Normal view

There are new articles available, click to refresh the page.
Before yesterdayReverse Engineering

Avast Q1/2022 Threat Report

5 May 2022 at 06:04

Cyberwarfare between Ukraine and Russia

Foreword

The first quarter of 2022 is over, so we are here again to share insights into the threat landscape and what we’ve seen in the wild. Under normal circumstances, I would probably highlight mobile spyware related to the Beijing 2022 Winter Olympics, yet another critical Java vulnerability (Spring4Shell), or perhaps how long it took malware authors to get back from their Winter holidays to their regular operations. Unfortunately, however, all of this was overshadowed by Russia’s war in Ukraine.

Similar to what’s happening in Ukraine, the warfare co-occurring in cyberspace is also very intensive, with a wide range of offensive arsenal in use. To name a few, we witnessed multiple Russia-attributed APT groups attacking Ukraine (using a series of wiping malware and ransomware, a massive uptick of Gamaredon APT toolkit activity, and satellite internet connections were disrupted). In addition, hacktivism, DDoS attacks on government sites, or data leaks are ongoing daily on all sides of the conflict. Furthermore, some of the malware authors and operators were directly affected by the war, such as the alleged death of the Raccoon Stealer leading developer, which resulted in (at least temporary) discontinuation of this particular threat. Additionally, some malware gangs have chosen the sides in this conflict and have started threatening the others. One such example is the Conti gang that promised ransomware retaliation for cyberattacks against Russia. You can find more details about this story in this report.

With all that said, it is hardly surprising to say that we’ve seen a significant increase of attacks of particular malware types in countries involved in this conflict in Q1/2022; for example, +50% of RAT attacks were blocked in Ukraine, Russia, and Belarus, +30% for botnets, and +20% for info stealers. To help the victims of these attacks, we developed and released multiple free ransomware decryption tools, including one for the HermeticRansom that we discovered in Ukraine just a few hours before the invasion started.

Out of the other malware-related Q1/2022 news: the groups behind Emotet and Trickbot appeared to be working closely together, resurrecting Trickbot infected computers by moving them under Emotet control and deprecating Trickbot afterward. Furthermore, this report describes massive info-stealing campaigns in Latin America, large adware campaigns in Japan, and technical support scams spreading in the US and Canada. Finally, again, the Lapsus$ hacking group emerged with breaches in big tech companies, including Microsoft, Nvidia, and Samsung, but hopefully also disappeared after multiple arrests of its members in March.

Last but not least, we’ve published our discovery of the latest Parrot Traffic Direction System (TDS) campaign that has emerged in recent months and is reaching users from around the world. This TDS has infected various web servers hosting more than 16,500 websites.

Stay safe and enjoy reading this report.

Jakub Křoustek, Malware Research Director

Methodology

This report is structured into two main sections – Desktop-related threats, informing about our intelligence on attacks targeting Windows, Linux, and macOS, and Mobile-related threats, where we advise about Android and iOS attacks.

Furthermore, we use the term risk ratio in this report to describe the severity of particular threats, calculated as a monthly average of “Number of attacked users / Number of active users in a given country.” Unless stated otherwise, calculated risks are only available for countries with more than 10,000 active users per month.

Desktop-Related Threats

Advanced Persistent Threats (APTs)

In March, we wrote about an APT campaign targeting betting companies in Taiwan, the Philippines, and Hong Kong that we called Operation Dragon Castling. The attacker, a Chinese-speaking group, leveraged two different ways to gain a foothold in the targeted devices – an infected installer sent in a phishing email and a newly identified vulnerability in the WPS Office updater (CVE-2022-24934). After successful infection, the malware used a diverse set of plugins to achieve privilege escalation, persistence, keylogging, and backdoor access.

Operation Dragon Castling: relations between the malicious files

Furthermore, on February 23rd, a day before Russia started its invasion of Ukraine, ESET tweeted that they discovered a new data wiper called HermeticWiper. The attacker’s motivation was to destroy and maximize damage to the infected system. It’s not just disrupting the MBR but also destroying a filesystem and individual files. Shortly after that, we at Avast discovered a related piece of ransomware that we called HermeticRansom. You can find more on this topic in the Ransomware section below. These attacks are believed to have been carried out by Russian APT groups.  

Continuing this subject, Gamaredon is known as the most active Russia-backed APT group targeting Ukraine. We see the standard high level of activity of this APT group in Ukraine which accelerated rapidly since the beginning of the Russian invasion at the end of February when the number of their attacks grew several times over.

Gamaredon APT activity Q4/2021 vs. Q1/2022

Gamaredon APT targeting in Q1/22

We also noticed an increase in Korplug activity which expanded its focus from the more usual south Asian countries such as Myanmar, Vietnam, or Thailand to Papua New Guinea and Africa. The most affected African countries are Ghana, Uganda and Nigeria. As Korplug is commonly attributed to Chinese APT groups, this new expansion aligns with their long-term interest in countries involved in China’s Belt and Road initiative.

New Korplug detections in Africa and Papua New Guinea

Luigino Camastra, Malware Researcher
Igor Morgenstern, Malware Researcher
Jan Holman, Malware Researcher

Adware

Desktop adware has become more aggressive in Q4/21, and a similar trend persists in Q1/22, as the graph below illustrates:

On the other hand, there are some interesting phenomena in Q1/22. Firstly, Japan’s proportion of adware activity has increased significantly in February and March; see the graph below. There is also an interesting correlation with Emotet hitting Japanese inboxes in the same period.

On the contrary, the situation in Ukraine led to a decrease in the adware activity in March; see the graph below showing the adware activity in Ukraine in Q1/22.

Finally, another interesting observation concerns adware activity in major European countries such as France, Germany, and the United Kingdom. The graph below shows increased activity in these countries in March, deviating from the trend of Q1/22.

Concerning the top strains, most of 64% of adware was from various adware families. However, the first clearly identified family is RelevantKnowledge, although so far with a low prevalence (5%) but with a +97% increase compared to Q4/21. Other identified strains in percentage units are ICLoader, Neoreklami, DownloadAssistant, and Conduit.

As mentioned above, the adware activity has a similar trend as in Q4/21. Therefore the risk ratios remained the same. The most affected regions are still Africa and Asia. About Q1/22 data, we monitored an increase of protected users in Japan (+209%) and France (+87%) compared with Q4/21. On the other hand, a decrease was observed in the Russian Federation (-51%) and Ukraine (-50%).

Adware risk ratio in Q1/22.

Martin Chlumecký, Malware Researcher

Bots

It seems that we are on a rollercoaster with Emotet and Trickbot. Last year, we went through Emotet takedown and its resurrection via Trickbot. This quarter, shutdowns of Trickbot’s infrastructure and Conti’s internal communication leaks indicate that Trickbot has finished its swan song. Its developers were supposedly moved to other Conti projects, possibly also with BazarLoader as Conti’s new product. Emotet also introduced a few changes – we’ve seen a much higher cadence of new, unique configurations. We’ve also seen a new configuration timestamp in the log “20220404”, interestingly seen on 24th March, instead of the one we’ve been accustomed to seeing (“20211114”).

There has been a new-ish trend coming with the advent of the war in Ukraine. Simple Javascript code has been used to create requests to (mostly) Russian web pages – ranging from media to businesses to banks. The code was accompanied by a text denouncing Russian aggression in Ukraine in multiple languages. The code has quickly spread around the internet into different variations, such as a variant of open-sourced game 2048. Unfortunately, we’ve started to see webpages that incorporated that code without even declaring it so it could even happen that your computer would participate in those actions while you were checking the weather on the internet. While these could remind us of Anonymous DDoS operations and LOIC (open-source stress tool Low Orbit Ion Cannon), these pages were much more accessible to the public using their browser only with (mostly) predetermined lists of targets. Nearing the end of March, we saw a significant decline in their popularity, both in terms of prevalence and the appearance of new variants.

The rest of the landscape does not bring many surprises. We’ve seen a significant risk increase in Russia (~30%) and Ukraine (~15%); those shouldn’t be much of a surprise, though, for the latter, it mostly does not project much into the number of affected clients.

In terms of numbers, the most prevalent strain was Emotet which doubled its market share since last quarter. Since the previous quarter, most of the other top strains slightly declined their prevalence. The most common strains we are seeing are:

  • Emotet
  • Amadey
  • Phorpiex
  • MyloBot
  • Nitol
  • MyKings
  • Dorkbot
  • Tofsee
  • Qakbot

Adolf Středa, Malware Researcher

Coinminers

Coincidently, as the cryptocurrency prices are somewhat stable these days, the same goes for the malicious coinmining activity in our user base.

In comparison with the previous quarter, crypto-mining threat actors increased their focus on Taiwan (+69%), Chile (+63%), Thailand (+61%), Malawi (+58%), and France (+58%). This is mainly caused by the continuous and increasing trend of using various web miners executing javascript code in the victim’s browser. On the other hand, the risk of getting infected significantly dropped in Denmark (-56%) and Finland (-50%).

The most common coinminers in Q1/22 were:

  • XMRig
  • NeoScrypt
  • CoinBitMiner
  • CoinHelper

Jan Rubín, Malware Researcher

Information Stealers

The activities of Information Stealers haven’t significantly changed in Q1/22 compared to Q4/21. FormBook, AgentTesla, and RedLine remain the most prevalent stealers; in combination, they are accountable for 50% of the hits within the category. 

Activity of Information Stealers in Q1/22.

We noticed the regional distribution has completely shifted compared to the previous quarter. In Q4/21, Singapore, Yemen, Turkey, and Serbia were the countries most affected by information stealers; in Q1/22, Russia, Brazil, and Argentina rose to the top tier after the increases in risk ratio by 27% (RU), 21% (BR), and 23% (AR) compared to the previous quarter.

