection. It is our belief that the attackers used a phishing website masquerading as the Huawei company career page.

Defensive Architecture Overview

So, how can I defend my organization as effectively as possible from an attack of this type, which involves different techniques and tactics and potential impact? To answer this question, we believe it is necessary to have a multi-layer approach and analyze the various steps, trying to understand the best way to deal with them one by one with an integrated security architecture. Below is a summary of how McAfee’s Security Architecture helps you to protect against the tactics and techniques used in Operation Dianxun.

The goal is to shift-left and block or identify a threat as soon as possible within the Kill Chain to limit any further damage. Shifting-left starts with MVISION Insights, which proactively collects intelligence on the threat and provides details on the indicators of compromise and the MITRE techniques used in the attack. MVISION Insights combines McAfee’s Threat Intelligence research with telemetry from your endpoint controls to reduce your attack surface against emerging threats. MVISION Insights tracks over 800+ Advanced Persistent Threat and Cyber Crime campaigns as researched by McAfee’s ATR team, including Operation Dianxun, sharing a quick summary of the threat, providing external resources, and a list of known indicators such as files, URLs, or IP addresses.

As a threat intelligence analyst or responder, you can drill down into the MVISION Insights interface to gather more specific information on the Operation Dianxun campaign, verify the associated severity, check for geographical prevalence and links to other sources of information. Moreover, MVISION Insights provides useful information like the McAfee products coverage with details of minimum AMCore version; this kind of information is handy to verify actual defensive capabilities within the enterprise and could raise the risk severity in case of weak coverage.

Additional information is available to further investigate on IoCs and MITRE Techniques associated to the campaign. IoCs can be also exported in STIX2 format to be ingested in other tools for automating responses or updating defenses.

The first step ahead of identification is to ensure our architecture can stop or identify the threat in the initial access vector. In this case, the initial delivery vector is a phishing attack so the web channel is therefore fundamental in the initial phase of the infection. McAfee Web Gateway and MVISION UCE provide multi-layer web vector protection with URL Reputation check, SSL decryption, and malware emulation capabilities for analyzing dangerous active Web content.

MVISION UCE also includes the capabilities of Remote Browser Isolation (RBI), the only solution that can provide 100% protection during web browsing. Remote Browser Isolation is indeed an innovative new technology that contains web browsing activity inside an isolated cloud environment in order to protect users from any malware or malicious code that may be hidden on a website. RBI technology provides the most powerful form of web threat protection available, eliminating the opportunity for malicious code to even touch the end user’s device.

The green square around the page means that the web content is isolated by RBI and provided safely through a rendered dynamic visual stream which delivers full browsing experience without risk of infection.

The second phase of exploitation and persistence results from execution on the victim endpoint of Flash-based artifacts malware and, later, DotNet payload. McAfee Endpoint Security running on the target endpoint protects against Operation Dianxun with an array of prevention and detection techniques. ENS Threat Prevention and ATP provides both signature and behavioral analysis capability which proactively detects the threat. ENS also leverages Global Threat Intelligence which is updated with known IoCs. For DAT based detections, the family will be reported as Trojan-Cobalt, Trojan-FSYW, Trojan-FSYX, Trojan-FSZC and CobaltStr-FDWE.

While the execution of the initial fake Flash installer acts mainly like a downloader, the DotNet payload contains several functions and acts as a utility to further compromise the machine. This is a tool to manage and download backdoors to the machine and configure persistence. Thus, the McAfee Endpoint Security Adaptive Threat Protection machine-learning engine triggers detection and blocks execution on its behavior-based analysis.

The last phase of the attack involves creating a backdoor for remote control of the victim via a Command and Control Server and Cobalt Strike Beacon. In this case, in addition to the detection capabilities present at the McAfee Endpoint Security level, detections and blocking features that can be activated on a Next Generation Intrusion Prevention System solution such as McAfee NSP are important. NSP includes a Callback Detection engine and is able to detect and block anomalies in communication signals with C2 Servers.

Investigation and Threat Hunting with MVISION EDR

We demonstrated above how a well defended architecture can thwart and counteract such an attack in each single phase. McAfee Web Gateway and MVISON Unified Cloud Edge can stop the initial entry vector, McAfee Endpoint Protection Platform can block the dropper execution or disrupt the following malicious activities but, only by using MVISION EDR, can you get extensive visibility on the full kill chain.