Not only a popular destination for information stealers, Latin America also houses many regional-specific stealers capable of compromising victims’ banking accounts. As the underground hacking culture continues to develop in Brazil, these threat groups target their fellow citizens for financial purposes. In Brazil, Ousaban and Chaes pose the most significant threats with more than 100k and 70k hits. In Mexico in Q1/22, we observed more than 34k hits from Casbaneiro. A typical pattern shared between these groups is the multiple-stage delivery chain utilizing scripting languages to download and deploy the next stage’s payload while employing DLL sideloading techniques to execute the final stage.

Furthermore, Raccoon Stealer, an information stealer with Russian origins, significantly decreased in activity since March. Further investigation uncovered messages on Russian underground forums advising that the Raccoon group is not working anymore. A few days after the messages were posted, a Raccoon representative said one of their members died in the Ukrainian War – they have paused operations and plan to return in a few months with a new product.

Next, a macOS malware dubbed DazzleSpy was found using watering hole attacks targeting Chinese pro-democracy sympathizers; it was primarily active in Asia. This backdoor can control macOS remotely, execute arbitrary commands, and download and upload files to attackers, thus enabling keychain stealing, key-logging, and potential screen capture.

Last but not least, more malware that natively runs on M1 Apple chips (and Intel hardware) has been found. The malware family, SysJoker, targets all desktop platforms (Linux, Windows, and macOS); the backdoor is controlled remotely and allows downloading other payloads and executing remote commands.

Anh Ho, Malware Researcher
Igor Morgenstern, Malware Researcher
Vladimir Martyanov, Malware Researcher
Vladimír Žalud, Malware Analyst

Ransomware

We’ve previously reported a decline in the total number of ransomware attacks in Q4/21. In Q1/22, this trend continued with a further slight decrease. As can be seen on the following graph, there was a drop at the beginning of 2022; the number of ransomware attacks has since stabilized.

We believe there are multiple reasons for these recent declines – such as the geopolitical situation (discussed shortly) and the continuation of the trend of ransomware gangs focusing more on targeted attacks on big targets (big game hunting) rather than on regular users via the spray and pray techniques. In other words, ransomware is still a significant threat, but the attackers have slightly changed their targets and tactics. As you will see in the rest of this section, the total numbers are lower, but there was a lot ongoing regarding ransomware in Q1.

Based on our telemetry, the distribution of targeted countries is similar to Q4/21 with some Q/Q shifts, such as Mexico (+120% risk ratio), Japan (+37%), and India (+34%).

The most (un)popular ransomware strains – STOP and WannaCry – kept their position at the top. Operators of the STOP ransomware keep releasing new variants, and the same applies for the CrySiS ransomware. In both cases, the ransomware code hasn’t considerably evolved, so a new variant merely means a new extension of encrypted files, different contact e-mail and a different public RSA key.

The most prevalent ransomware strains in Q1/22:

  • WannaCry
  • STOP
  • VirLock
  • GlobeImposter
  • Makop

Out of the groups primarily focused on targeted attacks, the most active ones based on our telemetry were LockBit, Conti, and Hive. The BlackCat (aka ALPHV) ransomware was also on the rise. The LockBit group boosted their presence and also their egos, as demonstrated by their claim that they will pay any FBI agent that reveals their location a bounty of $1M. Later, they expanded that offer to any person on the planet.

You may also recall Sodinokibi (aka REvil), which is regularly mentioned in our threat reports. There is always something interesting around this ransomware strain and its operators with ties to Russia. In our Q4/21 Threat Report we informed about the arrests of some of its operators by Russian authorities. Indeed, this resulted in Sodinokibi almost vanishing from the threat landscape in Q1/2022. However, the situation got messy at the very end of Q1/2022 and early in April as new Sodinokibi indicators started appearing, including the publishing of new leaks from ransomed companies and malware samples. It is not yet clear whether this is a comeback, an imposter operation, reused Sodinokibi sources or infrastructure, or even their combination by multiple groups. Our gut feeling is that Sodinokibi will be a topic in the Q2/22 Threat Report once again.

Russian ransomware affiliates are a never-ending story. E.g. we can mention an interesting public exposure of a criminal dubbed Wazawaka with ties to Babuk, DarkSide, and other ransomware gangs in February. In a series of drunk videos and tweets he revealed much more than his missing finger.

The Russian invasion and following war on Ukraine, the most terrible event in Q1/22, had its counterpart in cyber-space. Just one day before the invasion, several cyber attacks were detected. Shortly after the discovery of HermeticWiper malware by ESET, Avast also discovered ransomware attacking Ukrainian targets. We dubbed it HermeticRansom. Shortly after, a flaw in the ransomware was found by CrowdStrike analysts. We acted swiftly and released a free decryptor to help victims in Ukraine. Furthermore, the war impacted ransomware attacks, as some of the ransomware authors and affiliates are from Ukraine and likely have been unable to carry out their operations due to the war.

And the cyber-war went on, together with the real one. A day after the start of the invasion, the Conti ransomware gang claimed its allegiance and threatened anyone who was considering organizing a cyber-attack or war activities against Russia:

As a reaction, a Ukrainian researcher started publishing internal files of the Conti gang, including Jabber conversations and the source code of the Conti ransomware itself. However, no significant amount of encryption keys were leaked. Also, the sources that were published were older versions of the Conti ransomware, which no longer correspond to the layout of the encrypted files that are created by today’s version of the ransomware. The leaked files and internal communications provide valuable insight into this large cybercrime organization, and also temporarily slowed down their operations.

Among the other consequences of the Conti leak, the published source codes were soon used by the NB65 hacking group. This gang declared a karmic war on Russia and used one of the modified sources of the Conti ransomware to attack Russian targets.

Furthermore, in February, members of historically one of the most active (and successful) ransomware groups, Maze, announced a shut-down of their operation. They published master decryption keys for their ransomware strains Maze, Egregor, and Sekhmet; four archive files were published that contained:

  • 19 private RSA-2048 keys for Egregor ransomware. Egregor uses a three-key encryption schema (Master RSA Key → Victim RSA Key → Per-file Key).
  • 30 private RSA-2048 keys (plus 9 from old version) for Maze ransomware. Maze also uses a three-key encryption scheme.
  • A single private RSA-2048 key for Sekhmet ransomware. Because this strain uses this RSA key to encrypt the per-file key, the RSA private key is likely campaign specific.
  • A source code for the M0yv x86/x64 file infector, that was used by Maze operators in the past.

Next, an unpleasant turn of events happened after we released a decryptor for the TargetCompany ransomware in February. This immediately helped multiple ransomware victims; however, two weeks later, we discovered a new variant of TargetComany that started using the ”.avast” extension for encrypted files. Shortly after, the malware authors changed the encryption algorithm, so our free decryption tool does not decrypt the most recent variant.

On the bright side, we also analyzed multiple variants of the Prometheus ransomware and released a free decryptor. This one covers all decryptable variants of the ransomware strain, even the latest ones.

Jakub Křoustek, Malware Research Director
Ladislav Zezula, Malware Researcher

Remote Access Trojans (RATs)

New year, new me RAT campaigns. As mentioned in the Q4/21 report, the RAT activity downward trend will be just temporary; the reality was a textbook example of this claim. Even malicious actors took holidays at the beginning of the new year and then returned to work.

In the graph below, we can see a Q4/21 vs. Q1/22 comparison of RAT activity:

This quarter’s countries most affected were China, Tajikistan, Kyrgyzstan, Iraq, Kazakhstan, and Russia. Kazakhstan will be mentioned later on with the emergence of a new RAT. We also detected a high Q/Q increase in the risk ratio in countries involved in the ongoing war: Ukraine (+54%), Russia (+53%), and Belarus (+46%).

In this quarter, we spotted a new campaign distributing several RATs, reaching thousands of users, mainly in Italy (1,900), Romania (1,100), and Bulgaria (950). The campaign leverages a Crypter (a crypter is a specific tool used by malware authors for obfuscation and protection of the target payload), which we call Rattler, that ensures a distribution of arbitrary malware onto the victim’s PC. Currently, the crypter primarily distributes remote access trojans, focusing on Warzone, Remcos, and NetWire. Warzone’s main targeting campaigns also seemed to change during the past three months. In January and February, we received a considerable amount of detections from Russia and Ukraine. Still, this trend reversed in March, with decreased detections in these two countries and a significant increase in Spain, indicating a new malicious campaign.

Most prevalent RATs in Q1 were:

  • njRAT
  • Warzone
  • Remcos
  • AsyncRat
  • NanoCore
  • NetWire
  • QuasarRAT
  • PoisionIvy
  • Adwind
  • Orcus

Among malicious families with the highest increase in detections were Lilith, LuminosityLink, and Gh0stCringe. One of the reasons for the Gh0stCringe increase is a malicious campaign in which this RAT spread on poorly protected MySQL and Microsoft SQL database servers. We have also witnessed a change in the first two places of the most prevalent RATs. In Q4/21, the most pervasive was Warzone which declined this quarter by 23%. The njRat family, on the other hand, increased by 32%, and what was surprising, Adwind entered into the top 10.

Except for the usual malicious campaigns, this quarter was different. There were two significant causes for this. The first was a Lapsus$ hacking and leaking spree, and the other was the war with Ukraine.

The hacking group Lapsus$ targeted many prominent technology companies like Nvidia, Samsung, and Microsoft. For example, in the NVIDIA Lapsus$ case, this hacking group stole about 1TB of NVIDIA’s data and then commenced to leak it. The leaked data contained binary signing certificates, which were later used for signing malicious binaries. Among such signed malware was, for example, the Quasar RAT.