On MVISION EDR we have the threat detection on the monitoring dashboard for the two different stages and processes of the attack.

Once alerted, the security analyst can dig into the Process Activity and understand behavior and indicators relative to what happened like:

The initial downloader payload flashplayer_install_cn.exe is executed directly by the user and spawned by svchost.exe.

At first it connects back to hxxp:// registering to the c2 and creates a new executable file, flash.exe, in the Windows/temp folder.

Then the sample checks the time and the geolocalization of the infected machine via a request to

Next, it connects back to the fake Huawei website “hxxp:\\” used for the initial phishing attack.

Finally, to further completion, you can also use MVISION EDR to search the indicators of compromise in Real-Time or Historically (up to 90 days) across the enterprise systems.

Looking for other systems with evidence of connection to the fake Huawei website:

HostInfo hostname, ip_address and NetworkFlow src_ip, proto, time, process, md5, user where NetworkFlow dst_ip equals “”

Looking for indicators of the initial downloader payload linked to this campaign.

HostInfo and Files name, full_name, create_user_name, sha1, md5, sha256 where Files sha256 equals “422e3b16e431daa07bae951eed08429a0c4ccf8e37746c733be512f1a5a160a3” or Files sha256 equals “8489ee84e810b5ed337f8496330e69d6840e7c8e228b245f6e28ac6905c19f4a ” or Files sha256 equals “c0331d4dee56ef0a8bb8e3d31bdfd3381bafc6ee80b85b338cee4001f7fb3d8c” or Files sha256 equals “89a1f947b96b39bfd1fffd8d0d670dddd2c4d96f9fdae96f435f2363a483c0e1” or Files sha256 equals “b3fd750484fca838813e814db7d6491fea36abe889787fb7cf3fb29d9d9f5429” or Files sha256 equals “9ccb4ed133be5c9c554027347ad8b722f0b4c3f14bfd947edfe75a015bf085e5” or Files sha256 equals “4e7fc846be8932a9df07f6c5c9cbbd1721620a85c6363f51fa52d8feac68ff47” or Files sha256 equals “0f2e16690fb2ef2b5b4c58b343314fc32603364a312a6b230ab7b4b963160382” or Files sha256 equals “db36ad77875bbf622d96ae8086f44924c37034dd95e9eb6d6369cc6accd2a40d” or Files sha256 equals “8bd55ecb27b94b10cb9b36ab40c7ea954cf602761202546f9b9e163de1dde8eb” or Files sha256 equals “7de56f65ee98a8cd305faefcac66d918565f596405020178aee47a3bd9abd63c” or Files sha256 equals “9d4b4c39106f8e2fd036e798fc67bbd7b98284121724c0f845bca0a6d2ae3999” or Files sha256 equals “ac88a65345b247ea3d0cfb4d2fb1e97afd88460463a4fc5ac25d3569aea42597” or Files sha256 equals “37643f752302a8a3d6bb6cc31f67b8107e6bbbb0e1a725b7cebed2b79812941f” or Files sha256 equals “d0dd9c624bb2b33de96c29b0ccb5aa5b43ce83a54e2842f1643247811487f8d9” or Files sha256 equals “260ebbf392498d00d767a5c5ba695e1a124057c1c01fff2ae76db7853fe4255b” or Files sha256 equals “e784e95fb5b0188f0c7c82add9a3c89c5bc379eaf356a4d3876d9493a986e343” or Files sha256 equals “a95909413a9a72f69d3c102448d37a17659e46630999b25e7f213ec761db9e81” or Files sha256 equals “b7f36159aec7f3512e00bfa8aa189cbb97f9cc4752a635bc272c7a5ac1710e0b” or Files sha256 equals “4332f0740b3b6c7f9b438ef3caa995a40ce53b3348033b381b4ff11b4cae23bd”

Look back historically for domain name resolution and network connection to the involved indicators.


To defeat targeted threat campaigns like Operation Dianxun, defenders must build an adaptive and integrated security architecture which will make it harder for threat actors to succeed and increase resilience in the business. This blog highlights how to use McAfee’s security solutions to prevent, detect and respond to Operation Dianxun and attackers using similar techniques.

McAfee ATR is actively monitoring this campaign and will continue to update McAfee Insights and its social networking channels with new and current information. Want to stay ahead of the adversaries? Check out McAfee Insights for more information.