Then there was the conflict in Ukraine, which showed the power of information technology and the importance of cyber security – because the fight happens not only on the battlefield but also in cyberspace, with DDOS attacks, data-stealing, exploitation, cyber espionage, and other techniques. But except for these countries involved in the war, everyday people looking for information are easy targets of malicious campaigns. One such campaign involved sending email messages with attached office documents that allegedly contained important information about the war. Unfortunately, these documents were just a way to infect people with Remcos RAT with the help of Microsoft Word RCE vulnerability CVE-2017-11882, thanks to which the attacker could easily infect unpatched systems.

As always, not only old known RATs showed up. This quarter brought us a few new ones as well. The first addition to our RAT list was IceBot. This RAT seems to be a creation of the APT group FIN7; it contains all usual basic capabilities as other RATs like taking screenshots, remote code execution, file transfer, and detection of installed AV.

Another one is Hodur. This RAT is a variant of PlugX (also known as Korplug), associated with Chinese APT organizations. Hodur differed, using a different encoding, configuration capabilities, and  C&C commands. This RAT allows attackers to log keystrokes, manipulate files, fingerprint the system and more.

We mentioned that Kazakhstan is connected to a new RAT on this list. That RAT is called Borat RAT. The name is taken from the popular comedy film Borat where the main character Borat Sagdijev, performed by actor Sacha Baron Cohen, was presented as a Kazakh visiting the USA. Did you know that in reality the part of the film that should represent living in Kazakhstan village wasn’t even filmed there but in the Romanian village of Glod?

This RAT is a .NET binary and uses simple source-code obfuscation. The Borat RAT was initially discovered on hacking forums and contains many capabilities. Some features include triggering BSOD, anti-sandbox, anti-VM, password stealing, web-cam spying, file manipulation and more. As well as these baked-in features, it enables extensive module functionality. These modules are DLLs that are downloaded on demand, allowing the attackers to add multiple new capabilities. The list of currently available modules contains files “Ransomware.dll” used for encrypting files, “Discord.dll” for stealing Discord tokens, and many more.

Here you can see an example of the Borat RAT admin panel. 

We also noticed that the volume of Python compiled and Go programming language ELF binaries for Linux increased this quarter. The threat actors used open source RAT projects (i.e. Bring Your Own Botnet or Ares) and legitimate services (e.g. Onion.pet, termbin.com or Discord) to compromise systems. We were also one of the first to protect users against Backdoorit and Caligula RATs; both of these malware families were written in Go and captured in the wild by our honeypots.

Samuel Sidor, Malware Researcher
Jan Rubín, Malware Researcher
David Àlvarez, Malware Researcher

Rootkits

In Q1/22,  rootkit activity was reduced compared to the previous quarter, returning to the long-term value, as illustrated in the chart below.

The close-up view of Q1/22 demonstrates that January and February have been more active than the March period.

We have monitored various rootkit strains in Q1/22. However, we have identified that approx. 37% of rootkit activity is r77-Rootkit (R77RK) developed by bytecode77 as an open-source project under the BSD license. The rootkit operates in Ring 3 compared to the usual rootkits that work in Ring 0. R77RK is a configurable tool hiding files, directories, scheduled tasks, processes, services, connections, etc. The tool is compatible with Windows 7 and Windows 10. The consequence is that R77RK was captured with several different types of malware as a supporting library for malware that needs to hide malicious activity.

The graph below shows that China is still the most at-risk country in terms of protected users. Moreover, the risk in China has increased by about +58%, although total rootkit activity has been orders of magnitude lower compared to Q4/21. This phenomenon is caused by the absence of the Cerbu rootkit that was spread worldwide, so the main rootkit activity has moved back to China. Namely, the decrease in the rootkit activity has been observed in the countries as follows: Vietnam, Thailand, the Czech Republic, and Egypt.

In summary, the situation around the rootkit activity seems calmer compared to Q4/21, and China is still the most affected country in Q1/22. Noteworthy, the war in Ukraine has not increased the rootkit activity. Numerous malware authors have started using open-source solutions of rootkits, although these are very well detectable.

Martin Chlumecký, Malware Researcher

Technical support scams

After quite an active Q4/21 that overlapped with the beginning of Q1/22, technical support scams started to decline in inactivity. There were some small peaks of activity, but the significant wave of one particular campaign came at the end of Q1/22.

According to our data, the most targeted countries were the United States and Canada. However, we’ve seen instances of this campaign active even in other areas, like Europe, for example, France and Germany.

The distinctive sign of this campaign was the lack of a domain name and a specific path; this is illustrated in the following image.

During the beginning of March, we collected thousands of new unique domain-less URLs that have one significant and distinctive sign, their url path. After being redirected, an affected user loads a web page with a well-known recycled appearance, used in many previous technical support campaigns. In addition, several pop-up windows, the logo of well-known companies, antivirus-like messaging, cursor manipulation techniques, and even sounds are all there for one simple reason: a phone call to the phone number shown.

More than twenty different phone numbers have been used. Examples of such numbers can be seen in the following table:

1-888-828-5604
1-888-200-5532
1-877-203-5120
1-888-770-6555
1-855-433-4454
1-833-576-2199
1-877-203-9046
1-888-201-5037
1-866-400-0067
1-888-203-4992

Alexej Savčin, Malware Analyst

Traffic Direction System (TDS)

A new Traffic Direction System (TDS) we are calling Parrot TDS was very active throughout Q1/2022. The TDS has infected various web servers hosting more than 16,500 websites, ranging from adult content sites, personal websites, university sites, and local government sites.

Parrot TDS acts as a gateway for other malicious campaigns to reach potential victims. In this particular case, the infected sites’ appearances are altered by a campaign called FakeUpdate (also known as SocGholish), which uses JavaScript to display fake notices for users to update their browser, offering an update file for download. The file observed being delivered to victims is a remote access tool.

From March 1, 2022, to March 29, 2022, we protected more than 600,000 unique users from around the globe from visiting these infected sites. We protected the most in Brazil – over  73,000 individual users, in India – nearly 55,000 unique users, and more than 31,000 unique users from the US.

Map illustrating the countries Parrot TDS has targeted (in March)

Jan Rubín, Malware Researcher
Pavel Novák, Threat Operations Analyst

Vulnerabilities and Exploits

Spring in Europe has had quite a few surprises for us, one of them being a vulnerability in a Java framework called, ironically, Spring. The vulnerability is called Spring4Shell (CVE-2022-22963), mimicking the name of last year’s Log4Shell vulnerability. Similarly to Log4Shell, Spring4Shell leads to remote code execution (RCE). Under specific conditions, it is possible to bind HTTP request parameters to Java objects. While there is a logic protecting classLoader from being used, it was not foolproof, which led to this vulnerability. Fortunately, the vulnerability requires a non-default configuration, and a patch is already available.

The Linux kernel had its share of vulnerabilities; a vulnerability was found in pipes, which usually provide unidirectional interprocess communication, that can be exploited for local privilege escalation. The vulnerability was dubbed Dirty Pipe (CVE-2022-0847). It relies on the usage of partially uninitialized memory of the pipe buffer during its construction, leading to an incorrect value of flags, potentially providing write-access to pages in the cache that were originally marked with a read-only attribute. The vulnerability is already patched in the latest kernel versions and has already been fixed in most mainstream Linux distributions.

First described by Trend Micro researchers in 2019, the SLUB malware is a highly targeted and sophisticated backdoor/RAT spread via browser exploits. Now, three years later, we detected its new exploitation attack, which took place in Japan and targeted an outdated Internet Explorer.

The initial exploit injects into winlogon.exe, which will, in turn, download and execute the final stage payload. The final stage did not change much since the initial report, and it still uses Slack as a C&C server but now uses file[.]io for data exfiltration.

This is an excellent example that old threats never really go away; they often continue to evolve and pose a threat.

Adolf Středa, Malware Researcher
Jan Vojtěšek, Malware Reseracher

Mikrotik CVEs keep giving

It’s been almost four years since the very severe vulnerability CVE-2018-14847 targeting MikroTik devices first appeared. What seemed to be yet another directory traversal bug quickly escalated into user database and password leaks, resulting in a potentially disastrous vulnerability ready to be misused by cybercriminals. Unfortunately, the simplicity of exploiting and wide adoption of these devices and powerful features provided a solid foundation for various malicious campaigns being executed using these devices. It first started with injecting crypto mining javascript into pages script by capturing the traffic, poisoning the DNS cache, and incorporating these devices into botnets for DDoS and proxy purposes.  

Unfortunately, these campaigns come in waves, and we still observe MikroTik devices being misused repeatedly. In Q1/22, we’ve seen a lot of exciting twists and turns, the most prominent of which was probably the Conti group leaks which also shed light on the TrickBot botnet. For quite some time, we knew that TrickBot abused MikroTik devices as proxy servers to hide the next tier of their C&C. The leaking of Conti and Trickbot infrastructure meant the end of this botnet. However, it also provided us clues and information about one of the vastest botnets as a service operation connecting Glupteba, Meris, crypto mining campaigns, and, perhaps also, TrickBot. We are talking about 230K devices controlled by one threat actor and rented out as a service. You can find more in our research Mēris and TrickBot standing on the shoulders of giants

A few days before we published our research in March, a new story emerged describing the DDoS campaign most likely tied to the Sodinokibi ransomware group. Unsurprisingly most of the attacking devices were MikroTik again. A few days ago, we were contacted by security researchers from SecurityScoreCard. They have observed another DDoS botnet called Zhadnost targeting Ukrainian institutions and again using MikroTik devices as an amplification vector. This time, they were mainly misusing DNS amplification vulnerabilities. 

We also saw one compelling instance of a network security incident potentially involving MikroTik routers. In the infamous cyberattack on February 24th against the Viasat KA-SAT service, attackers penetrated the management segment of the network and wiped firmware from client terminal devices.

The incident surfaced more prominently after the cyberattack paralyzed 11 gigawatts of German wind turbine production as a probable spill-over from the KA-SAT issue. The connectivity for turbines is provided by EuroSkyPark, one of the satellite internet providers using the KA-SAT network.

When we analyzed ASN AS208484, an autonomous system assigned to EuroSkyPark, we found 15 MikroTik devices with exposed TCP port 8728, which is used for API access to administer the devices. Also of concern, one of the devices had a port for an infamously vulnerable WinBox protocol port exposed to the Internet. As of now, all mentioned ports are closed and no longer accessible.

We also found SSH access remapped to non-standard ports such as 9992 or 9993. This is not typically common practice and may also indicate compromise. Attackers have been known to remap the ports of standard services (such as SSH) to make it harder to detect or even for the device owner to manage. However, this could also be configured deliberately for the same reason: to hide SSH access from plain sight.

CVE-2018-14847 vulnerable devices in percent by country

From all the above, it’s apparent that we can expect to see similar patterns and DDoS attacks carried not only by MikroTik devices but also by other vulnerable IoT devices in the foreseeable future. On a positive note, the number of MikroTik devices vulnerable to the most commonly misused CVEs is slowly decreasing as new versions of RouterOS (OS that powers the MikroTik appliances) are rolled out. Unfortunately, however, there are many devices already compromised, and without administrative intervention, they will continue to be used for malicious operations repeatedly. 

We strongly recommend that MikroTik administrators ensure they have updated and patched to protect themselves and others.  


If you are a researcher and you think you have seen MikroTik devices involved in some malicious activity, please consider contacting us if you need help or consultation; since 2018, we have built up a detailed understanding of these devices’ threat landscape.

Router OS major version 7 and above adoption

Martin Hron, Malware Researcher

Web skimming

In Q1/22, the most prevalent web skimming malicious domain was naturalfreshmall[.]com, with more than 500 e-commerce sites infected. The domain itself is no longer active, but many websites are still trying to retrieve malicious content from it. Unfortunately, it means that administrators of these sites still have not removed malicious code and these sites are likely still vulnerable. Avast protected 44k users from this attack in the first quarter.

The heatmap below shows the most affected countries in Q1/22 – Saudi Arabia, Australia, Greece, and Brazil. Compared to Q4/21, Saudi Arabia, Australia and Greece stayed at the top, but in Brazil, we protected almost two times more users than in the previous quarter. However, multiple websites were infected in Brazil, some with the aforementioned domain naturalfreshmall[.]com. In addition, we tweeted about philco.com[.]br, which was infected with yoursafepayments[.]com/fonts.css. And last but not least, pernambucanas.com[.]br was also infected with malicious javascript hidden in the file require.js on their website.

Overall the number of protected users remains almost the same as in Q4/21.

Pavlína Kopecká, Malware Analyst

Mobile-Related Threats

Adware/HiddenAds

Adware maintains its dominance over the Android threat landscape, continuing the trend from previous years. Generally, the purpose of Adware is to display out-of-context advertisements to the device user, often in ways that severely impact the user experience. In Q1/22, HiddenAds, FakeAdblockers, and others have spread to many Android devices; these applications often display device-wide advertisements that overlay the user’s intended activity or limit the app’s functionality by displaying timed ads without the ability to skip them.

Adware comes in various configurations; one popular category is stealthy installation. Such apps share common features that make them difficult for the user to identify. Hiding their application's icon from the home screen is a common technique, and using blank application icons to mask their presence. The user may struggle to identify the source of the intrusive advertisements, especially if the applications have an in-built delay timer after which they display the ads. Another Adware tactic is to use in-app advertisements that are overly aggressive, sometimes to the extent that they make the original app’s intended functionality barely usable. This is common, especially in games, where timed ads are often shown after each completed level; frequently, the ad screen time greatly exceeds the time spent playing the game.

The Google Play Store has previously been used to distribute malware, but recently, actors behind these applications have changed tactics to use browser pop-up windows and notifications to spread the Adware. These are intended to trick users into downloading and installing the application, often disguised as games, ad blockers, or various utility tools. Therefore, we strongly recommend that users avoid installing applications from unknown sources and be on the lookout for malicious browser notifications.

According to our data, India, the Middle East, and South America are the most affected regions. But Adware is not strictly limited to these regions; it’s prevalent worldwide.

As can be seen from the graph below, Adware’s presence in the mobile sphere has remained dominant but relatively unchanged. Of course, there’s slight fluctuation during each quarter, but there have been no stand-out new strains of Adware as of late.

Bankers

In Q1/2022, some interesting shifts were observed in the banking malware category. With Cerberus/Alien and its clones still leading the scoreboard by far, the battle for second place has seen a jump, where Hydra replaced the previously significant threats posed by FluBot. Additionally, FluBot has been on the decline throughout Q1..

Different banker strains have been reported to use the same distribution channels and branding, which we can also confirm observing. Many banking threats now reuse the proven techniques of masquerading as delivery services, parcel tracking apps, or voicemail apps.

After the departure of FluBot from the scene, we observed an overall slight drop in the number of affected users, but this seems only to be returning to the numbers we’ve observed in the last year, just before FluBot took the stage.

Most targeted countries remain to be Turkey, Spain and Australia.

PremiumSMS/Subscription scams

While PremiumSMS/Subscription related threats may not be as prevalent as in the previous years, they are certainly not gone for good. As reported in the Q4/21 report, a new wave of premium subscription-related scams keeps popping up. Campaigns such as GriftHorse or UltimaSMS made their rounds last year, followed by yet another similar campaign dubbed DarkHerring

The main distribution channel for these seems to be Google Play, but they have also been observed being downloaded from alternative channels. Similar to before, this scam preys on the mobile operator’s subscription scheme, where an unsuspecting user is lured into giving out their phone number. The number is later used to register the victim to a premium subscription service. This can go undetected for a long time, causing the victim significant monetary loss due to the stealthiness of the subscription and hassle related to canceling such a subscription.

While the primary target of these campaigns seems to remain the same as in Q4/21 – targeting the Middle East, countries like Iraq, Jordan, but also Saudi Arabia, and Egypt – the scope has broadened and now includes various Asian countries as well – China, Malaysia and Vietnam amongst the riskiest ones.

As can be seen from the quarterly comparisons in the graph below, the spikes of activity of the respective campaigns are clear, with UltimaSMS and Grifthorse causing the spike in Q4/21. Darkherring is behind the Q1/22 spike.

Ransomware/Lockers

Ransomware apps and Lockers that target the Android ecosystem often attempt to ‘lock’ the user’s phone by disabling the navigation buttons and taking over the Android lock screen to prevent the user from interacting with the device and removing the malware. This is commonly accompanied by a ransom message requesting payment to the malware owner in exchange for unlocking the device.

Among the most prevalent Android Lockers seen in Q1/22 were Jisut, Pornlocker, and Congur. These are notorious for being difficult to remove and, in some cases, may require a factory reset of the phone. Some versions of lockers may even attempt to encrypt the user’s files; however, this is not frequently seen due to the complexity of encrypting files on Android devices.

The threat actors responsible for this malware generally rely on spreading through the use of third party app stores, game cheats, and adult content applications.

A common infection technique is to lure users through popular internet themes and topics – we strongly recommend that users avoid attempting to download game hacks and mods and ensure that they use reputable websites and official app stores.

In Q1/22, we’ve seen spikes in this category, mainly related to the Pornlocker family – apps masquerading as adult content providers – and were predominantly targeting users in Russia.

In the graph above, we can see the spike caused by the Pornlocker family in Q1/22.

Ondřej David, Malware Analysis Team Lead
Jakub Vávra, Malware Analyst

Acknowledgements / Credits

Malware researchers
  • Adolf Středa
  • Alexej Savčin
  • Anh Ho
  • David Álvarez
  • Igor Morgenstern
  • Jakub Křoustek
  • Jakub Vávra
  • Jan Holman
  • Jan Rubín
  • Ladislav Zezula
  • Luigino Camastra
  • Martin Chlumecký
  • Martin Hron
  • Ondřej David
  • Pavel Novák
  • Pavlína Kopecká
  • Samuel Sidor
  • Vladimir Martyanov
  • Vladimír Žalud
Data analysts
  • Pavol Plaskoň
Communications
  • Dave Matthews
  • Stefanie Smith

The post Avast Q1/2022 Threat Report appeared first on Avast Threat Labs.

Decrypted: Prometheus Ransomware

9 March 2022 at 11:02

Avast Releases Decryptor for the Prometheus Ransomware. Prometheus is a ransomware strain written in C# that inherited a lot of code from an older strain called Thanos.

Skip to how to use the Prometheus ransomware decryptor

How Prometheus Works

Prometheus tries to thwart malware analysis by killing various processes like packet sniffing, debugging or tools for inspecting PE files. Then, it generates a random password that is used during the Salsa20 encryption. 

Prometheus looks for available local drives to encrypt files that have one of the following  extensions:

db dbf accdb dbx mdb mdf epf ndf ldf 1cd sdf nsf fp7 cat log dat txt jpeg gif jpg png php cs cpp rar zip html htm xlsx xls avi mp4 ppt doc docx sxi sxw odt hwp tar bz2 mkv eml msg ost pst edb sql odb myd php java cpp pas asm key pfx pem p12 csr gpg aes vsd odg raw nef svg psd vmx vmdk vdi lay6 sqlite3 sqlitedb java class mpeg djvu tiff backup pdf cert docm xlsm dwg bak qbw nd tlg lgb pptx mov xdw ods wav mp3 aiff flac m4a csv sql ora dtsx rdl dim mrimg qbb rtf 7z 

Encrypted files are given a new extension .[ID-<PC-ID>].unlock. After the encryption process is completed, Notepad is executed with a ransom note from the file UNLOCK_FILES_INFO.txt informing victims on how to pay the ransom if they want to decrypt their files.