The post McAfee Defender’s Blog: Operation Dianxun appeared first on McAfee Blogs.

Seven Windows Wonders – Critical Vulnerabilities in DNS Dynamic Updates

9 March 2021 at 18:13
how to run a virus scan


For the March 2021 Patch Tuesday, Microsoft released a set of seven DNS vulnerabilities. Five of the vulnerabilities are remote code execution (RCE) with critical CVSS (Common Vulnerability Scoring Standard) scores of 9.8, while the remaining two are denial of service (DoS). Microsoft shared detection guidance and proofs of concept with MAPP members for two of the RCE vulnerabilities, CVE-2021-26877 and CVE-2021-26897, which we have confirmed to be within the DNS Dynamic Zone Update activity. Microsoft subsequently confirmed that all seven of the DNS vulnerabilities are within the Dynamic Zone Update activity.

We confirmed from our analysis of CVE-2021-26877 and CVE-2021-26897, in addition to further clarification from Microsoft, that none of the five DNS RCE vulnerabilities are wormable.

RCE vulnerabilities
CVE-2021-26877, CVE-2021-26897 (exploitation more likely)
CVE-2021-26893, CVE-2021-26894, CVE-2021-26895 (exploitation less likely)

DoS vulnerabilities
CVE-2021-26896, CVE-2021-27063 (exploitation less likely)

A critical CVSS score of 9.8 means that an attacker can remotely compromise a DNS server with no authentication or user interaction required. Successful exploitation of these vulnerabilities would lead to RCE on a Primary Authoritative DNS server. While CVSS is a great tool for technical scoring, it needs to be taken in context with your DNS deployment environment to understand your risk which we discuss below.

We highly recommend you urgently patch your Windows DNS servers if you are using Dynamic Updates. If you cannot patch, we recommend you prioritize evaluating your exposure. In addition, we have developed signatures for CVE-2021-26877 and CVE-2021-26897 which are rated as “exploitation more likely” by Microsoft.

DNS Dynamic Updates, Threats and Deployment

Per the NIST “Secure Domain Name System (DNS) Deployment Guide”, DNS threats can be divided into Platform and Transaction Threats. The platform threats can be classed as either DNS Host Platform or DNS Software Threats. Per Table 1 below, Dynamic Update is one of the four DNS Transaction types. The seven DNS vulnerabilities are within the Dynamic Update DNS transaction feature of Windows DNS Software.

Table 1: DNS Transaction Threats and Security Objectives

The DNS Dynamic Zone Update feature allows a client to update its Resource Records (RRs) on a Primary DNS Authoritative Server, such as when it changes its IP address; these clients are typically Certificate Authority (CA) and DHCP servers. The Dynamic Zone Update feature can be deployed on a standalone DNS server or an Active Directory (AD) integrated DNS server. Best practice is to deploy DNS integrated with (AD) so it can avail itself of Microsoft security such as Kerberos and GSS-TSIG.

When creating a Zone on a DNS server there is an option to enable or disable DNS Dynamic Zone Updates. When DNS is deployed as a standalone server, the Dynamic Zone Update feature is disabled by default but can be enabled in secure/nonsecure mode. When DNS is deployed as AD integrated, the Dynamic Zone Update feature is enabled in secure mode by default.

Secure Dynamic Zone Update verifies that all RR updates are digitally signed using GSS-TSIG from a domain-joined machine. In addition, more granular controls can be applied on what principal can perform Dynamic Zone Updates.

Insecure Dynamic Zone Update allows any machine to update RRs without any authentication (not recommended).

Attack Pre-requisites

  • AD Integrated DNS Dynamic Updates (default config of secure updates)
    • A DNS server must accept write requests to at least one Zone (typically a primary DNS server only allows Zone RR writes but there are misconfigurations and secondary servers which can negate this)
    • Domain-joined machine
    • Attacker must craft request to DNS server and supply a target Zone in request
  • Standalone DNS Server (secure/nonsecure config)
    • A DNS server must accept write requests to at least one Zone (typically a primary DNS server only allows Zone RR writes but there are misconfigurations and secondary servers which can negate this) 
    • Attacker must craft request to DNS server and supply a target Zone in request 

From a Threat Model perspective, we must consider Threat Actor motives, capabilities, and access/opportunity, so you can understand the risk relative to your environment. We are not aware of any exploitation in the wild of these vulnerabilities so we must focus on the access capabilities, i.e., close the door on the threat actor opportunity. Table 2 summarizes DNS Dynamic Update deployment models relative to the opportunity these RCE vulnerabilities present.