How to use the Avast decryptor to decrypt files encrypted by Prometheus Ransomware

To decrypt your files, follow these steps:

  1. Download the free Avast decryptor.
  2. Run the executable file. It starts in the form of a wizard, which leads you through the configuration of the decryption process.
  3. On the initial page, you can read the license information, if you want, but you really only need to click “Next”.
  1. On the next page, select the list of locations you want to be searched and decrypted. By default, it contains a list of all local drives:
  1. On the third page, you need to provide a file in its original form and encrypted by the Prometheus ransomware. Enter both names of the files. In case you have an encryption password created by a previous run of the decryptor, you can select the “I know the password for decrypting files” option:
  1. The next page is where the password cracking process takes place. Click “Start” when you are ready to start the process. During the password cracking process, all your available processor cores will spend most of their computing power to find the decryption password. The cracking process may take a large amount of time, up to tens of hours. The decryptor periodically saves the progress and if you interrupt it and restart the decryptor later, it offers you the option to resume the previously started cracking process. Password cracking is only needed once per PC – no need to do it again for each file.
  1. When the password is found, you can proceed to decrypt all encrypted files on your PC by clicking “Next”.
  1. On the final page, you can opt-in to backup encrypted files. These backups may help if anything goes wrong during the decryption process. This option is turned on by default, which we recommend. After clicking “Decrypt”, the decryption process begins. Let the decryptor work and wait until it finishes decrypting all of your files.

IOCs

SHA256 File Extension
742bc4e78c36518f1516ece60b948774990635d91d314178a7eae79d2bfc23b0 .[ID-<HARDWARE_ID>].unlock

The post Decrypted: Prometheus Ransomware appeared first on Avast Threat Labs.

Help for Ukraine: Free decryptor for HermeticRansom ransomware

3 March 2022 at 09:07

On February 24th, the Avast Threat Labs discovered a new ransomware strain accompanying the data wiper HermeticWiper malware,  which our colleagues at ESET found circulating in the Ukraine. Following this naming convention, we opted to name the strain we found piggybacking on the wiper, HermeticRansom. According to analysis done by Crowdstrike’s Intelligence Team, the ransomware contains a weakness in the crypto schema and can be decrypted for free.

If your device has been infected with HermeticRansom and you’d like to decrypt your files, click here to skip to the How to use the Avast decryptor to recover files

Go!

The ransomware is written in GO language. When executed, it searches local drives and network shares for potentially valuable files, looking for  files with one of the extensions listed below (the order is taken from the sample):

.docx .doc .dot .odt .pdf .xls .xlsx .rtf .ppt .pptx .one.xps .pub .vsd .txt .jpg .jpeg .bmp .ico .png .gif .sql.xml .pgsql .zip .rar .exe .msi .vdi .ova .avi .dip .epub.iso .sfx .inc .contact .url .mp3 .wmv .wma .wtv .avi .acl.cfg .chm .crt .css .dat .dll .cab .htm .html .encryptedjb

In order to keep the victim’s PC operational, the ransomware avoids encrypting files in Program Files and Windows folders.

For every file designated for encryption, the ransomware creates a 32-byte encryption key. Files are encrypted by blocks, each block has 1048576 (0x100000) bytes. A maximum of nine blocks are encrypted. Any data past 9437184 bytes (0x900000) is left in plain text. Each block is encrypted by AES GCM symmetric cipher. After data encryption, the ransomware appends a file tail, containing the RSA-2048 encrypted file key. The public key is stored in the binary as a Base64 encoded string:

Encrypted file names are given extra suffix:

.[[email protected]].encryptedJB

When done, a file named “read_me.html” is saved to the user’s Desktop folder:

There is an interesting amount of politically oriented strings in the ransomware binary. In addition to the file extension, referring to the re-election of Joe Biden in 2024, there is also a reference to him in the project name:

During the execution, the ransomware creates a large amount of child processes, that do the actual encryption:

How to use the Avast decryptor to recover files

To decrypt your files, please, follow these steps:

  1. Download the free Avast decryptor.
  2. Simply run the executable file. It starts in the form of a wizard, which leads you through the configuration of the decryption process.
  3. On the initial page, you can read the license information, if you want, but you really only need to click “Next
  1. On the next page, select the list of locations which you want to be searched and decrypted. By default, it contains a list of all local drives:
  1. On the final wizard page, you can opt-in whether you want to backup encrypted files. These backups may help if anything goes wrong during the decryption process. This option is turned on by default, which we recommend. After clicking “Decrypt”, the decryption process begins. Let the decryptor work and wait until it finishes.

IOCs

SHA256: 4dc13bb83a16d4ff9865a51b3e4d24112327c526c1392e14d56f20d6f4eaf382

The post Help for Ukraine: Free decryptor for HermeticRansom ransomware appeared first on Avast Threat Labs.

Decrypted: TargetCompany Ransomware

7 February 2022 at 15:02

On January 25, 2022, a victim of a ransomware attack reached out to us for help. The extension of the encrypted files and the ransom note indicated the TargetCompany ransomware (not related to Target the store), which can be decrypted under certain circumstances.

Modus Operandi of the TargetCompany Ransomware

When executed, the ransomware does some actions to ease its own malicious work:

  1. Assigns the SeTakeOwnershipPrivilege and SeDebugPrivilege for its process
  2. Deletes special file execution options for tools like vssadmin.exe, wmic.exe, wbadmin.exe, bcdedit.exe, powershell.exe, diskshadow.exe, net.exe and taskkil.exe
  3. Removes shadow copies on all drives using this command:
    %windir%\sysnative\vssadmin.exe delete shadows /all /quiet
  4. Reconfigures boot options:
    bcdedit /set {current} bootstatuspolicy ignoreallfailures
    bcdedit /set {current} recoveryenabled no
  5. Kills some processes that may hold open valuable files, such as databases:
List of processes killed by the TargetCompany ransomware
MsDtsSrvr.exe ntdbsmgr.exe
ReportingServecesService.exe oracle.exe
fdhost.exe sqlserv.exe
fdlauncher.exe sqlservr.exe
msmdsrv.exe sqlwrite
mysql.exe

After these preparations, the ransomware gets the mask of all logical drives in the system using the  GetLogicalDrives() Win32 API. Each drive is checked for the drive type by GetDriveType(). If that drive is valid (fixed, removable or network), the encryption of the drive proceeds. First, every drive is populated with the ransom note file (named RECOVERY INFORMATION.txt). When this task is complete, the actual encryption begins.

Exceptions

To keep the infected PC working, TargetCompany avoids encrypting certain folders and file types:

List of folders avoided by the TargetCompany ransomware
msocache boot Microsoft Security Client Microsoft MPI
$windows.~ws $windows.~bt Internet Explorer Windows Kits
system volume information mozilla Reference Microsoft.NET
intel boot Assemblies Windows Mail
appdata windows.old Windows Defender Microsoft Security Client
perflogs Windows Microsoft ASP.NET Package Store
programdata
google
application data
WindowsPowerShell Core Runtime Microsoft Analysis Services
tor browser Windows NT Package Windows Portable Devices
Windows Store Windows Photo Viewer
Common Files Microsoft Help Viewer Windows Sidebar

List of file types avoided by the TargetCompany ransomware
.386 .cpl .exe .key .msstyles .rtp
.adv .cur .hlp .lnk .msu .scr
.ani .deskthemepack .hta .lock .nls .shs
.bat .diagcfg .icl .mod .nomedia .spl
.cab .diagpkg .icns .mpa .ocx .sys
.cmd .diangcab .ico .msc .prf .theme
.com .dll .ics .msi .ps1 .themepack
.drv .idx .msp .rom .wpx

The ransomware generates an encryption key for each file (0x28 bytes). This key splits into Chacha20 encryption key (0x20 bytes) and n-once (0x08) bytes. After the file is encrypted, the key is protected by a combination of Curve25519 elliptic curve + AES-128 and appended to the end of the file. The scheme below illustrates the file encryption. Red-marked parts show the values that are saved into the file tail after the file data is encrypted:

The exact structure of the file tail, appended to the end of each encrypted file, is shown as a C-style structure:

Every folder with an encrypted file contains the ransom note file. A copy of the ransom note is also saved into c:\HOW TO RECOVER !!.TXT

The personal ID, mentioned in the file, is the first six bytes of the personal_id, stored in each encrypted file.

How to use the Avast decryptor to recover files

To decrypt your files, please, follow these steps:

  1. Download the free Avast decryptor. Choose a build that corresponds with your Windows installation. The 64-bit version is significantly faster and most of today’s Windows installations are 64-bit.
  2. Simply run the executable file. It starts in the form of a wizard, which leads you through the configuration of the decryption process.
  3. On the initial page, you can read the license information, if you want, but you really only need to click “Next”
  1. On the next page, select the list of locations which you want to be searched and decrypted. By default, it contains a list of all local drives:
  1. On the third page, you need to enter the name of a file encrypted by the TargetCompany ransomware. In case you have an encryption password created by a previous run of the decryptor, you can select the “I know the password for decrypting files” option:
  1. The next page is where the password cracking process takes place. Click “Start” when you are ready to start the process. During password cracking, all your available processor cores will spend most of their computing power to find the decryption password. The cracking process may take a large amount of time, up to tens of hours. The decryptor periodically saves the progress and if you interrupt it and restart the decryptor later, it offers you an option to resume the previously started cracking process. Password cracking is only needed once per PC – no need to do it again for each file.
  1. When the password is found, you can proceed to the decryption of files on your PC by clicking “Next”.
  1. On the final wizard page, you can opt-in whether you want to backup encrypted files. These backups may help if anything goes wrong during the decryption process. This option is turned on by default, which we recommend. After clicking “Decrypt”, the decryption process begins. Let the decryptor work and wait until it finishes.

IOCs

SHA256 File Extension
98a0fe90ef04c3a7503f2b700415a50e62395853bd1bab9e75fbe75999c0769e .mallox
3f843cbffeba010445dae2b171caaa99c6b56360de5407da71210d007fe26673 .exploit
af723e236d982ceb9ca63521b80d3bee487319655c30285a078e8b529431c46e .architek
e351d4a21e6f455c6fca41ed4c410c045b136fa47d40d4f2669416ee2574124b .brg

The post Decrypted: TargetCompany Ransomware appeared first on Avast Threat Labs.

Avast Q4/21 Threat report

26 January 2022 at 21:18

Foreword

Welcome to the Avast Q4’21 Threat Report! Just like the rest of last year, Q4 was packed with many surprises and plot twists in the threat landscape. Let me highlight some of them.

We all learned how much impact a small library for logging can have. Indeed, I’m referring to the Log4j Java library, where a vulnerability was discovered and immediately exploited. The rate at which malware operators exploited the vulnerability was stunning. We observed coinminers, RATs, bots, ransomware, and of course APTs abusing the vulnerability faster than a software vendor could say “Am I also using this Log4j library somewhere below?”. In a nutshell: Christmas came early for malware authors.

Original credits: XKCD

Furthermore, in my Q3’21 foreword, I mentioned the take-down of botnet kingpin, Emotet. We were curious which bot would replace it… whether it would be Trickbot, IcedID, or one of the newer ones. But the remaining Emotet authors had a different opinion, and pretty much said “The king is dead, long live the king!”, they rewrote several Emotet parts, revived their machinery, and took the botnet market back with the latest Emotet reincarnation.

Out of the other Q4’21 trends, I would like to highlight an interesting symbiosis of a particular adware strain that is protected by the Cerbu rootkit, which was very active in Africa and Asia. Furthermore, coinminers increased by 40% worldwide by infecting webpages and pirated software. In this report, we also provide a sneak peek into our recent research of banking trojans in Latin America and also dive into the latest in the mobile threat landscape.

Last but not least, Q4’21 was also special in terms of ransomware. However, unlike in previous quarters when you could only read about massive increases in attacks, ransom payments, or high-profile victims, Q4 brought us a long-awaited drop of ransomware activity by 28%! Why? Please, continue reading.

Jakub Křoustek, Malware Research Director

Methodology

This report is structured as two main sections – Desktop, informing about our intel from Windows, Linux, and MacOS, and Mobile, where we inform about Android and iOS threats.

Furthermore, we use the term risk ratio in this report for informing about the severity of particular threats, which is calculated as a monthly average of “Number of attacked users / Number of active users in a given country”. Unless stated otherwise, the risk is available just for countries with more than 10,000 active users per month.

Desktop

Advanced Persistent Threats (APTs)

Advanced Persistent Threats are typically created by Nation State sponsored groups which, unlike cybercriminals, are not solely driven by financial gain. These groups pursue nation states’ espionage agenda, which means that specific types of information, be it of geopolitical importance, intellectual property, or even information that could be used as a base for further espionage, are what they are after.

In December, we described a backdoor we found in a lesser known U.S. federal government commission. The attackers were able to run code on an infected machine with System privileges and used the WinDivert driver to read, filter and edit all network communication of the infected machine. After several unsuccessful attempts to contact the targeted commission over multiple channels, we decided to publish our findings in December to alert other potential victims of this threat. We were later able to engage with the proper authorities who are in possession of our full research and took action to remediate the threat.

Early November last year, we noticed the LuckyMouse APT group targeting two countries: Taiwan and the Philippines. LuckyMouse used a DLL sideload technique to drop known backdoors. We spotted a combination of the HyperBro backdoor with the Korplug backdoor being used. The dropped files were signed with a valid certificate of Cheetah Mobile Inc.

The top countries where we saw high APT activity were: Myanmar, Vietnam, Indonesia, and Ukraine. An actor known as Mustang Panda is still active in Vietnam. We also tracked a new campaign in Indonesia that appears to have been initiated in Q4’21.

The Gamaredon activity we observed in Q3’21 in Ukraine dropped significantly about a week before the Ukrainian Security Service publicly revealed information regarding the identities of the Gamaredon group members. Nevertheless, we still saw an increase in APT activity in the country. 

Luigino Camastra, Malware Researcher
Igor Morgenstern, Malware Researcher
Daniel Beneš, Malware Researcher

Adware

Adware, as the name suggests, is software that displays ads, often in a disturbing way, without the victim realizing what is causing the ads to be displayed. We primarily monitor adware that is potentially dangerous and is capable of adding a backdoor to victims’ machines. Adware is typically camouflaged as legitimate software, but with an easter egg.

Desktop adware has become more aggressive in Q4’21, illustrated in the graph below. In comparison to Q3’21, we saw a significant rise in adware in Q4’21 and a serious peak at the beginning of Q4’21. Moreover, the incidence trend of adware in Q4’21 is very similar to the rootkit trend, which will be described later. We believe these trends are related to the Cerbu rootkit that can hijack requested URLs and then serve adware.

The risk ratio of adware has increased by about 70% worldwide in contrast to Q3’21. The most affected regions are Africa and Asia.

In terms of regions where we protected the most users from adware, users in Russia, the U.S., and Brazil were targeted the most in Q4’21.

Martin Chlumecký, Malware Researcher

Bots

The last quarter of 2021 was everything but uneventful in the world of botnets. Celebrations of Emotet’s takedown were still ongoing when we started to see Trickbot being used to resurrect the Emotet botnet. It looks like “Ivan” is still not willing to retire and is back in business. As if that wasn’t enough, we witnessed a change in Trickbot’s behavior. As can be seen in the chart below, by the end of November, attempts at retrieving the configuration file largely failed. By the middle of December, this affected all the C&Cs we have identified. While we continue to observe traffic flowing to a C&C on the respective ports, it does not correspond to the former protocol.

Just when we thought we were done with surprises, December brought the Log4shell vulnerability, which was almost immediately exploited by various botnets. It ought to be no surprise that one of them was Mirai, again. Moreover, we saw endpoints being hammered with bots trying to exploit the vulnerability. While most of the attempts lead to DNS logging services, we also noticed several attempts that tried to load potentially malicious code. We observed one interesting thing about the Log4shell vulnerability: While a public endpoint might not be vulnerable to Log4shell, it could still be exploited if logs are sent from the endpoint to another logging server.

Below is a heatmap showing the distribution of botnets that we observed in Q4 2021.

As for the overall risk ratios, the top of the table hasn’t changed much since Q3’21 and is still occupied by Afghanistan, Turkmenistan, Yemen, and Tajikistan. What has changed is their risk ratios have significantly increased. A similar risk ratio increase occurred for Japan and Portugal, even though in absolute value their risk ratio is still significantly lower than in the aforementioned countries. The most common botnets we saw in the wild are:

  • Phorpiex
  • BetaBot
  • Tofsee
  • Mykings
  • MyloBot
  • Nitol
  • LemonDuck
  • Emotet
  • Dorkbot
  • Qakbot

Adolf Středa, Malware Researcher

Coinminers

Even though cryptocurrencies experienced turbulent times, we actually saw an increase of malicious coin mining activity, it increased by a whooping 40% in our user base in Q4’21, as can be seen on the daily spreading chart below. This increase could be also influenced by the peak in Ethereum and Bitcoin prices in November. 

The heat map below shows that in comparison to the previous quarter, there was a higher risk of a coin miner infection for users in Serbia and Montenegro. This is mainly due to a wider spreading of web miners in these regions, attempting to mine cryptocurrencies while the victim is visiting certain webpages. XMRig is still the leader choice among the popular coinminers.

CoinHelper is one of the prevalent coinminers that was still very active throughout Q4’21, mostly targeting users in Russia and the Ukraine. When the malware is executed on a victim’s system, CoinHelper downloads the notorious XMRig miner via the Tor network and starts to mine. Apart from coin mining, CoinHelper also harvests various information about its victims to recognize their geolocation, what AV solution they have installed, and what hardware they are using.

The malware is being spread in the form of a bundle with many popular applications, cracked software such as MS Office, games and game cheats like Minecraft and Cyberpunk 2077, or even clean installers, such as Google Chrome or AV products, as well as hiding in Windows 11 ISO image, and many others. The scope of the spreading is also supported by seeding the bundled apps via torrents, further abusing the unofficial way of downloading software.

Even though we observed multiple crypto currencies, including Ethereum or Bitcoin, configured to be mined, there was one particular type that stood out – Monero. Even though Monero is designed to be anonymous, thanks to the wrong usage of addresses and the mechanics of how mining pools work, we were able to get a deeper look into the malware authors’ Monero mining operation and find out that the total monetary gain of CoinHelper was 339,694.86 USD as of November, 29, 2021.

Cryptocurrency Earnings in USD Earnings in cryptocurrency Number of wallets
Monero $292,006.08 1,216.692 [XMR] 311
Bitcoin $46,245.37 0.800 [BTC] 54
Ethereum $1,443.41 0.327 [ETH] 5
Table with monetary gain (data refreshed 2021-11-29)

Since the release of our CoinHelper blogpost, the miner was able to mine an additional ~15.162 XMR as of December 31, 2021 which translates to ~3,446.03 USD. With this calculation, we can say that at the turn of the year 2021, CoinHelper was still actively spreading, with the ability to mine ~0.474 XMR every day.