Table 2: Threat Actor access relative to deployment models and system impact

The highest risk deployment would be a DNS server in Dynamic Update insecure mode exposed to the internet; this is not best security practice and based on our experience, we do not know of a use case for such deployment.

Deploying AD integrated DNS Dynamic Update in secure mode (default) mitigates the risk of an unauthenticated attacker but still has a high risk of a compromised domain computer or trusted insider being able to achieve RCE.

Vulnerability Analysis

All the vulnerabilities are related to the processing of Dynamic Update packets in dns.exe. The goal of our vulnerability analysis, as always for critical industry vulnerabilities, is to ensure we can generate accurate signatures to protect our customers.

Analysis of CVE-2021-26877

  • The vulnerability is triggered when a Zone is updated with a TXT RR that has a “TXT length” greater than “Data length” per Wireshark below:

Figure 1: Wireshark view of exploit packet classifying the DNS packet as malformed

  • The vulnerability is in the File_PlaceStringInFileBuffer() function as you can see from WinDbg output below:

Figure 2: WinDbg output of crash while attached to dns.exe

  • The vulnerability is an Out of bounds (OOB) read on the heap when the “TXT length” field of DNS Dynamic Zone Update is not validated relative to “Data length”. This could allow an attacker to read up to 255 bytes of memory. Microsoft states this vulnerability can be used to achieve RCE; this would require a further OOB write primitive.
  • The memory allocation related to the OOB read is created within the CopyWireRead() function. Relevant pseudo code for this function is below:

  • The File_PlaceStringInFileBuffer() function copies data from TXT_data allocated from CopyWireRead() function previously. However, the UpdateRR->TXT length value from Wireshark is not validated and used to copy from *UpdateRR->Data length. Because UpdateRR->TXT length is not validated relative to UpdateRR->Data length it results in a OOB read from heap memory.

Analysis of CVE-2021-26897

  • The vulnerability is triggered when many consecutive Signature RRs Dynamic Updates are sent
  • The vulnerability is an OOB write on the heap when combining the many consecutive Signature RR Dynamic Updates into base64-encoded strings before writing to the Zone file
  • Microsoft states this vulnerability can be used to achieve RCE

Figure 3: Packet containing many consecutive Signature RR dynamic updates. Pay special attention to the length field of the reassembled flow.


Exploiting these vulnerabilities remotely requires both read and write primitives in addition to bypassing Control Flow Guard (CFG) for execution. The DNS protocol has significant remote unauthenticated attack surface to facilitate generating such primitives which has been researched as part of CVE-2020-1350 (SigRed). In addition, per the RR_DispatchFuncForType() function, there are read and write functions as part of its dispatch table.

Figure 4: Path of DNS RR update packet

Figure 5: Dispatch functions for reading and writing


Patching is always the first and most effective course of action. If it’s not possible to patch, the best mitigation is to audit your DNS deployment configuration to limit Dynamic Zone Updates to trusted servers only. For those McAfee customers who are unable to deploy the Windows patch, the following Network Security Platform (NSP) signatures will provide a virtual patch against attempted exploitation of both vulnerabilities, CVE-2021-26877 and CVE-2021-26897 

NSP Attack ID: 0x4030e700 – DNS: Windows DNS Server Remote Code Execution Vulnerability (CVE-2021-26877)
NSP Attack ID: 0x4030e800 – DNS: Windows DNS Server Remote Code Execution Vulnerability (CVE-2021-26897)

In addition, NIST “Secure Domain Name System (DNS) Deployment Guide” provides best practices for securing DNS deployment such as:

  1. DNS Primary Server should restrict clients that can update RRs
  2. Secure Dynamic Update using GSS-TSIG
  3. Secondary DNS Server Dynamic Update forwarding restrictions using GSS-TSIG
  4. Fine-grained Dynamic Update restrictions using GSS-TSIG

The post Seven Windows Wonders – Critical Vulnerabilities in DNS Dynamic Updates appeared first on McAfee Blogs.