Jan Rubín, Malware Researcher
Jakub Kaloč, Malware Researcher

Information Stealers

In comparison with the previous quarters, we saw a slight decrease in information stealer in activity. The reason behind this is mainly a significant decrease in Fareit infections, which dropped by 61%. This places Fareit to sixth position from the previously dominant first rank, holding roughly 9% of the market share now. To this family, as well as to all the others, we wish a happy dropping in 2022!

The most prevalent information stealers in Q4’21 were AgentTesla, FormBook, and RedLine stealers. If you happen to get infected by an infostealer, there is almost a 50% chance that it will be one of these three.

Even though infostealers are traditionally popular around the world, there are certain regions where there is a greater risk of encountering one. Users in Singapore, Yemen, Turkey, and Serbia are most at risk of losing sensitive data. Out of these countries, we only saw an increase in risk ratio in Turkey when comparing the ratios to Q3’21.

Finally, malware strains based on Zeus still dominate the banking-trojan sector with roughly 40% in market share. However, one of these cases, the Citadel banker, experienced a significant drop in Q4’21, providing ClipBanker a space to grow.

Jan Rubín, Malware Researcher

LatAm Region

Latin America has always been an interesting area in malware research due to the unique and creative TTPs employed by multiple threat groups operating within this regional boundary. During Q4’21, a threat group called Chaes dominated Brazil’s threat landscape with infection attempts detected from more than 66,600 of our Brazilian customers. Compromising hundreds of WordPress web pages with Brazilian TLD, Chase serves malicious installers masquerading as Java Runtime Installers in Portuguese. Using a complex Python in-memory loading chain, Chaes installs malicious Google Chrome extensions onto victims’ machines. These extensions are capable of intercepting and collecting data from popular banking websites in Brazil such as Mercado Pago, Mercado Livre, Banco do Brasil, and Internet Banking Caixa.

Ousaban is another high-profile regional threat group whose operations in Brazil can be traced back to 2018. Getting massive attention in Q2’21 and Q3’21, Ousaban remains active during the Q4’21 period with infection attempts detected from 6,000+ unique users. Utilizing a technique called side-loading, Ousaban’s malicious payload is loaded by first executing a legitimate Avira application within a Microsoft Installer. The download links to these installers are mainly found in phishing emails which is Ousaban’s primary method of distribution.

Anh Ho, Malware Researcher
Igor Morgenstern, Malware Researcher

Ransomware

Let’s go back in time a little bit at first, before we dive into Q4’21 ransomware activity. In Q3’21, ransomware warfare was escalating, without a doubt. Most active strains were more prevalent than ever before. There were newspaper headlines about another large company being ransomed every other day, a massive supply-chain attack via MSP, record amounts of ransom payments, and sky-high self-esteem of cybercriminals.

Ransomware carol found on a darknet malware forum.

While unfortunate, this havoc triggered a coordinated cooperation of nations, government agencies, and security vendors to hunt down ransomware authors and operators. The FBI, the U.S. Justice Department, and the U.S. Department of State started putting marks on ransomware gangs via multi-million bounties, the U.S. military acknowledged targeting cybercriminals who launch attacks on U.S. companies, and we even started witnessing actions by Russian officials. The most critical part was the busts of ransomware-group members by the FBI, Europol, and DoJ in Q4’21.

We believe all of this resulted in a significant decrease in ransomware attacks in Q4’21. In terms of the ransomware risk ratio, it was lower by an impressive 28% compared to Q3’21. We hope to see a continuation of this trend in Q1’22, but we are also prepared for the opposite.

The positive decrease of the risk ratio Q/Q was evident in the majority of countries where we have our telemetry, with a few exceptions such as Bolivia, Uzbekistan, and Mongolia (all with more than +400% increase), Kazakhstan and Belarus (where the risk ratio doubled Q/Q), Russia (+49%), Slovakia (+37%), or Austria (+25%).

The most prevalent strains from Q3’21 either vanished or significantly decreased in volume in Q4’21. For example, the operators and authors of the DarkMatter ransomware went silent, most probably because a $10 million bounty was put on their heads by the FBI. Furthermore, STOP ransomware, which was the most prevalent strain in Q3’21, was still releasing new variants regularly to lure users seeking pirated software, but the number of targeted (and protected) users dropped by 58% and its “market share” decreased by 36%. Another strain worth mentioning was Sodinokibi aka REvil – its presence decreased by 50% in Q4’21 and it will be interesting to monitor its future presence because of the circumstances happening in Q1’22 (greetings to Sodinokibi/REvil gang members currently sitting custody).

The most prevalent ransomware strains in Q4’21: 

  • STOP
  • WannaCry
  • Sodinokibi
  • Conti
  • CrySiS
  • Exotic
  • Makop
  • GlobeImposter
  • GoRansomware
  • VirLock

Not everything ransomware related was positive in Q4’21. For example, new strains were discovered that could quickly emerge in prevalence, such as BlackCat (aka ALPHV) with its RaaS model introduced on darknet forums or a low-quality Khonsari ransomware, which took the opportunity to be the first ransomware exploiting the aforementioned Log4j vulnerability and thus beating the Conti in this race.

Last, but not least, I would like to mention new free ransomware decryption tools we’ve released. This time for AtomSilo, LockFile, and Babuk ransomware. AtomSilo is not the most prevalent strain, but it has been constantly spreading for more than a year. So we were happy as our decryptor immediately started helping ransomware victims.

Jakub Křoustek, Malware Research Director

Remote Access Trojans (RATs)

The last weeks of Q4’21 are also known as “days of peace and joy” and this claim also applies for malicious actors. As you can see in the graph below of RAT activity for this quarter, it is obvious that malware actors are just people and many of them took holiday breaks, that’s probably why the activity level during the end of December more than halved. The periodical drops that can be seen are weekends as most campaigns usually appear from Monday to Thursday.

In the graph below, we can see a Q3/Q4 comparison of the RAT activity.

The heat map below shines with multiple colors like a Christmas tree and among the countries with the highest risk ratio we see Czech Republic, Singapore, Serbia, Greece, and Croatia. We also detected a high Q/Q increase of the risk ratio in Slovakia (+39%), Japan (+30%), and Germany (+23%).

Most prevalent RATs in Q4’21:

  • Warzone
  • njRAT
  • Remcos
  • NanoCore
  • AsyncRat
  • QuasarRAT
  • NetWire
  • SpyNet
  • DarkComet
  • DarkCrystal

The volume of attacks and protected users overall was similar to what we saw in Q3’21, but there was also an increase within families, such as Warzone or DarkCrystal (their activity more than doubled), SpyNet (+89%) and QuasarRAT(+21%)

A hot topic this quarter was a vulnerability in Log4j and in addition to other malware types, some RATs were also spread thanks to the vulnerability. The most prevalent were NanoCore, AsyncRat and Orcus. Another new vulnerability that was exploited by RATs was CVE-2021-40449. This vulnerability was used to elevate permissions of malicious processes by exploiting the Windows kernel driver. Attackers used this vulnerability to download and launch the MistarySnail RAT. Furthermore, a very important cause of high Nanocore and AsyncRat detections was caused by a malicious campaign abusing the cloud providers, Microsoft Azure and Amazon Web Service (AWS). In this campaign malware attackers used Azure and AWS as download servers for their malicious payloads.

But that’s not all, at the beginning of December we found a renamed version of DcRat under the name SantaRat. This renamed version was just pure copy-paste of DcRat, but it shows that malware developers were also in the Christmas spirit and maybe they also hoped that their version of Santa would visit many households as well, to deliver their gift. To be clear, DcRat is a slightly modified version of AsyncRat. 

The developers of DcRat weren’t the only ones playing the role of Santa and distributing gifts. Many other malware authors also delivered RAT related gifts to us in Q4’21.

The first one was the DarkWatchman RAT, written in JavaScript and on top of the programming language used, it differs from other RATs with one other special property: it lives in the system registry keys. This means that it uses registry keys to store its code, as well as to store temporary data, thus making it fileless.

Another RAT that appeared was ActionRAT, released by the SideCopy APT group in an attack on the government of Afghanistan. This RAT uses base64 encoding to obfuscate its strings and C&C domains. Its capabilities are quite simple, but still powerful so it could execute commands from a C&C server, upload, download and execute files, and retrieve the victim’s machine details.

We also observed two new RATs spread on Linux systems. CronRAT's name already tells us what it uses under the hood, but for what? This RAT uses cron jobs, which are basically scheduled tasks on Linux systems to store payloads. These tasks were scheduled on 31.2. (a non-existent date) and that’s why they were not triggered, so the payload could remain hidden. The second RAT from the Linux duo was NginRAT which was found on servers that were previously infected with CronRAT and served the same purpose: to provide remote access to the compromised systems.

Even though we saw a decrease in RAT activity at the end of December it won’t stay that way. Malicious actors will likely come back from their vacations fresh and will deliver new surprises. So stay tuned.

Samuel Sidor, Malware Researcher

Rootkits

We have recorded a significant increase in rootkit activity at Q4’21, illustrated in the chart below. This phenomenon can be explained by the increase in adware activity since the most active rootkit was the Cerbu rootkit. The primary function of Cerbu is to hijack browser homepages and redirect site URLs according to the rootkit configuration. So, this rootkit can be easily deployed and configured for adware.

The graph below shows that China is still the most at risk countries in terms of protected users, although attacks in China decreased by about 17%.

In Q4’21, the most significant increase of risk ratio was in Egypt and Vietnam. On the other hand, Taiwan, Hong Kong, and China reported approximately the same values as in the previous quarter. The most protected users were in the Czech Republic, Russian Federation, China, and Indonesia.

Martin Chlumecký, Malware Researcher

Technical support scams (TSS)

During the last quarter, we registered a significant wave of increased tech support scam activity. In Q4’21, we saw peaks at the end of December and we are already seeing some active spikes in January.

Activity of a long-term TSS campaign

The top targeted countries for this campaign are the United States, Brazil, and France. The activity of this campaign shows the tireless effort of the scammers and proves the increasing popularity of this threat.

In combination with other outgoing long-term campaigns, our data also shows two high spikes of activity of another campaign, lasting no longer than a few days, heavily targeting the United States and Canada, as well as other countries in Europe. This campaign had its peak at the end of November and the beginning of December, then it slowly died out.

Rise and fall and slow fall of the second campaign

Example of a typical URL for this short campaign:

hxxp://159.223.148.40/ViB888Code0MA888Error0888HElp008ViB700Vi/index.html

hxxp://157.245.222.59/security-alert-attention-dangerous-code-65296/88WiLi88Code9fd0CH888Error888HElp008700/index.html

We also noticed attempts at innovation as new variants of TSS samples appeared. So, not just a typical locked browser with error messages but other imitations like Amazon Prime, and PayPal. We are of course tracking these new variants and will see how popular they will be in the next quarter.

Overall TSS activity for Q4

Alexej Savčin, Malware Analyst

Vulnerabilities and Exploits

As was already mentioned in the foreword, the vulnerability news in Q4’21 was dominated by Log4Shell. This vulnerability in Log4j – a seemingly innocent Java logging utility – took the infosec community by storm. It was extremely dangerous because of the ubiquity of Log4j and the ease of exploitation, which was made even easier by several PoC exploits, ready to be weaponized by all kinds of attackers. The root of the vulnerability was an unsafe use of JNDI lookups, a vulnerability class that Hewlett Packard researchers Alvaro Muñoz and Oleksandr Mirosh already warned about in their 2016 BlackHat talk. Nevertheless, the vulnerability existed in Log4j from 2013 until 2021, for a total of eight years.

For the attackers, Log4Shell was the greatest thing ever. They could just try to stuff the malicious string into whatever counts as user input and observe if it gets logged somewhere by a vulnerable version of Log4j. If it does, they just gained remote code execution in the absence of any mitigations. For the defenders on the other hand, Log4Shell proved to be a major headache. They had to find all the software in their organization that is (directly or indirectly) using the vulnerable utility and then patch it or mitigate it. And they had to do it fast, before the attackers managed to exploit something in their infrastructure. To make things even worse, this process had to be iterated a couple of times, because even some of the patched versions of Log4j turned out not to be that safe after all.

From a research standpoint, it was interesting to observe the way the exploit was adopted by various attackers. First, there were only probes for the vulnerability, abusing the JNDI DNS service provider. Then, the first attackers started exploiting Log4Shell to gain remote code execution using the LDAP and RMI service providers. The JNDI strings in-the-wild also became more obfuscated over time, as the attackers started to employ simple obfuscation techniques in an attempt to evade signature-based detection. As time went on, more and more attackers exploited the vulnerability. In the end, it was used to push all kinds of malware, ranging from simple coinminers to sophisticated APT implants.

In other vulnerability news, we continued our research into browser exploit kits. In October, we found that Underminer implemented an exploit for CVE-2021-21224 to join Magnitude in attacking unpatched Chromium-based browsers. While Magnitude stopped using its Chromium exploit chain, Underminer is still using it with a moderate level of success. We published a detailed piece of research about these Chromium exploit chains, so make sure to read it if you’d like to know more.

Jan Vojtěšek, Malware Researcher

Web skimming 

One of the top affected countries by web skimming in Q4’21 was Saudi Arabia, in contrast with Q3’21 we protected four times as many users in Saudi Arabia in Q4. It was caused by an infection of e-commerce sites souqtime[.]com and swsg[.]co. The latter loads malicious code from dev-connect[.]com[.]de. This domain can be connected to other known web skimming domains via common IP 195[.]54[.]160[.]61. The malicious code responsible for stealing credit card details loads only on the checkout page. In this particular case, it is almost impossible for the customer to recognize that the website is compromised, because the attacker steals the payment details from the existing payment form. The payment details are then sent to the attackers website via POST request with custom encoding (multiple base64 and substitution). The data sending is triggered on an “onclick” event and every time the text from all input fields is sent.

In Australia the most protected users were visitors of mobilitycaring[.]com[.]au. During Q4’21 this website was sending payment details to two different malicious domains, first was stripe-auth-api[.]com, and later the attacker changed it to booctstrap[.]com. This domain is typosquatting mimicking bootstrap.com. This is not the first case we observed where an attacker changed the exfiltration domain during the infection.

In Q4’21, we protected nearly twice as many users in Greece as in Q3’21. The reason behind this was the infected site retro23[.]gr, unlike the infected site from Saudi Arabia (swsg[.]co), in this case the payment form is not present on the website, therefore the attacker inserted their own. But as we can see in the image below, that form does not fit into the design of the website. This gives customers the opportunity to notice that something is wrong and not fill in their payment details. We published a detailed analysis about web skimming attacks, where you can learn more.

Pavlína Kopecká, Malware Analyst

Mobile

Premium SMS – UltimaSMS

Scams that siphon victims’ money away through premium SMS subscriptions have resurfaced in the last few months. Available on the Play Store, they mimic legitimate applications and games, often featuring catchy adverts. Once downloaded, they prompt the user to enter their phone number to access the app. Unbeknownst to the user, they are then subscribed to a premium SMS service that can cost up to $10 per week.

As users often aren’t inherently familiar with how recurring SMS subscriptions work, these scams can run for months unnoticed and cause an expensive phone bill for the victims. Uninstalling the app doesn’t stop the subscription, the victim has to contact their provider to ensure the subscription is properly canceled, adding to the hassle these scams create.

Avast has identified one such family of Premium SMS scams – UltimaSMS. These applications serve only to subscribe victims to premium SMS subscriptions and do not have any further functions. The actors behind UltimaSMS extensively used social media to advertise their applications and accrued over 10M downloads as a result.

According to our data the most targeted countries were those in the Middle East, like Qatar, Oman, Saudi Arabia or Kuwait. Although we’ve seen instances of these threats active even in other areas, like Europe, for instance in our home country – the Czech Republic. We attribute this widespread reach of UltimaSMS to its former availability on the Play Store and localized social media advertisements.

Jakub Vávra, Malware Analyst

Spyware – Facestealer

A newcomer this year, Facestealer, resurfaced on multiple occasions in Q4’21. It is a spyware that injects JavaScript into the inbuilt Android Webview browser in order to steal Facebook credentials. Masquerading as photo editors, horoscopes, fitness apps and others, it has been a continued presence in the last few months of 2021 and it appears to be here to stay. 

Facestealer apps look legitimate at first and they fulfill their described app functions. After a period of time, the apps’ C&C server sends a command to prompt the user to sign in to Facebook to continue using the app, without adverts. Users may have their guard down as they’ve used the app without issue up until now. The app loads the legitimate Facebook login website and injects malicious JS code to skim the users’ login credentials. The user may be unaware their social media account has been breached.

It is likely that, as with other spyware families we’ve seen in the past, Facestealer will be reused in order to target other social media platforms or even banks. The mechanism used in the initial versions can be adjusted as the attackers can load login pages from potentially any platform.

According to our threat data, this threat was mostly targeting our users in Africa and surrounding islands – Niger and Nigeria in the lead, followed by Madagascar, Zimbabwe and others.

Jakub Vávra, Malware Analyst
Ondřej David, Malware Analysis Team Lead

Fake Covid themed apps on the decline

Despite the pandemic raging on and governments implementing various new measures and introducing new applications such as Covid Passports, there’s been a steady decline in the number of fake Covid apps. Various bankers, spyware and trojans that imitated official Covid apps flooded the mobile market during 2020 and first half of 2021, but it seems they have now returned to disguising themselves as delivery apps, utility apps and others that we have seen before.

It’s possible that users aren’t as susceptible to fake Covid apps anymore or that the previous methods of attack proved more efficient for these pieces of malware, as evidenced for example on the massively successful campaigns of FluBot, which we reported on previously. Cerberus/Alien variants stood out as the bankers that were on the frontlines of fake Covid-themed apps. But similarly to some of this year’s newcomers such as FluBot or Coper bankers, the focus has now shifted back to the “original” attempts to breach users’ phones through SMS phishing while pretending to be a delivery service app, bank app or others.

During the beginning of the pandemic we were able to collect hundreds to thousands of new unique samples monthly disguising themselves as various apps connected to providing Covid information, Covid passes, vaccination proofs or contact tracing apps or simply just inserting the Covid/Corona/Sars keywords in their names or icons. During the second half of 2021 this trend has been steadily dropping. In Q4’21 we have seen only low 10s of such new samples.

Jakub Vávra, Malware Analyst
Ondřej David, Malware Analysis Team Lead

Acknowledgements / Credits

Malware researchers
  • Adolf Středa
  • Alex Savčin
  • Anh Ho
  • Daniel Beneš
  • Igor Morgenstern
  • Jakub Kaloč
  • Jakub Křoustek
  • Jakub Vávra
  • Jan Rubín
  • Jan Vojtěšek
  • Luigino Camastra
  • Martin Hron
  • Martin Chlumecký
  • Michal Salát
  • Ondřej David
  • Pavlína Kopecká 
  • Samuel Sidor
Data analysts
  • Pavol Plaskoň
Communications
  • Stefanie Smith

The post Avast Q4/21 Threat report appeared first on Avast Threat Labs.

❌
❌